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Abstract. We give a precise definition of incidence theorems in plane projective geometry and introduce the notion

of “absolute incidence theorems,” which hold over any ring. Fomin and Pylyavskyy describe how to obtain incidence

theorems from tilings of an orientable surface; they call this result the “master theorem”. Instances of the master
theorem are always absolute incidence theorems. As most classically known incidence theorems are instances of

the master theorem, they are absolute incidence theorems. We give an explicit example of an incidence theorem

involving 13 points that is not an absolute incidence theorem, and therefore is not an instance of the master theorem.

1. Introduction

Incidence theorems in the projective plane are a classically studied subject, dating back to the ancient Greeks.
In this paper, we study different types of incidence theorems. We begin by giving a precise definition of incidence
theorems, in a sense that would be recognizable to Euclid.

Definition 1.1. An incidence theorem is a set {1, . . . , n}, a collection of nondegeneracy conditions consisting of
pairs and triples of elements of {1, . . . , n}, a collection of collinearity conditions consisting of triples of elements of
{1, . . . , n}, and an additional triple {a, b, c} called the conclusion, satisfying the following condition: for every field
k and points p1, . . . , pn in P2(k) such that

(1) if {i, j} is a nondegeneracy condition, then pi ̸= pj ,
(2) if {i, j, k} is a nondegeneracy condition, then pi, pj , and pk do not lie on a line, and
(3) if {i, j, k} is a collinearity condition, then pi, pj , and pk lie on a line,

then pa, pb, and pc lie on a line.

Often, one assumes that all points are distinct. One sometimes considers incidence theorems which are valid
over a particular field k, meaning that one requires the above conditions only for points in P2(k). For example, the
ancient Greeks were interested in the case k = R. We can describe Pappus’s theorem in this way.

Example 1.2. Consider the configuration of points in Figure 1. This figure describes an incidence theorem in the
sense of Definition 1.1:

(1) Assume that all pairs of points are distinct, that is, all pairs {i, j} are nondegenerate.
(2) The lines shown in Figure 1 encode the collinearity conditions:

{1, 2, 3}, {1, 5, 7}, {1, 6, 8}, {2, 4, 7}, {2, 6, 9}, {3, 4, 8}, {3, 5, 9}, {4, 5, 6}.
(3) Lastly, we assume that all triples apart from the triple {7, 8, 9} and these collinearity conditions are non-

degenerate.

Pappus’s theorem now states that, in this situation, the additional incidence {7, 8, 9} also holds, that is, for every
choice of points p1, . . . , p9 in P2(k) satisfying these conditions, the points p7, p8 and p9 are collinear.
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Figure 1. The configuration of points and lines in Pappus’s theorem.

We will also be interested in a stronger form of incidence theorem. For this, it will be convenient to recall that
incidence theorems can be described algebraically. Given points p1, . . . , pn in P2(k), by choosing homogeneous
coordinates, we can construct a 3×n matrix with entries in k. Conversely, every 3×n matrix with no zero columns
gives points p1, . . . , pn in P2(k). Any matrix that can be obtained by rescaling the columns gives the same points.
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In this framework, incidence theorems can be interpreted as algebraic statements. We have pi = pj if and only
if the ith column and the jth column are scalar multiples of each other, which is equivalent to the vanishing of the
three 2× 2 minors using the ith and jth columns of the matrix. Points pi, pj , and pk are collinear if and only if the
corresponding 3 × 3 minor vanishes. Importantly, this perspective allows one to consider the validity of incidence
theorems over commutative rings.

Definition 1.3. An incidence theorem with conclusion {a, b, c} is an absolute incidence theorem if, for every
commutative ring A and every 3× n matrix of elements of A such that

(1) the ideal generated by the entries in each column is the unit ideal,
(2) if {i, j} is a nondegeneracy condition, then the ideal generated by the 2× 2 minors using columns i and j

is the unit ideal,
(3) if {i, j, k} is a nondegeneracy condition, then the determinant of the 3 × 3 minor with columns i, j, and k

is a unit, and
(4) if {i, j, k} is a collinearity condition, then the determinant of the 3× 3 minor with columns i, j, and k is 0,

then the determinant of the 3× 3 minor with columns a, b, and c is 0.

If A is a field, then the conditions in Definition 1.3 reduce to the conditions in Definition 1.1; the first condition
is necessary because the vector (0, 0, 0) does not define a point of projective space. See Section 2 for a discussion
and basic properties of this definition.

We will show that most classically known incidence theorems are absolute incidence theorems. Our interest in
incidence theorems comes from a recent paper of Fomin and Pylyavskyy [FP23], where they introduce a very general
result which they call the “master theorem,” and they show that most or all classically known incidence theorems
are instances of it. We will show that their techniques prove that these are absolute incidence theorems.

To construct incidence theorems, Fomin and Pylyavskyy begin with a tiling of a closed orientable surface by
quadrilaterals, where each vertex of the tiling is colored black or white, and each edge connects vertices of opposite
colors. Choose a field k, associate to each black vertex a point of P2(k), and associate to each white vertex a line
in P2(k). We say that this tile is coherent if neither point lies on either line, and either the points are the same,
the lines are the same, or the intersection of the lines is contained in the line through the points.

Theorem 1.4 (Master theorem). [FP23, Theorem 2.6] Suppose we have a tiling of an orientable surface and have
associated a point to each black vertex and a line to each white vertex in P2(k). If all but one of the tiles is coherent,
then the last one is coherent as well.

We now describe how to formulate a version of the master theorem in our framework. Given a tiling of a closed
orientable surface by quadrilaterals, we choose an equivalence relation on the white vertices. We will associate a
line to each equivalence class of white vertices, and we will require these lines to be distinct.

Form the set which consists of the black vertices, two elements si, ti for each equivalence class of white vertices,
and one element Rk for each pair of distinct equivalence classes of white vertices which appear in a tile together. The
nondegeneracy conditions are {si, ti} for each equivalence class of white vertices, {si, ti, tj}, {si, ti, sj}, {si, sj , tj},
and {ti, si, sj} for each pair of equivalence classes of white vertices, and {si, ti, P} for each equivalence class of white
vertices and black vertex P which appear in a tile together. For each pair of distinct equivalence classes of white
vertices which appear in a tile together, impose the collinearity conditions {si, ti, Rk} and {sj , tj , Rk}. To obtain an
incidence theorem, choose one tile where the white vertices are not equivalent. For every other tile where the white
vertices are not equivalent, impose the collinearity condition {P,Q,Rk}, where P and Q are the black vertices of
the tile, and Rk is the point constructed for the equivalence classes of white vertices in this tile. The conclusion is
{P,Q,Rk}, where P and Q are the black vertices of the remaining tile where the white vertices are not equivalent,
and Rk is the point associated to this tile. We call this the incidence theorem generated by the tiling.

Theorem 1.5. Given a tiling of an orientable surface by quadrilaterals and an equivalence relation on the white
vertices, the incidence theorem generated by the tiling is an absolute incidence theorem.

We illustrate the above setup in Example 3.7. The equivalence relation on the white vertices is necessary to
formulate Theorem 1.4 in our framework, as we cannot discuss lines directly. Instead, we construct two distinct
points and think about the line that they determine. Our nondegeneracy conditions guarantee that these lines are
distinct. In our framework, the basic identity underlying the master theorem (Proposition 3.5) does not hold if the
two lines appearing in the tile are the same, so we need to treat tiles where the two lines are the same in a different
way. For this reason, one needs to specify in advance which lines are the same, which is why we need the equivalence
relation on the white vertices. It can be beneficial to have a nontrivial equivalence relation, i.e., to identify some of
the lines. See [FP23, Remark 3.7].
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We prove Theorem 1.5 in Section 3. The proof relies on the same basic observation that Fomin and Pylyavskyy
used to prove Theorem 1.4. However, there are a few technical obstacles that must be overcome, as we do not have
access to tools from linear algebra because we work over arbitrary commutative rings.

We remark that a similar tiling-based approach to incidence theorems was introduced in [Ric06], see [Bar+20;
RL19] for further work on this approach, and see [PS25] for more discussion and related approaches to incidence
theorems.

Fomin and Pylyavskyy ask if every incidence theorem can be deduced from the master theorem. Pylyavskyy and
Skopenkov gave an example of an incidence theorem which holds when k = C, but not when k has characteristic 2
[PS25, Example 3.1]. In particular, this result cannot be proven using the master theorem. We give an example of
an incidence theorem in the sense of Definition 1.1 (so it holds over every field) which is not an absolute incidence
theorem, and so it is not an instance of the master theorem. The question of whether every absolute incidence
theorem is an instance of the master theorem remains open.

Theorem 1.6. Let k be a field, and suppose we have distinct points p1, . . . , p13 in the projective plane over k.
Suppose that the following triples of points are collinear:

{p1, p2, p3}, {p1, p2, p13}, {p1, p3, p13}, {p1, p4, p5}, {p1, p6, p9}, {p1, p7, p10}, {p1, p8, p12}, {p2, p3, p13},
{p2, p4, p6}, {p2, p5, p8}, {p2, p10, p11}, {p3, p4, p7}, {p3, p5, p6}, {p3, p8, p10}, {p4, p9, p10}, {p5, p7, p11},
{p6, p7, p13}, {p6, p8, p11}, {p6, p10, p12}, {p7, p9, p12}.

Then p11, p12, and p13 are collinear. Thus, this is an incidence theorem. However, it is not an absolute incidence
theorem.

The collinearity conditions are depicted in Figure 2a. This incidence theorem holds over any field k.
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(a) The collinearity conditions described in Theorem 1.6.
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(b) The infinitesimal motion of that configuration.

Figure 2. A configuration satisfying the conditions in Theorem 1.6 and its infinitesimal motion.

We give two proofs of Theorem 1.6 in Section 4. One proof is computer-assisted. The other proof is human-
readable, but it involves a few tedious computations.
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To check that the incidence theorem is not an absolute incidence theorem, one only needs to give a 3×13 matrix
with entries in a commutative ring A such that the specified nondegeneracy and collinearity conditions hold, but the
determinant of the 3×3 minor with columns 11, 12, and 13 is not zero. If we set A = Q[x, ε]/(ε2, x2−2−ε/4), then
the following matrix suffices. For instance, the determinant of the minor with columns 11, 12, and 13 is 2ε/7−εx/14.

(1.7)

 1 1 0 1 0 0
0 1 1 1 1 0
0 0 0 1 1 1

1 1 1 1 1 1 1
x+ ε

14 − εx
56 1 + x− 3ε

28 − 9εx
56 0 2− 3ε

28 − εx
28 1 + x− 3ε

28 − 9εx
56 2− 3ε

28 − εx
28 x+ ε

14 − εx
56

1 x− 3ε
28 − 9εx

56 2− x+ ε
7 + 5εx

56 x− 3ε
28 − 9εx

56 2− 5ε
28 − εx

7 4− 2x 0

 .

Incidence theorems over skew fields have been classically studied at least since the days of Hilbert [Hil02]. Unlike
the situation over fields, it is undecidable to determine whether an incidence theorem holds over all skew fields
[KPY23]. We do not know if the incidence theorem in Theorem 1.6 holds over skew fields.

We now describe the origin of the incidence theorem in Theorem 1.6. Let M be the matroid obtained from (1.7)
by setting ε = 0, and let M0 be the matroid obtained from M by deleting the element 13. The rank 3 simple
matroid M0 on {1, . . . , 12} was shown to us by Dante Luber, who found it in his study with Dan Corey of the
realization spaces of rank 3 matroids on 12 elements [CL25]. It can be checked, for example using the OSCAR package
for matroids [CKS25], that the rational realization space of M0 (i.e., the quotient of the locus in Gr(3, 12) of linear
subspaces realizing it by the action of the torus) is isomorphic to SpecQ[x]/(x2 − 2)2, i.e., to two non-reduced
points. This means that there is an infinitesimal motion of the points in each realization of M0 which preserves
the incidence conditions, but this infinitesimal motion cannot be integrated. See Remark 4.12. The matroid M is
obtained by adding a 13th point at the intersection of the lines through {p1, p3} and through {p6, p7}. In any of
the realizations of M0, the intersection of these lines is contained in the line passing through {p11, p12}. However,
this fails infinitesimally: the infinitesimal motion of the points p1, . . . , p12 induces an infinitesimal motion of p13
(as it is the intersection of the lines through {p1, p3} and through {p6, p7}), but this motion does not preserve the
coincidence that p13 lies on the line through {p11, p12}. The infinitesimal motion of these points is depicted with
red arrows in Figure 2b. The rational realization space of M is isomorphic to SpecQ[x]/(x2 − 2).

Remark 1.8. The matroid M0, found by Dan Corey and Dante Luber, is the first explicit example of a matroid
whose realization space over a field of characteristic 0 is non-reduced. The first example of a rank 3 matroid with
a singular realization space also occurs on 12 elements [CL25]. There are smaller examples of matroids whose
realization space over a field of positive characteristic is non-reduced; for example, this occurs for the 9-element
Perles matroid in characteristic 5.

Remark 1.9. Mnëv–Sturmfels universality [Mnë88; Stu87; BS89; Stu89], see also [Laf03; LV13], shows that spaces
defined by incidence equations (i.e., the subschemes of A3n

Z where certain nondegeneracy and collinearity conditions
hold) can be almost arbitrary. However, the proofs of this result (such as the one in [Laf03]) do not immediately
adapt to produce incidence theorems which are not absolute incidence theorems.

Remark 1.10. In [PS25], Pylyavskyy and Skopenkov gave a different definition of incidence theorems, in terms
of incidence conditions on points and lines in the projective plane. Incidence theorems in this framework can
be formulated in our framework and vice versa. One can similarly define absolute incidence theorems in their
framework, and one can translate Theorem 1.6 into their framework to obtain an incidence theorem which is not
an absolute incidence theorem.
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Institute for Advanced Study, where the first author was funded by the Erik Ellentuck Fund and the second author
is supported by the Charles Simonyi Endowment and the Oswald Veblen Fund. The first author is supported by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB-TRR 358/1 2023 – 491392403
and SPP 2458 – 539866293.
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2. Absolute incidence theorems

In this section, we discuss basic properties of absolute incidence theorems and make some remarks. We also give a
direct proof that Pappus’s theorem is an absolute incidence theorem. Throughout this section, we fix a commutative
ring A. We first give an alternative description of the nondegeneracy conditions in an absolute incidence theorem.

Lemma 2.1. Elements x, y, z, . . . of A3 satisfy the nondegeneracy conditions of an absolute incidence theorem if
and only if, for every maximal ideal m of A, the images of x, y, z, . . . in the vector space (A/m)3 over the field A/m
satisfy the nondegeneracy condition.

Proof. The nondegeneracy conditions state that certain ideals are the unit ideal. In any commutative ring, every
ideal except for the unit ideal is contained in a maximal ideal, so an ideal I is the unit ideal if and only if there is
no maximal ideal m such that the image of I in A/m is 0. □

Remark 2.2. If {x, y, z, . . . } is a collection of elements of A3 which satisfies conditions (1) and (2) of Definition 1.3,
and the determinant of a 3 × 3 matrix corresponding to a nondegeneracy condition {i, j, k} is not a zero-divisor,
then the conclusion of the absolute incidence theorem will still hold. Indeed, we can consider the total ring of
fractions Q(A), which is the localization of A at the set of all elements which are not zero-divisors. The natural
map A → Q(A) is an injection, and the nondegeneracy conditions will be satisfied if we view this matrix as living
in Q(A). In particular, an incidence theorem (which holds over all fields) also holds over all integral domains.

Remark 2.3. If A is a commutative ring, then the set of columns of nonzero 3 × 3 minors of a matrix with
coefficients in A need not be the bases of a rank 3 matroid. For example, consider the following matrix, with
coefficients in Q[ε]/(ε2): 1 0 0 0 0

0 ε 1 0 5
0 0 ε ε 3

 .

Then the columns of nonzero 3 × 3 minors are the sets {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, which is not the set of
bases of a matroid.

A collection of nondegeneracy conditions defines a Zariski open subset of the space of 3 × n matrices A3n
Z , and

a collection of collinearity conditions defines a closed subscheme of A3n
Z . The corresponding absolute incidence

theorem holds if and only if the intersection of these subschemes is equal to the subscheme where the determinant
of the 3× 3 minor corresponding to the conclusion also vanishes. The incidence theorem holds if and only if these
subschemes of A3n

Z have the same underlying set.
Recall that an Artinian local ring is a commutative ring with a unique maximal ideal which is a finite-dimensional

vector space over a subring which is a field.

Proposition 2.4. An incidence theorem is an absolute incidence theorem if it holds for every 3 × n matrix with
entries in A for every Artinian local ring A.

Proof. Let Z be the subscheme of A3n
Z obtained by intersecting the open set where the nondegeneracy conditions

hold with the closed subscheme defined by the collinearity conditions. Let Z0 be the intersection of Z with the
locus where the 3× 3 minor corresponding to the conclusion vanishes. This is an absolute incidence theorem if and
only if the inclusion Z0 ⊆ Z is an equality.

To check whether this inclusion is an equality, we can choose an affine open cover of Z and check it on each affine
piece. The claim then follows from the following statement: let R be a Noetherian ring, and let I be a nonzero
proper ideal of R. Then there is an Artinian local ring A and a ring homomorphism φ : R → A such that φ(I) ̸= 0.

To prove this, we first find a maximal ideal m containing I. Then the image of I in Rm is nonzero. As Rm is a
Noetherian local ring, ∩km

k = 0, so there is some j such that I ̸⊂ mj . Then the image of I in Rm/m
j is nonzero,

and Rm/m
j is an Artinian local ring. □

Most algebraic techniques that are used to prove incidence theorems can be modified to prove the corresponding
absolute incidence theorem. The main subtleties come from the failure of the zero-product property for commutative
rings. As an illustration, we give a direct algebraic proof that Pappus’s theorem (Example 3.7) is an absolute
incidence theorem. Given elements x, y, z in A3, we set [x, y, z] to be the determinant of the 3 × 3 matrix with
columns given by x, y, and z.

Example 2.5. Let x1, x2, . . . , x9 be the columns of a 3 × 9 matrix of elements of A satisfying the hypothesis of
Pappus’s theorem. The nondegeneracy conditions guarantee that [x1, x2, x5], [x1, x4, x5], and [x2, x4, x5] are all
units, so, by Cramer’s rule, we can find units λ1, λ2, and λ3 such that x5 = λ1x1 +λ2x2 +λ3x4. Let B be the 3× 3
matrix with columns λ1x1, λ2x2, and λ3x4. The nondegeneracy conditions imply that the determinant of B is a
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unit, so B is invertible. By multiplying the 3× 9 matrix by B−1 and scaling some columns by units, we reduce to
the case when x1 = (1, 0, 0), x2 = (0, 1, 0), x4 = (0, 0, 1), and x5 = (1, 1, 1). Using the collinearity conditions, we
deduce the following form of the matrix:

S =

1 0 ? 0 1 ? 0 ? ?
0 1 ? 0 1 ? ? ? ?
0 0 0 1 1 ? ? ? ?

 .

The nondegeneracy conditions guarantee that every entry marked with a ? is a unit in A, and so by scaling the
columns we can assume that the first nonzero entry in each column is 1. As [x1, x5, x7] = [x4, x5, x6] = 0, we deduce
that S3,7 = 1 = S2,6 = 1. Set S2,3 = a, S3,6 = b, and S2,9 = c. Using the collinearity conditions {2, 6, 9}, {3, 4, 8},
and {1, 6, 8}, we deduce the following form of the matrix:

S =

1 0 1 0 1 1 0 1 1
0 1 a 0 1 1 1 a c
0 0 0 1 1 b 1 ab b

 .

Then [x3, x5, x9] = a+ b− ab− c = −[x7, x8, x9], so [x7, x8, x9] = 0 as {3, 5, 9} is a collinearity condition.

3. The master theorem proves absolute incidence theorems

As in the previous section, we fix a commutative ring A. For an element x ∈ A3, we refer to its coordinates
as x1, x2, x3. Given elements x and y in A3, we set x · y = x1y1 + x2y2 + x3y3 and x × y = (x2y3 − x3y2, x3y1 −
x1y3, x1y2 − x2y1). Recall that [x, y, z] = (x × y) · z, where [x, y, z] is the determinant of the 3 × 3 matrix with
columns x, y, and z.

Lemma 3.1. Let v, s, and t be elements of A3. Suppose that v · s = v · t = 0, and the ideal generated by the entries
of s× t is the unit ideal. Then v = λ(s× t) for some λ ∈ R.

Proof. Set s× t = (c1, c2, c3). By multiplying the equation v1s1 + v2s2 + v3s3 = 0 by t3, multiplying the equation
v1t1 + v2t2 + v3t3 = 0 by s3, and subtracting, we deduce that v1c2 = v2c1. Similarly, we have that v1c3 = v3c1 and
v2c3 = v3c2.

Because the ideal generated by c1, c2, c3 is the unit ideal, there are a1, a2, a3 ∈ A such that a1c1+a2c2+a3c3 = 1.
Set λ = a1v1 + a2v2 + a3v3. We claim that λci = vi for each i. For example,

λc1 = a1v1c1 + a2v2c1 + a3v3c1 = a1v1c1 + a2v1c2 + a3v1c3 = v1(a1c1 + a2c2 + a3c3) = v1. □

Lemma 3.2. Let v, w be elements of A3, and suppose that the ideal generated by the entries of v × w is the unit
ideal. Then for any unit u ∈ A and any λ ∈ A, the ideal generated by the entries of λv + uw is the unit ideal.

Proof. Suppose that the ideal generated by the entries of λv + uw is a proper ideal. Then it is contained in some
maximal ideal m of A. Consider the images of v and w in the vector space (A/m)3. The images are not parallel,
and the image of u in A/m is nonzero, giving a contradiction. □

Lemma 3.3. Let v, w, s, t be elements of A3. Suppose that [s, t, v] is a unit, and that the ideal generated by the
entries of v × w is the unit ideal. Then the ideal generated by the entries of (s× t)× (v × w) is the unit ideal.

Proof. By the triple product identity, we have (s× t)× (v×w) = ((s× t) ·w)v− ((s× t) · v)w = [s, t, w]v− [s, t, v]w.
As [s, t, v] is a unit, the result follows from Lemma 3.2. □

Lemma 3.4. For any s, t, v, w, P and Q in A3, we have

[s, t, P ][v, w,Q]− [v, w, P ][s, t,Q] = [P,Q, (s× t)× (v × w)].

Proof. It suffices to check this when the coordinates of s, t, v, w, P and Q are algebraically independent, so we may
take A = Q(x1, . . . , x18) and s = (x1, x2, x3), t = (x4, x5, x6), and so on. If we fix s, t, v, and w, then both sides are
bilinear functions of P and Q. It therefore suffices to check this identity when P and Q are standard basis vectors,
when it is obvious. □

The identity in Lemma 3.4 is closely related to the mixed cross-ratio discussed in [FP23, Definition 2.4], which
is used in Fomin and Pylyavskyy’s proof of Theorem 1.4.

Proposition 3.5. Let A be a commutative ring, and let s, t, v, w, P,Q,R be elements of A3. Suppose that the ideals
generated by the entries of v × w or the entries of R are the unit ideal, and that [s, t, v] is a unit. Assume that
[s, t, R] = [v, w,R] = 0. Then there is a unit u of A such that

[s, t, P ][v, w,Q]− [v, w, P ][s, t,Q] = u[P,Q,R].
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Figure 3. The three lines added to the Pappus configuration.

Proof. As [s, t, v] is a unit, Lemma 3.3 implies that the ideal generated by the entries of (s× t)× (v×w) is the unit
ideal. The assumptions state that (s× t) ·R = (v × w) ·R = 0, so Lemma 3.1 implies that R = u(s× t)× (v × w)
for some u ∈ A. The ideal generated by the entries of R is therefore contained in the ideal (u), so u is a unit. The
result then follows from Lemma 3.4. □

Proof of Theorem 1.5. Consider a tile where the white vertices are not equivalent. Suppose that the white vertices
correspond to the points si, ti and sj , tj , respectively, the black vertices correspond to points P,Q, and the point
Rk is the point associated to the tile. The hypotheses of Proposition 3.5 are satisfied, and so there is a unit u ∈ A
such that

(3.6) [si, ti, P ][sj , tj , Q]− [sj , tj , P ][si, ti, Q] = u[P,Q,Rk].

In particular, [P,Q,Rk] is equal to 0 if and only if the left-hand side is equal to 0. If the tile is not the tile corre-
sponding to the conclusion, then the collinearity conditions state that [P,Q,Rk] = 0, and so [si, ti, P ][sj , tj , Q] =
[sj , tj , P ][si, ti, Q]. If the white vertices of the tile are equivalent, then si = sj and ti = tj , so this identity is
automatic.

The orientation of the surface induces an orientation of each tile; this is a direction of the cycles that make up
the boundary of the tile, such that if two tiles share an edge, then the orientation of those two edges is opposite.
In each tile, there are two edges which point from black vertices to white vertices and two edges which point from
white vertices to black vertices. For each tile which does not correspond to the conclusion, we have an equation
[si, ti, P ][sj , tj , Q] = [sj , tj , P ][si, ti, Q], where the terms corresponding to the edges pointing from black vertices to
white vertices are on the left. We multiply all of these equations together. The nondegeneracy conditions state that
[si, ti, P ] is a unit for each tile. For each edge which does not appear in the conclusion, the corresponding term will
appear on both the left-hand side and the right-hand side. We can therefore cancel each of these, showing that the
left-hand side of the instance of (3.6) corresponding to the conclusion vanishes. Because u is a unit, this implies
the conclusion. □

Example 3.7. We now describe how to prove that Pappus’s theorem is an absolute incidence theorem using
Theorem 1.5, following [FP23, Proof of Theorem 3.2]. To do this, we will prove an absolute incidence theorem
involving 15 points (labeled P1, P2, . . . , P6, R1, R2, R3, s1, s2, s3, t1, t2, t3, see Figure 3) which is a mild strengthening
of Pappus’s theorem. We impose the nondegeneracy conditions {si, ti} for each i as well as {si, ti, tj} and {si, sj , tj}
for each i ̸= j. Let ℓi be the line spanned by si and ti. We apply Theorem 1.5 to the tiling of the torus in Figure 4
with 9 tiles, 3 white vertices, and 6 black vertices, where the tile corresponding to the conclusion has vertices
labeled ℓ1, ℓ3, P2, and P5. This implies that if we impose the collinearity conditions {si, ti, Rj} for each j ̸= i and
{Pi, Pj , Rk} for each line appearing in Figure 3 passing through the Pi, then the collinearity condition {P2, P5, R2}
holds.

In order to use this to deduce the classical statement of Pappus’s theorem (which involves only the 9 points
P1, . . . , P6, R1, R2, R3), we can consider the coordinate projection of the subscheme of the space of 3× 15 matrices
to the space of 3× 9 matrices, forgetting the columns labeled by s1, s2, s3, t1, t2, t3. As s1 and t1 are general points
on the line spanned by R2 and R3 (and similarly for s2, t2 and s3, t3), the existence of these columns imposes no
conditions on the remaining columns.

Remark 3.8. Except in some degenerate cases, it is possible to eliminate the si and ti points in the absolute
incidence theorems proved by the master theorem, by adding the conditions that if Ri, Rj , and Rk are all vertices
associated to tiles involving one of the equivalence classes of white vertices, then Ri, Rj , and Rk are collinear.
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ℓ1

ℓ1 ℓ1

ℓ2ℓ2

ℓ2

ℓ3

P6

P5

P2P3

P4

P1

Figure 4. The tiling used to prove Pappus’s theorem. Opposite sides of the hexagon are glued;
there are no lines between the outer white vertices.

Remark 3.9. While Theorem 1.5 shows that every instance of the master theorem is an absolute incidence theorem,
it does not rule out the possibility of using the master theorem together with case analysis or proof by contradiction
to deduce an incidence theorem which is not an absolute incidence theorem. See [PS25, Section 2.3] for a discussion.

4. Two proofs of Theorem 1.6

First proof of Theorem 1.6. We present a computer-aided proof of Theorem 1.6 using OSCAR [Dec+25].1 The proof
distinguishes the two cases of whether the points {p1, p3, p6} are collinear or not. First assume that the points
{p1, p3, p6} are not collinear.

Any choice of 13 points in the projective plane over k can be represented by a 3 × 13 matrix with entries in
k, where the ith column is the vector of projective coordinates of pi. We parametrize all such configurations by a
matrix A where each entry is a new variable in the polynomial ring over Z, as these variables can then be specialized
to any field.

Using the nondegeneracy and collinearity conditions, we can simplify this matrix:

• The assumption that the points {p1, p3, p6} are not collinear allows us to assume that the minor on these
columns is the identity matrix.

• The assumption that the points {p1, p2, p3} and {p1, p3, p13} are collinear now implies A3,2 = A3,13 = 0.
• Similarly, the assumption that {p3, p5, p6} and {p1, p6, p9} are collinear now implies that A1,5 = A2,9 = 0.
• If the entry A1,2 is zero, then the second and the third columns would be parallel, contradicting our
assumption that all points are pairwise distinct. Hence we obtain A1,2 ̸= 0. After scaling the second column,
we can therefore assume that A1,2 = 1. By the same argument, we can assume that A2,5 = A1,9 = A1,13 = 1.

• Similarly, we obtain that A2,2 ̸= 0. Scaling a row of A by a nonzero scalar in k does not change the
(non)incidence relations between the chosen points. Therefore, we can scale the second column so that
A2,2 = 1. After rescaling the third and fifth columns, we still have A2,3 = A2,5 = 1. Using the analogous
argument on the fifth column yields A3,5 = 1.

Hence we can assume that

A =

1 1 0 x1 0 0 x4 x7 1 x11 x14 x17 1
0 1 1 x2 1 0 x5 x8 0 x12 x15 x18 x20

0 0 0 x3 1 1 x6 x9 x10 x13 x16 x19 0

 .

Let Iminors be the ideal in Z[x1, . . . , x20] of the minors of A corresponding to the remaining 14 nontrivial collinearity
conditions. The Gröbner basis of Iminors computed in OSCAR has 145 generators:
using Oscar

julia> Collinearities = [[1, 4, 5], [1, 7, 10], [1, 8, 12], [2, 4, 6], [2, 5, 8], [2, 10, 11], [3, 4, 7],

[3, 8, 10], [4, 9, 10], [5, 7, 11], [6, 7, 13], [6, 8, 11], [6, 10, 12], [7, 9, 12]];

julia> S, x = polynomial_ring(ZZ, 20);

julia> A = matrix(S, [1 1 0 x[1] 0 0 x[4] x[7] 1 x[11] x[14] x[17] 1;

0 1 1 x[2] 1 0 x[5] x[8] 0 x[12] x[15] x[18] x[20];

1We used OSCAR 1.5.0 in julia 1.10.2. All computations terminated within one minute on our laptop.
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0 0 0 x[3] 1 1 x[6] x[9] x[10] x[13] x[16] x[19] 0]);

julia> Iminors = ideal(S,[det(A[:,col]) for col in Collinearities]);

julia> length(groebner_basis(Iminors))

145

Now we saturate the ideal Iminors with respect to the
(
13
2

)
ideals of the three 2×2 minors of every pair of columns

of A. This removes the components where two columns are parallel. Call the resulting ideal Isat; it has a Gröbner
basis with 203 generators. The Gröbner basis of the radical

√
Isat has 75 generators:

julia> Isat = Iminors;

julia> for pair in combinations(1:13,2)

next_col_ideal = ideal(S,[det(A[rows,pair]) for rows in [[1,2],[1,3],[2,3]]]);

Isat = saturation(Isat,next_col_ideal);

end

julia> length(groebner_basis(Isat))

203

julia> length(groebner_basis(radical(Isat)))

75

Let A[11, 12, 13] be the minor of A on the last three columns. Another OSCAR computation yields

det(A[11, 12, 13]) /∈ Isat and det(A[11, 12, 13]) ∈
√
Isat :

julia> det(A[:,[11,12,13]]) in Isat

false

julia> det(A[:,[11,12,13]]) in radical(Isat)

true

This confirms that under the assumption that the points {p1, p3, p6} are not collinear, the given incidence relations
in Theorem 1.6 form an incidence theorem which is not an absolute incidence theorem.

For the second case, we assume that the points {p1, p3, p6} lie on a line L. We claim that this already implies
that L contains all 13 points p1, . . . , p13, so the conclusion of the incidence theorem holds trivially: Since, by
assumption, the points {p1, p2, p3}, {p3, p5, p6}, {p1, p6, p9}, {p1, p3, p13} are collinear, the line L also contains the
points p2, p5, p9 and p13. Similarly, since the points {p1, p4, p5}, {p6, p7, p13}, {p2, p5, p8} are collinear, the line L
contains the points p4, p7 and p8. Lastly, since the points {p1, p7, p10}, {p5, p7, p11}, {p1, p8, p12} are collinear, the
line L contains the remaining points p10, p11 and p12. □

Second proof of Theorem 1.6. First consider the case when the following triples of points are not collinear:

{p1, p3, p4}, {p1, p3, p6}, {p1, p4, p6}, {p3, p4, p6}, {p3, p6, pi}7≤i≤13.(4.1)

Using a projective transformation, because none of {p1, p3, p4}, {p1, p3, p6}, {p1, p4, p6}, {p3, p4, p6} are collinear, we
can assume that p1 = [1 : 0 : 0], p3 = [0 : 1 : 0], p4 = [1 : 1 : 1], and p6 = [0 : 0 : 1]. The assumption that, for each
i ≥ 7, {p3, p6, pi} is not collinear means that the first coordinate of pi is nonzero for each i ≥ 7. We can then rescale
each of these so that the first coordinate is 1. Each collinearity involving two elements of {p1, p3, p6} implies that
some coordinate is 0. The collinearities {p1, p4, p5}, {p3, p4, p7}, and {p2, p4, p6} imply that the second coordinate
of p2, second coordinate of p5, and third coordinate of p7 are 1. After rescaling, we deduce that the 3× 13 matrix
representing the point configuration looks like the following

A =

1 1 0 1 0 0 1 1 1 1 1 1 1
0 1 1 1 1 0 ? ? 0 ? ? ? ?
0 0 0 1 1 1 1 ? ? ? ? ? 0

 .

Set x = A2,7, y = A3,8, z = A3,9, and w = A3,12. Using the collinearities

{p1, p7, p10}, {p2, p5, p8}{p3, p8, p10}, {p5, p7, p11}, {p6, p7, p13}, {p6, p8, p11}, {p6, p10, p12},
one easily deduces the following relations between the entries of A.

(4.2) A =

1 1 0 1 0 0 1 1 1 1 1 1 1
0 1 1 1 1 0 x y + 1 0 xy y + 1 xy x
0 0 0 1 1 1 1 y z y y + 2− x w 0

 .
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For example, the collinearity {p3, p8, p10} implies that A3,10 = y, and the collinearity {p1, p7, p10} implies that
A2,10 = xy. There are now only four collinearities which impose nontrivial conditions on A. They are:

(4.3) {p2, p10, p11} : xy2 + 2xy − x2y − y2 − y + x− 2 = 0,

(4.4) {p1, p8, p12} : yw + w = xy2,

(4.5) {p4, p9, p10} : xy + z − xyz − y = 0, and

(4.6) {p7, p9, p12} : x(y + z − yz − w) = 0.

Note that x ̸= 0, as p1 is distinct from p13. From (4.6), we deduce that w = y+ z−yz. Substituting into (4.4) gives

(4.7) z(y2 − 1) = y2 + y − xy2.

If y = −1, then the equation corresponding to (4.4) implies that x = 0, which is impossible. If y = 1, then (4.3)
becomes −(x− 2)2 = 0. But if x = 2 and y = 1, then p7 = p8. We can therefore assume that y2 − 1 ̸= 0 and solve
(4.7) for z. We substitute this into (4.5) and clear denominators to obtain the equation

(4.8) y(2− x+ y − 2xy − y2 + x2y2) = 0.

We may assume that y ̸= 0, as otherwise we would have p2 = p8. We deduce that 2− x+ y − 2xy − y2 + x2y2 = 0.
Adding this to (4.3), we obtain

(4.9) y(−2y + x2y + xy − x2) = 0.

As above, we may assume that y ̸= 0, so x2 = y(x+2)(x− 1). If x = 1, then p4 = p7, and if x = −2, then p8 = p11.
We can then solve for y and substitute into (4.3). After clearing denominators, we obtain

x6 − 3x5 − 2x4 + 12x3 − 4x2 − 12x+ 8 = (x− 2)(x− 1)(x2 − 2)2 = 0.

If x = 2, then (4.3) implies that y = 0 or y = 1, which contradicts that p7 ̸= p8 or that p2 ̸= p8. As above, x = 1 is

impossible. Because k is a field, we deduce that x = ±
√
2; if k has characteristic 2, this means that x = 0. Then

(4.9) yields that y = ±
√
2. From (4.5), we deduce that z = 2 ∓

√
2, so (4.6) implies that w = 4 ∓ 2

√
2. Plugging

this into (4.2), we deduce the following form of A:

(4.10) A =

1 1 0 1 0 0 1 1 1 1 1 1 1
0 1 1 1 1 0 x x+ 1 0 2 x+ 1 2 x
0 0 0 1 1 1 1 x 2− x x 2 4− 2x 0

 ,

where x = ±
√
2. We see that the minor with columns 11, 12, 13 is 0, so p11, p12, and p13 are collinear.

If any one of the 11 triples in (4.1) is collinear, then one can check that the collinearity conditions force all 13
points to lie on a line. The argument works analogously as in the second part of the first proof above. In particular,
{p11, p12, p13} is collinear, so the incidence theorem holds.

To check that this is not an absolute incidence theorem, it suffices to check that the conclusion of Theo-
rem 1.6 does not hold over the ring B = Q[x, ε]/(ε2, x2 − 2 − ε/4). Consider the matrix from (1.7). It is
easy to check that no column of this matrix is a scalar multiple of another. A somewhat tedious computation
shows that the determinant of any 3 × 3 minor corresponding to a triple of collinear points in Theorem 1.6 van-
ishes. It turns out that there are only five conditions to check which are not obvious: those corresponding to
{p1, p7, p10}, {p1, p8, p12}, {p2, p10, p11}, {p4, p9, p10}, and {p7, p9, p12}. However, the determinant of the minor with
columns 11, 12, 13 is 2ε/7− εx/14 ̸= 0. □

Remark 4.11. Let N be the matroid obtained by relaxing {11, 12, 13} in M , i.e., the non-bases of N are exactly
the collinearity conditions listed in Theorem 1.6. The content of a slight weakening of Theorem 1.6 is that N is not
realizable over any field. We do not know if N is representable over a skew field, is multilinear, or is algebraic. It
would be interesting but computationally challenging to check whether the tools recently introduced in [Bér+25]
could certify that N is not skew-linear, for instance by proving that N does not admit a tensor product with M(K4).
We have computed the foundation of N (in the sense of [BL25]) using the program [ZC23]. The foundation FN can
be described as F±

1 (x1, . . . , x22) modulo 451 hexagons which generate the nullset of the pasture.

Remark 4.12. One way to attempt to produce a counterexample to Theorem 1.6 would be to choose a point
configuration satisfying the hypothesis (such as (4.10), with x =

√
2) and construct 39 convergent power series

f1,1(t), f1,2(t), . . . , f3,13(t) such that, if we consider the matrix A(t) whose (i, j) entry is fi,j(t), then A(0) = A
and A(t) satisfies the collinearity conditions of Theorem 1.6, but [11, 12, 13] is nonzero. We can try to construct
the power series term-by-term; the constant terms are determined by the condition that A(0) = A. It is possible
to choose the linear terms of the fi,j such that the linear terms of the minors corresponding to the collinearity
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conditions in Theorem 1.6 vanish, but the linear term of [11, 12, 13] is nonzero. However, it is not possible to then
choose the quadratic terms of the power series so that the quadratic terms of the minors corresponding to the
collinearity conditions are 0. In this sense, the configuration in (4.10) admits an infinitesimal (or first order) motion
that cannot be integrated.
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