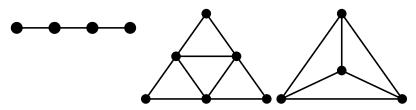
Nonvanishing criteria for local *h*-polynomials

Matt Larson

Joint work with Sam Payne and Alan Stapledon arxiv: 2209.03553 and 2209.03543 September 17, 2022

・ロト ・ 同ト ・ ヨト ・ ヨト

Triangulations of simplices



- A triangulation of a simplex gives a map $\sigma \colon \Gamma \to 2^V$.
- For each subset S of V, we can restrict to obtain a triangulation $\sigma|_S \colon \Gamma|_S \to 2^S$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Local *h*-polynomial

Definition (Local *h*-polynomial)

For a triangulation of a simplex $\sigma \colon \Gamma \to 2^V$, define the *local h*-polynomial $\ell(\Gamma, t) = \ell_0 + \ell_1 t + \cdots$ by

$$h(\Gamma, t) = \sum_{S \subseteq V} \ell(\Gamma|_S, t),$$

and $\ell(\Gamma|_{\emptyset}, t) = 1$.

• We have the formula

$$\ell(\Gamma,t) = \sum_{G \in \Gamma} (-1)^{|V| - |G|} t^{|V| - |\sigma(G)| + |G|} (t-1)^{|\sigma(G)| - |G|}.$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Theorem (Stanley 1992)

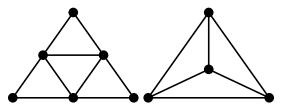
Let $\sigma\colon\Gamma\to 2^V$ be a triangulation of a simplex. Then coefficients of $\ell(\Gamma,\,t)$ are

- symmetric, i.e., $t^{|V|}\ell(\Gamma, t^{1/|V|}) = \ell(\Gamma, t)$,
- nonnegative, and
- if Γ is a *regular triangulation*, then the coefficients are unimodal.

イロト イボト イヨト イヨト

$$\ell(\Gamma, t) = \sum_{G \in \Gamma} (-1)^{|V| - |G|} t^{|V| - |\sigma(G)| + |G|} (t - 1)^{|\sigma(G)| - |G|}$$

- If V ≠ Ø, then ℓ₀ = 0 and ℓ₁ is the number of interior vertices (vertices v of Γ with σ(v) = V).
- If there are no interior vertices, then ℓ₂ is the number of interior edges minus the number of vertices v of carrier codimension 1.



伺下 イヨト イヨト

Applications of local *h*-polynomials

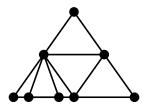
- Local *h*-polynomials control how the *h*-polynomial of a simplicial *complex* changes under refinement (Stanley 1992).
- Local *h*-polynomials appear when applying the decomposition theorem to a proper toric morphism (Katz-Stapledon 2016, de Cataldo-Migliorini-Mustață 2018).
- Local *h*-polynomials appear when computing the eigenvalues of the monodromy action on the cohomology of the Milnor fiber of a Newton-nondegenerate singularity (Stapledon 2017).
- Local *h*-polynomials have applications to other combinatorial polynomials (Athanasiadis).
- In the first three applications, it is important to know when local *h*-polynomials vanish.
- In the last three applications, a relative version is necessary.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (de Moura-Gunther-Payne-Stapledon-Schuchardt 2020)

Let $\sigma \colon \Gamma \to 2^V$ be a triangulation with $\ell(\Gamma, t) = 0$. Assume $\ell_1 = \ell_2 = 0$. Then:

- The *interior edge graph* of Γ is either contractible, or |V| = 3 and it has a single cycle.
- If $|V| \le 4$, then there is an explicit construction of all triangulations with $\ell(\Gamma, t) = 0$.



• For
$$\theta = \sum_{v \in \Gamma} a_v x^v \in k[\Gamma]$$
 of degree 1,

$$\operatorname{supp}(\theta) = \{ v \colon a_v \neq 0 \}.$$

- A linear system of parameters (l.s.o.p.) θ₁,...,θ_{|V|} is special if for all v ∈ supp(θ_i), i ∈ σ(v). Special l.s.o.p.s exist when k is infinite.
- Given a choice of a special l.s.o.p. θ₁,...,θ_{|V|}, the local face module L(Γ) is the image of the ideal of interior faces in k[Γ]/(θ₁,...,θ_{|V|}).

Theorem (Stanley 1992)

The Hilbert series of $L(\Gamma)$ is $\ell(\Gamma, t)$.

イロト イヨト イヨト イヨト

Theorem (L.-Payne-Stapledon 2022)

Let $\sigma \colon \Gamma \to 2^V$ be a triangulation, and let $I \subset k[\Gamma]$ be the ideal of interior faces. Then there is an exact sequence

$$K \to I \to L(\Gamma) \to 0,$$

where K is the ideal generated by

$$\left\{\theta_{i}\cdot x^{\mathsf{F}}:\mathsf{F} \text{ is interior }\right\}\cup\left\{\theta_{j}\cdot x^{\mathsf{G}}:\sigma(\mathsf{G})=\mathsf{V}\setminus j\right\}.$$

- We have an explicit resolution of $L(\Gamma)$.
- \bullet For any subcomplex $\Gamma'\subset \Gamma,$ we have a short exact sequence

$$\mathcal{K} \otimes_{k[\Gamma]} k[\Gamma'] \to \mathcal{I} \otimes_{k[\Gamma]} k[\Gamma'] \to \mathcal{L}(\Gamma) \otimes_{k[\Gamma]} k[\Gamma'] \to 0.$$

Obstruction to vanishing of $\ell(\Gamma, t)$

Suppose that $V = \{1, 2, 3, 4, 5, 6\}$, and let $\sigma \colon \Gamma \to 2^V$ be triangulation with a facet $F = \{w_1, \dots, w_6\}$ such that

$$\begin{aligned} \sigma(w_1) &= \{1\} & \sigma(w_2) = \{2\} & \sigma(w_3) = \{3\} \\ \sigma(w_4) &= \{1, 4, 5\} & \sigma(w_5) = \{2, 4, 6\} & \sigma(w_6) = \{3, 5, 6\} \end{aligned}$$

Then the interior 2-faces of F are $\{w_1, w_5, w_6\}$, $\{w_2, w_4, w_6\}$, $\{w_3, w_4, w_5\}$, and $\{w_4, w_5, w_6\}$. But F has no interior vertices or edges, and it has only three edges with carrier codimension one, namely $\{w_4, w_5\}$, $\{w_4, w_6\}$, and $\{w_5, w_6\}$. Thus $L(\Gamma)$ is non-zero in degree three.

• We have a short exact sequence

$$K \otimes_{k[\Gamma]} k[F] \to I \otimes_{k[\Gamma]} k[F] \to L(\Gamma) \otimes_{k[\Gamma]} k[F] \to 0.$$

・ ロ ト ・ 一 戸 ト ・ 日 ト

- Can also attempt to show that L(Γ) is nonzero by finding a nonzero map out of L(Γ).
- For certain special l.s.o.p.s, the ring k[Γ]/(θ₁,...,θ_{|V|}) is the cohomology ring of a (non-compact) toric variety.
- For each subvariety Y, we have a map $k[\Gamma]/(\theta_1, \ldots, \theta_{|Y|}) \to H^*(Y; k).$

イロト イポト イヨト イヨト 三日

Theorem (L.-Payne-Stapledon)

Let $\sigma \colon \Gamma \to 2^V$ be a triangulation, and suppose $F = G \sqcup G'$ is a facet of Γ such that $\sigma(G) = \sigma(G') = 2^V$. Then $\ell(\Gamma, t)$ is nonzero.

- Because G is interior, the subvariety corresponding to G is a compact toric variety.
- The image of $x^{G'}$ is nonzero in the cohomology ring of the subvariety corresponding to *G*.

イロト イヨト イヨト

Applications to eigenvalues of monodromy

- For a polynomial f ∈ Z[x₁,..., x_n], the Igusa p-adic zeta function Z_p(s) is a rational function in p^{-s} that counts the number of solutions to f ≡ 0 (mod p^k).
- The eigenvalues of the monodromy action on the Milnor fiber of V(f) are invariants of the singularities of V(f).

p-adic monodromy conjecture (Denef, Igusa 1980s)

If α is a pole of $Z_p(s)$ for p sufficiently large, then $e^{2\pi i \Re(\alpha)}$ is an eigenvalue of monodromy.

- If *f* is *Newton-nondegenerate*, then there are combinatorial formulas for both the *p*-adic zeta function and the eigenvalues of monodromy.
- The formula for the eigenvalues of monodromy involve local *h*-polynomials.

Theorem (L.-Payne-Stapledon)

If f is nondegenerate with respect to a simplicial Newton polyhedron, then the p-adic monodromy conjecture is true for f.

- If a certain local *h*-polynomial is nonzero, then we produce eigenvalues of monodromy.
- If the local *h*-polynomial vanishes, then get control over the combinatorics of the Newton polyhedron and are able to show cancellation in the *p*-adic zeta function.

イロト イヨト イヨト イヨト

Thank you!

arxiv: 2209.03553 and 2209.03543

Matt Larson Nonvanishing criteria for local *h*-polynomials

ヘロト 人間 とくほ とくほ とう

æ