
THEOREM OF THE BASE

RAYMOND CHENG, LENA JI, MATT LARSON, AND NOAH OLANDER

Abstract. We explain a proof of the Theorem of the Base: the Neron–Severi group
of a proper variety is a finitely generated abelian group. We discuss, quite generally, the
Picard functor and its torsion and identity components. We study representability and
finiteness properties of the Picard functor, both absolutely and in families. Along the way,
we streamline the original proof by using alterations, and we discuss some examples of
peculiar Picard schemes.
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Introduction

The Theorem of the Base is a fundamental finiteness result on the Picard group of a
proper variety X . A line bundle L on X is algebraically trivial if it is possible to deform
L to OX ; it is numerically trivial if it has degree 0 on every curve. See Definition 2.6. The
Néron–Severi group NS(X ) of X is the Picard group of X modulo algebraic triviality. We
have the following result, see Proposition 4.3 and Theorem 7.4:

Theorem Base. Let X be a proper scheme over a field. Then
(i) NS(X ) is finitely generated, and
(ii) its torsion subgroup consists of numerically trivial classes.

In fact, we prove a stronger version of Theorem Base that gives a uniform bound on the
rank and size of the torsion subgroup in families over a Noetherian base; see Theorem 7.7.

The proof of Theorem Base for a smooth projective variety X over C is simple: The first
Chern class gives an injectionNS(X ) ,→ H2(X ,Z), so the finite generation ofNS(X ) follows
from the finite generation of the topological cohomology group H2(X ,Z). The Lefschetz
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(1, 1)-Theorem and the Hard Lefschetz Theorem imply that the Hodge Conjecture holds
for curves on X . Therefore, by Poincaré duality, any line bundle L that is numerically
trivial has torsion first Chern class, which implies (ii).

Severi first proved Theorem Base using transcendental methods in [Sev06, Sev34],
extending work of Picard in [Pic05]. Néron proved (i) in arbitrary characteristic and gave
the first algebraic proof by reinterpreting the question using rational points of an abelian
variety related to the relative Jacobian of a curve fibration, see [N5́2]. Lang–Néron later
simplified this proof when they proved the Lang–Néron Theorem in [LN59]. The proof
of (ii) in arbitrary characteristic was first done by Matsusaka in [Mat57].

The modern approach, developed by Kleiman in [Kle66] and [SGAVI, Exposé XIII],
proves the finiteness of the rank of NS(X ) and the torsion subgroup of NS(X ) separately.
The proof that the rank of NS(X ) is finite is similar to the simple proof over the complex
numbers, except that it uses a Weil cohomology theory, such as étale cohomology, to
work in arbitrary characteristic. In order for the Weil cohomology theory to have the
desired finiteness properties, we need to reduce to the case of smooth projective varieties.
We use the existence of regular alterations [dJ96] to do so. Alternatively, one could
reduce to the case of surfaces, and then use that resolution of singularities for surfaces is
known in arbitrary characteristic, see [SGAVI, Exp. XIII, Section 5].

There is no Weil cohomology theory with integral coefficients in positive characteristic,
so this approach does not show the finiteness of the torsion subgroup. In order to show
the finiteness of the torsion subgroup, we reduce to the case of projective varieties using
Proposition 1.4, a theorem of Raynaud. We then show that all numerically trivial line
bundles are parametrized by a single finite type Quot scheme, from which we deduce the
finiteness of the torsion subgroup and (ii).

The Theorem of the Base is used throughout algebraic geometry, and is required for
the formulation of many fundamental results. It is frequently useful to study numerical
properties of line bundles, i.e., properties of line bundles that depend only the image of
the line bundle in NS(X )⊗Q. Many properties of line bundles, such as whether they are
big [Laz04, Theorem 2.2.26] or ample [Kle66], can be shown to be numerical properties.
Furthermore, the locus in NS(X )⊗Q of line bundles having a given numerical property
often has nice topological properties. For example, the cone of ample line bundles is
open in NS(X )⊗Q [Kle66], which allows one to deform the polarization of a variety.
The formulation of the openness of the ample cone requires the Theorem of the Base:
otherwise, when dim(X )> 2, there is no natural topology on NS(X )⊗Q.

The Theorem of the Base is used very frequently in birational geometry. The Picard
number ρ(X ), defined as the rank of NS(X ), is a basic measure of complexity of a variety,
and it is frequently used to show termination of algorithms. For example, the minimal
model program for surfaces X consists of repeatedly contracting curves on X . After each
contraction, one shows that the Picard number drops. As ρ(X )<∞, this implies that
eventually our variety will have no more curves that can be contracted. Many of the
deepest results in birational geometry rely on the study of the ample cone and its closure
in NS(X )⊗Q.

Our chapter is organized as follows. In §§1 and 2, we discuss some fundamental results
on the Picard functor and its components. In §§3 and 4, we prove the finiteness of the
torsion subgroup of NS(X ) and (ii) using projective geometry. Finiteness of the Picard
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number and hence finite generation of NS(X ) is proved in §§5–7. We close in §8 with
some examples of Picard schemes.

Conventions. Throughout, k is a field. A variety is a separated integral scheme of finite
type over a field k. Unadorned fibre products are taken over k. We use the Stacks Project
[Stacks] as the main technical reference. Results therein are referred to via their four
character alphanumeric tags.

1 .The Picard Functor

In this section, we recall the definition of the Picard functor in the Stacks Project, and
summarize some of its main properties. We will use these definitions in the remainder of
the document. For a more detailed treatment, see [FGI+05, Part 5] and [BLR90, Chapter
8].

Let f : X → S be a morphism of schemes. The Picard functor, restricting the general
definition given in Situation 0D25,

PicX/S : (Sch/S)opp→ Sets

is the fppf sheafification of the functor sending a scheme T over S to the group Pic(XT )
of isomorphism classes of invertible OXT

-modules; here, fT : XT → T is the base change
of f along T → S. The basic representability result is the following:

Theorem 1.1. Let f : X → S be a morphism of schemes. If
(i) f is proper, flat, of finite presentation, and
(ii) the formation of f∗OX commutes with all base changes,

then PicX/S is an algebraic space. The morphism PicX/S → S is quasi-separated and locally
of finite presentation.

Proof. In the case where OT → fT,∗OXT
is an isomorphism for all schemes T over S, this

is Proposition 0D2C and Lemma 0DNI. In general, see [Art69, Theorem 7.3]. �

Let f : X → S and g : Y → S be morphisms of schemes, and let h: Y → X be a
morphism over S. Then there exists a morphism of group functors

h∗ : PicX/S → PicY /S

obtained as the fppf sheafification of the natural pullback map of invertible modules. The
basic finiteness result for pullbacks is the following:

Theorem 1.2. Let f : X → S and g : Y → S be morphisms of schemes, and let h: Y → X be
a morphism over S. Assume that

(i) S is integral and Noetherian,
(ii) f and g are proper, and
(iii) h is surjective.

Then there exists a nonempty open subscheme S◦ of S such that

h∗|S◦ : PicX/S|S◦ → PicY /S|S◦

is representable by a quasi-affine morphism of finite presentation.

Proof. See [SGAIV, Exposé XII, Théorème 1.1]. �

https://stacks.math.columbia.edu/tag/0D25
https://stacks.math.columbia.edu/tag/0D2C
https://stacks.math.columbia.edu/tag/0DNI
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For simplicity, we will mostly restrict ourselves to the situation where our base scheme
S is the spectrum of a field k. In this case, since separated group algebraic spaces locally
of finite type over fields are actually schemes, the basic representability result reads:

Proposition 1.3. Let X be proper scheme over k. Then PicX/k is a separated scheme locally
of finite type over k.

Proof. Theorem 1.1 already shows that PicX/k is a quasi-separated algebraic space locally
of finite type over k. By Lemma 08BH, PicX/k is actually separated, so by Lemma 0B8F,
it is a scheme. See also the discussion of Tag 06E9. �

Similarly, Theorem 1.2 implies:

Proposition 1.4. Let h: Y → X be a surjective morphism of schemes which are proper over
k. Then h∗ : PicX/k→ PicY /k is a finite type quasi-affine morphism of schemes. �

Finally, although the value of the Picard functor on general schemes T may be rather
subtle, its geometric points are as expected. This follows from the following very general
consideration:

Lemma 1.5. Let U be an object of a site C . Assume there exists a cofinal system of coverings
of U of the form {V → U} such that each V → U admits a section. Then F (U) =F#(U)
for any presheaf F on C .

Proof. Here, F# ··=F++ is the sheafification of F , and F+ is

F+(U) ··= colimU H0(U ,F )

where the colimit is taken over all coverings U of U , see Section 00W1. Thus the
result will follow if we can show that F (U)→ H0(U ,F ) is bijective for every covering
U = {p : V → U} in our cofinal system where each p admits a section σ. For injectivity,
simply observe that

F (U)→ H0(U ,F ) ⊂F (V )
σ∗

−→F (U)

is the identity. For surjectivity, let s ∈ H0(U ,F ) and set t ··= σ∗(s). We claim p∗(t) = s.
Indeed, writing pr1, pr2 : V ×U V → V for the projections, we have pr∗1(s) = pr∗2(s) as s is
a section on U . Pulling this identity back along (idV ,σ ◦ p) : V → V ×U V yields

s = id∗V (s) = (idV ,σ ◦ p)∗pr∗1(s)

= (idV ,σ ◦ p)∗pr∗2(s) = p∗σ∗(s) = p∗(t). �

Lemma 1.6. Let X be a proper scheme over an algebraically closed field k. Then PicX/k(k) =
Pic(X ).

Proof. The Hilbert Nullstellensatz, Theorem 00FV, implies that any fppf covering T →
Spec(k) admits a section. Therefore Lemma 1.5 applies with U = Spec(k) and F the
fppf presheaf T 7→ Pic(XT ) defining the Picard functor. �

https://stacks.math.columbia.edu/tag/08BH
https://stacks.math.columbia.edu/tag/0B8F
https://stacks.math.columbia.edu/tag/06E9
https://stacks.math.columbia.edu/tag/00W1
https://stacks.math.columbia.edu/tag/00FV
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2.Components of the Picard Functor

The Picard functor as a whole is almost never of finite type as it generally has countably
infinitely many connected components. Thus to make sense of finiteness properties for
the Picard functor, it is helpful to consider the subgroup functors Pic0

X/k and PicτX/k giving
the connected component of the identity and all torsion components, respectively.

Definition 2.1. Let G be a group scheme over k. The identity component G0 of G is the
connected component of the identity. The subscheme of torsion components Gτ of G is

Gτ ··=
⋃

n>0
(g 7→ gn)−1G0

the union of the preimage of G0 under all n-th power maps with n> 0.

Lemma 2.2. Let G be a group scheme locally of finite type over k. Then

(i) the formation of G0 and Gτ commutes with extending k;
(ii) G0 is an open and closed group subscheme of finite type;
(iii) G0 is geometrically irreducible;
(iv) Gτ is an open group subscheme; and
(v) if Gτ is quasi-compact, then it is closed and of finite type.

Proof. For the statements about G0, see Proposition 0B7R. Now (i) for Gτ and (iv) follow
from the corresponding properties of G0. For (v), if Gτ is quasi-compact, then there
exists N > 0 such that

Gτ =
⋃N

n=1
(g 7→ gn)−1G0.

Thus Gτ is closed and of finite type since the same is true for G0. �

The following is the observation that a finite type morphism between two group
schemes must respect torsion components in a strong way.

Lemma 2.3. Let f : H → G be a finite type morphism of group schemes over k, which are
locally of finite type over k. Then f −1(Gτ) = Hτ.

Proof. Since f (H0) ⊆ G0, we have

f (Hτ) =
⋃

n>0

f
�

(h 7→ hn)−1(H0)
�

=
⋃

n>0

(g 7→ gn)−1( f (H0)) ⊆ Gτ

so that f −1(Gτ) ⊇ Hτ. Conversely, let f (h) ∈ Gτ. Replace h by hn for n > 0 to assume
f (h) ∈ G0. By Lemma 2.2(ii), G0 is of finite type; since f is of finite type, the same goes
for f −1(G0) as the composition of finite type morphisms is of finite type, see Lemma
01T3. In particular, it has finitely many components by Lemma 0BA8. So there exist
n> m> 0 such that hn and hm are in the same component of f −1(G0). Then hn−m ∈ H0,
showing that h ∈ Hτ. �

Applying this to the inclusion of a finite type subgroup scheme shows:

Corollary 2.4. Let G be a group scheme locally of finite type over k. If H ⊆ G is a subgroup
scheme of finite type over k, then H ⊆ Gτ. �

https://stacks.math.columbia.edu/tag/0B7R
https://stacks.math.columbia.edu/tag/01T3
https://stacks.math.columbia.edu/tag/0BA8
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Thus if Gτ is quasi-compact, then it is the largest subgroup scheme of G of finite type
over k.

Now we apply the above notions to obtain subgroup schemes

Pic0
X/k ⊆ PicτX/k ⊆ PicX/k.

These components make sense by the basic finiteness in the representability result
Proposition 1.3. Already, we can show that formation of the torsion component commutes
with certain pullbacks.

Lemma 2.5. Let f : Y → X be a surjective morphism of proper schemes over k. Then
f ∗,−1(PicτY /k) = PicτX/k.

Proof. The finiteness of the representability result of Proposition 1.4 allows us to apply
Lemma 2.3. �

The structure sheaf OX is the unit in the group of invertible OX -modules. So we may
attempt to characterize the points of Pic0

X/k and PicτX/k by relating invertible modules
with OX .

Definition 2.6. Let X be a proper scheme over k. An invertible OX -module L is called
(i) numerically trivial if deg(L|C) ··= χ(C ,L|C) − χ(C ,OC) = 0 for every closed

integral curve C in X ;
(ii) algebraically trivial if there exists a connected scheme T of finite type over k,

an invertible OX×T -moduleM , and geometric points t0 and t1 of T such that
M|X×t0

∼= OX andM|X×t1
∼=L ; and

(iii) τ-trivial if L ⊗n is algebraically trivial for some integer n 6= 0.

These notions characterize points of components of PicX/k:

Lemma 2.7. Let X be a proper scheme over k. Let L be an invertible OX -module corre-
sponding to a point [L ] ∈ PicX/k(k). Then

(i) L is algebraically trivial if and only if [L ] ∈ Pic0
X/k(k); and

(ii) L is τ-trivial if and only if [L ] ∈ PicτX/k(k).

Proof. If L is algebraically trivial, then the witnessing data (T,M , t0, t1) is a morphism
[M ]: T → PicX/k such that t0 7→ [OX ] and t1 7→ [L ]. Since T is connected, [L ] is in
the connected component of the identity.

Suppose [L ] ∈ Pic0
X/k(k). Let f : T ′ → Pic0

X/k be a fppf cover with an invertible
sheafM ′ on XT ′ representing the inclusion Pic0

X/k ⊆ PicX/k. For i = 0, 1, let T ′i ⊆ T ′ be
irreducible components with geometric points t i such that f (t0) = [OX ] and f (t1) = [L ].
Since Pic0

X/k is irreducible and fppf morphisms are open, see Lemmas 2.2(iii) and 01UA,
f (T ′0)∩ f (T ′1) is a nonempty open subset of Pic0

X/k. Let s be a geometric point therein and
let si be geometric points in the T ′i lying over, so that by Lemma 1.6,M ′|X×s0

∼=M ′|X×s1
.

Up to replacing T ′ by a further fppf covering, we may assume that the images of si in T ′i
are closed points with the same residue field. Then Lemma 0B7M allows us to glue the
T ′i together along these closed points to obtain a scheme T . Furthermore, the sheaves
M ′|X×T ′i

glue to an invertible OX×T -moduleM . Then (T,M , t0, t1) witness algebraic
triviality of L . �

https://stacks.math.columbia.edu/tag/01UA
https://stacks.math.columbia.edu/tag/0B7M
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It is not a priori clear that numerical triviality characterizes points of some component
of PicX/k, but we will see in Proposition 4.3 that it is actually equivalent to τ-triviality.
This will use some finiteness properties of PicτX/k. In any case, we can already prove that
numerical triviality is implied by both algebraic and τ-triviality.

Lemma 2.8. Let X be a proper scheme over k and L an invertible OX -module. If L is
either algebraically trivial or τ-trivial, then L is numerically trivial.

Proof. If L is algebraically trivial, then there is a connected scheme T over k, an
invertible OX×T -moduleM , and geometric points t0 and t1 of T such thatM|X×t0

∼= OX
andM|X×t1

∼=L . Let C be any closed integral curve in X . Since Euler characteristics
are locally constant in flat proper families, as in Lemma 0B9T, we have

deg(L|C) = χ(C ,L|C)−χ(C ,OC)

= χ(C × t1,M|C×t1
)−χ(C ,OC)

= χ(C × t0,M|C×t0
)−χ(C ,OC)

= χ(C ,OC)−χ(C ,OC) = 0,

so L is numerically trivial.
If L is τ-trivial, let n be a positive integer such that L ⊗n is algebraically trivial. Then

we have just proven that L ⊗n is then numerically trivial. But if C is now any integral
closed curve in X , additivity of degrees as from Lemma 0AYX gives

deg(L|C) =
1
n

deg(L ⊗n|C) = 0

so L itself is numerically trivial. �

The various notions of triviality behave well under pullback.

Lemma 2.9. Let f : Y → X be a morphism of proper schemes over k. LetL be an invertible
OX -module.

(i) If L is numerically trivial, then f ∗L is numerically trivial.
(ii) If L is algebraically trivial, then f ∗L is algebraically trivial.
(iii) If L is τ-trivial, then f ∗L is τ-trivial.

Suppose furthermore that f is surjective.
(iv) If f ∗L is numerically trivial, then L is numerically trivial.
(v) If f ∗L is τ-trivial, then L is τ-trivial.

Proof. For (i), if D is any integral curve in Y , its image C ··= f (D) is an integral curve in
X . Thus by compatibility of degrees on curves with pullbacks, Lemma 0AYZ,

deg( f ∗L|D) = deg(D→ C)deg(L|C) = 0.

For (ii), let (T,M , t0, t1) be the data witnessing algebraic triviality of L on X . Let
fT : Y ×T → X ×T be the base change of f to T , and letM ′ = f ∗TM . Then (T,M ′, t0, t1)
witness algebraic triviality of f ∗L . Now (iii) follows directly from (ii).

Assume f : Y → X is surjective. To see (iv), let C be an integral closed curve in X . The
closure of a height 1 generic point of height in f −1(C) yields an integral closed curve D
in Y with image C . Thus, again,

deg(L|C) = deg(D→ C)−1 deg( f ∗L|D) = 0.

https://stacks.math.columbia.edu/tag/0B9T
https://stacks.math.columbia.edu/tag/0AYX
https://stacks.math.columbia.edu/tag/0AYZ
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Finally, (v) follows from Lemma 2.7(ii) and Lemma 2.5. �

3.Castelnuovo–Mumford Regularity

When X is projective over k, finiteness of PicτX/k comes by exhibiting all its points
as a quotient of a fixed finite locally free OX -module: that is, PicτX/k will be realized as
an open subscheme of a Quot scheme. In this section, we use projective techniques to
study the cohomology of numerically trivial invertible modules, the main result being
Proposition 3.5. This is formulated with the following notion; see Definition 08A3.

Definition 3.1. A coherent sheaf F on Pn
k is said to be m-regular if

H i(Pn
k,F (m− i)) = 0 for 1≤ i ≤ n.

Let Λ be a set of coherent sheaves on Pn
k. The Castelnuovo–Mumford regularity of Λ is the

smallest integer m, if it exists, such that each F ∈ Λ is m-regular.

Regularity has many consequences for the cohomology of sheaves, see Section 089X
and [Mum66, Lecture 14], for example. Most important for us, however, is that if F is
m-regular, thenF (m) is globally generated, see Lemma 08A8. Moreover, the definition is
designed to be robust under passing to hyperplane sections, see Lemma 08A5. Conversely,
and crucially for inductive arguments, we now show that regularity upon passing to a
divisor yields vanishing of cohomology:

Lemma 3.2. Let F be a coherent sheaf on Pn
k. Let ι : H ,→ Pn

k be an effective Cartier divisor
of degree d. If

(i) H avoids all associated points of F , and
(ii) ι∗F|H is b-regular,

then H i(Pn
k,F (ν)) = 0 for all i ≥ 2 and ν≥ b− d.

Proof. Let σ ∈ H0(Pn
k,OPn

k
(d)) be a section defining H. Multiplication by σ is injective

on F as H avoids all its associated points. Thus twisting the ideal sheaf sequence for H
by F (ν) gives sequences

0→F (ν− d)
σ
−→F (ν)→ ι∗F (ν)|H → 0 for all ν ∈ Z.

Now ι∗F|H is ν-regular for all ν ≥ b, see Lemma 08A6. Therefore, the long exact
sequence in cohomology gives

H i(Pn
k,F (ν− d))∼= H i(Pn

k,F (ν)) for all i ≥ 2 and ν≥ b.

Serre Vanishing, Lemma 01YS, shows that these vanish for large ν, so

H i(Pn
k,F (ν− d)) = 0 for all i ≥ 2 and ν≥ b. �

With the language of regularity, the goal of this section is to show that, for each closed
subscheme j : X ,→ Pn

k, the set

Λ( j) ··= { j∗L | L a numerically trivial OX -module}

has finite Castelnuovo–Mumford regularity which can be bounded by an integer depending
only on the Hilbert polynomial of X . We deduce this from the following Induction Principle.
Compare with [Mum66, pg. 101–103].

https://stacks.math.columbia.edu/tag/08A3
https://stacks.math.columbia.edu/tag/089X
https://stacks.math.columbia.edu/tag/08A8
https://stacks.math.columbia.edu/tag/08A5
https://stacks.math.columbia.edu/tag/08A6
https://stacks.math.columbia.edu/tag/01YS
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Proposition 3.3 (Induction Principle). Let Λ be a set of coherent sheaves on Pn
k. Assume

that there exists
(i) a positive integer s such that dim Supp(F ) = s,
(ii) a positive number a such that

dimk H0(Pn
k,F ( j))≤ a

�

ν+ s
s

�

for every ν ∈ Z, and

(iii) a polynomial P(t) which is the Hilbert polynomial of F
for every F ∈ Λ. Also assume that there exists

(iv) an integer b such that for every F ∈ Λ, ι∗F|H is b-regular for some hyperplane
ι : H ,→ Pn

k not containing any associated points of F .
Then there exists an integer m depending only on a, b, and P(t) such that every sheaf in Λ
is m-regular.

Proof. Consider any F ∈ Λ. Choose a hyperplane ι : H ,→ Pn
k for F as in (iv). Twisting

the ideal sheaf sequence of H by F (ν) gives sequences

0→F (ν− 1)→F (ν)→ ι∗F (ν)|H → 0 for every ν ∈ Z.

Note multiplication by an equation of H is injective since it avoids all associated points of
F . Apply Lemma 3.2 with d = 1 to get

H i(Pn
k,F (ν− 1)) = 0 for all i ≥ 2 and ν≥ b.

So when ν≥ b, the long exact sequence in cohomology reduces to

0 −→ H0(Pn
k,F (ν− 1)) −→ H0(Pn

k,F (ν))
ρν−→ H0(Pn

k, ι∗F (ν)|H)

−→ H1(Pn
k,F (ν− 1)) −→ H1(Pn

k,F (ν)) −→ 0.

Either ρν is surjective, or else

dimk H1(Pn
k,F (ν))< dimk H1(Pn

k,F (ν− 1)).

But observe: if ρν is surjective, then ρν+1 is surjective. Indeed, consider the commutative
square

H0(Pn
k,F (ν))⊗k H0(Pn

k,OPn
k
(1)) H0(Pn

k,F (ν+ 1))

H0(Pn
k, ι∗F (ν)|H)⊗k H0(Pn

k,OPn
k
(1)) H0(Pn

k, ι∗F (ν+ 1)|H)

ρν⊗id ρν+1

where the horizontal arrows are given by multiplication of sections. By assumption, the
map on the left given by ρν is a surjection; since ι∗F|H is ν-regular, Lemma 08A7 implies
the map on the bottom is a surjection. Commutativity of the square then implies ρν+1 is
a surjection.

Thus the sequence {dimk H1(Pn
k,F (ν)) | ν ≥ b} strictly decreases until it reaches 0.

From this we see that F is m-regular for

m= b+ dimk H1(Pn
k,F (b)).

https://stacks.math.columbia.edu/tag/08A7
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It remains to see that the latter quantity is bounded in terms of a and P(t). By the
vanishing from Lemma 3.2,

χ(F (b)) = dimk H0(Pn
k,F (b))− dimk H1(Pn

k,F (b)).

By (iii), χ(F (b)) = P(b). Applying (ii) and rearranging then yields

dimk H1(Pn
k,F (b))≤ a

�

b+ s
s

�

− P(b).

Thus F is m-regular for

m ··= b+ a
�

b+ s
s

�

− P(b)

and this depends only on a, b, and P(t), as claimed. �

The following gives the uniform bound on twists of global sections of numerically
trivial invertible modules. Compare with [FGI+05, Lemma 9.6.5]

Lemma 3.4. Assume the base field k is infinite. Let X ,→ Pn
k be a closed subscheme. For

every coherent OX -module F , there exists a positive number a(F ) such that

dimk H0(X ,F ⊗L (ν))≤ a(F )
�

ν+ s
s

�

where s ··= dim Supp(F ),

for every numerically trivial OX -module L and ν ∈ Z. Moreover, a(OX ) can be chosen to
depend only on the degree of X .

Proof. We proceed via dévissage, in the form of Lemma 01YM. There are three conditions
to check. The first is that for every short exact sequence of coherent OX -modules

0→F1→F →F2→ 0

in which a(F1) and a(F2) exist, then a(F ) also exists. The cohomology sequence shows
we may take a(F ) ··= a(F1) + a(F2).

The second condition is that if F is a OX -module and a(F⊕r) exists for some r ≥ 1,
then a(F ) also exists. Additivity shows we may take a(F ) ··= a(F⊕r)/r.

The third and final condition concerns passing to closed subschemes Z ,→ X . Let
Y ,→ X be another closed subscheme not containing Z . Let I ⊆ OZ be the ideal sheaf of
Y ∩ Z in Z . Then we must show there exists a quasi-coherent subsheaf of ideals J ⊆ I
for which a(J ) exists. Since the restriction L|Z is a numerically trivial invertible module
on Z , we may replace X by Z and L by its restriction. Next, every closed subscheme
Y ,→ X is contained in some hypersurface section; hence we may find J ⊆ I of the
form OX (−d) for some nonnegative integer d. So to complete the dévissage, it suffices to
construct a(OX (−d)). In fact, if d > 0, then multiplication by a section of OX (d) yields
an injection

H0(X ,L (−d)) ,→ H0(X ,L )

so we may take a(OX (−d)) = a(OX ).
Thus we are reduced to the special case of the Lemma in which F = OX . Proceed by

induction on the dimension s of X . If s = 0, take a(OX ) = dimk H0(X ,OX ); note this is
the degree of X . Assume s > 1 and the statement holds for all closed subschemes of
Pn

k of dimension s− 1. Since k is infinite, we may find a hyperplane section ι : H ,→ X

https://stacks.math.columbia.edu/tag/01YM
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not containing any associated points of X , see Lemma 08A0. This gives a short exact
sequence

0→L (ν− 1)→L (ν)→ ι∗L (ν)|H → 0.

Taking global sections and applying induction on L (ν)|H gives inequalities, for all ν ∈ Z,

dimk H0(X ,L (ν))≤ dimk H0(X ,L (ν− 1)) + dimk H0(H,L (ν)|H)

≤ dimk H0(X ,L (ν− 1)) + a(OX∩H)
�

ν+ s− 1
s− 1

�

.

Now note thatL (−1) has negative degree on all integral curves in X , so H0(X ,L (−1)) =
0: indeed, if there were a nonzero section, restricting it to a curve C not contained in its
zero locus would yield the contradiction deg(L (−1)|C)> 0, see Lemma 0B40. Therefore
we may iterate the above inequality to obtain

dimk H0(X ,L (ν))≤ a(OX∩H)
∑ν

µ=0

�

µ+ s− 1
s− 1

�

= a(OX∩H)
�

ν+ s
s

�

,

so we may take a(OX ) = a(OX∩H). Since the degree of X and X ∩ H are the same, this
depends only on the degree of X . �

We now come to the crucial boundedness result: any numerically trivial invertible
sheaf has the same Hilbert polynomial as the structure sheaf. The following argument
largely follows [FGI+05, Lemma 9.6.6] and works for any projective scheme. It requires
a careful induction on dimension that simultaneously computes the Hilbert polynomial
and proves boundedness of Castelnuovo–Mumford regularity. A much easier argument
in the smooth case can be made via Hirzebruch–Riemann–Roch together with Lemma
5.2. One could also reduce to the smooth case using the existence of regular alterations
and Proposition 1.4.

Proposition 3.5. Assume the base field k is infinite. Let j : X ,→ Pn
k be a projective scheme.

Then every member of the set

Λ( j) ··= { j∗L | L a numerically trivial OX -module}

has the same Hilbert polynomial P(t), namely, that of OX with respect to the embedding j.
The Castelnuovo–Mumford regularity of Λ( j) is bounded by an integer m depending only on
P(t).

Proof. Proceed by induction on s ··= dim(X ). When s = 0, the set in question consists
only of the structure sheaf so the conclusion follows. So assume s ≥ 1. First we show
that every member of Λ( j) has the same Hilbert polynomial. For that, it suffices to show
that if L is any numerically trivial OX -module, then the Hilbert polynomial of L ⊗q is
independent of q ∈ Z, as we may take q = 0. Choose d large such that L (d) is very
ample. Now choose effective divisors H and D determined by short exact sequences

0→OX (−d)→OX →OH → 0,

0→L ∨(−d)→OX →OD→ 0.

Twisting both sequences by L ⊗q(d + ν) yields sequences

0→L ⊗q(ν)→L ⊗q(d + ν)→ ιH,∗L ⊗q(d + ν)|H → 0,

0→L ⊗q−1(ν)→L ⊗q(d + ν)→ ιD,∗L ⊗q(d + ν)|D→ 0.

https://stacks.math.columbia.edu/tag/08A0
https://stacks.math.columbia.edu/tag/0B40
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Taking Euler characteristics and subtracting yields, for all q,ν ∈ Z,

χ(L ⊗q(ν))−χ(L ⊗q−1(ν)) = χ(L ⊗q(d + ν)|D)−χ(L ⊗q(d + ν)|H).

Since the restriction ofL ⊗q to any closed subscheme remains numerically trivial, induction
applies to show that the right hand side is a polynomial depending only on ν. Therefore,
as a function of q and ν,

χ(L ⊗q(ν)) = ϕ1(ν)q+ϕ0(ν)

for some polynomials ϕ1 and ϕ0.
We now show ϕ1 = 0. If not, choose ν0 sufficiently large such that
(i) ϕ1(ν) is the same sign for all ν≥ ν0, and
(ii) L ⊗q|H is b-regular for b ··= ν0 + d and all q ∈ Z,

where the induction hypothesis is used for the second condition. Then Lemma 3.2 applies
to show

χ(L ⊗q(ν)) = dimk H0(X ,L ⊗q(ν))− dimk H1(X ,L ⊗q(ν))
for all q ∈ Z and ν≥ ν0. Thus we see that

dimk H0(X ,L ⊗q(ν))≤ χ(L ⊗q(ν)) = ϕ1(ν)q+ϕ0(ν).

Thus taking q→±∞, depending on whether ϕ(ν0) is positive or negative, shows that
dimk H0(X ,L ⊗q(ν))→∞. But this contradicts Lemma 3.4, which uniformly bounds
this dimension independently of q. Therefore ϕ1 = 0 and the Hilbert polynomials of
L ⊗q are independent of q. Hence all members of Λ( j) have the same Hilbert polynomial.

Now to show Λ( j) has bounded Castelnuovo–Mumford regularity depending only on
P(t), we apply the Induction Principle, Proposition 3.3. We verify the hypotheses:

(i) Every member of Λ( j) is supported on all of the s-dimensional scheme X ;
(ii) The quantity a ··= a(OX ) from Lemma 3.4 bounds global sections;
(iii) We have just proven that every member of Λ( j) has the same Hilbert polynomial

P(t);
(iv) Since k is infinite, we may choose a hyperplane ι : H ,→ Pn

k that avoids the
associated points of X , see Lemma 08A0; then induction gives an b depending
only on the Hilbert polynomial of H ∩ X such that the ι∗L|H are b-regular.

Thus Proposition 3.3 applies to give an integer m, depending only on a, b, and P(t) such
that all members of Λ( j) are m-regular. It remains to see that both a and b depend only
on P(t). In fact, the second statement of Lemma 3.4 shows that a = a(OX ) depends only
on the degree of the embedding j : X ,→ Pn

k; this is but the leading coefficient of P(t). As
for b, observe from the short exact sequence

0→OX (−1)→OX →OX∩H → 0

that the Hilbert polynomial of X ∩H is P(t)− P(t − 1), and hence depends only on P(t).
Thus m depends only on P(t). �

4.Boundedness

In this section, we give the finiteness result of PicτX/k.

Definition 4.1. Let X be a proper scheme over k. We say that a set Λ of invertible
OX -modules is bounded if there exists

https://stacks.math.columbia.edu/tag/08A0
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– a scheme T of finite type over k, and
– an invertible OX×T -moduleM ,

such that for every L ∈ Λ, there exists t ∈ T such that L ∼=M|X×t .

Lemma 4.2. Let X be a projective scheme over an infinite field k. Then the set Λ of
numerically trivial invertible OX -modules is bounded.

Proof. Fix a very ample invertible module OX (1). Then, by Proposition 3.5, all numerically
trivial invertible OX -modules have the same Hilbert polynomial P(t) and Castelnuovo–
Mumford regularity bounded by an integer m depending only on P(t). So for every
L ∈ Λ, L ⊗OX (m) is globally generated by Lemma 08A8 and its space of global sections
has dimension a fixed integer M . Thus every such L is a quotient of

F ··= OX (−m)⊕M ∼= H0(X ,L ⊗OX (m))⊗k OX (−m).

Therefore Λ is parameterized by the open subscheme T of QuotP
F/X/k parameterizing

locally free quotients. The latter is of finite type over k by Lemma 0DPC hence T is of
finite type over k. �

The following characterizes the points of PicτX/k numerically. See [SGAVI, Exp. XIII,
Théorème 4.6] for more.

Proposition 4.3. Let X be a proper scheme over an infinite field k, and letL be an invertible
OX -module. Then the following are equivalent.

(i) the set {L ⊗m | m ∈ Z} is bounded;
(ii) L is τ-trivial; and
(iii) L is numerically trivial.

Then (i)⇒ (ii)⇔ (iii). If X is, furthermore, projective over k, then all three statements
are equivalent.

Proof. To see (i)⇒ (ii), assume {L ⊗m | m ∈ Z} is bounded. Then there exists a scheme
T of finite type over k, a line bundleM on X × T , and, for each m ∈ Z, a geometric point
tm of T such that L ⊗m ∼=M|X×tm

. But T has only finitely many connected components,
so there exists m, n ∈ Z such that tm and tn lie in the same connected component, and so
L ⊗m−n is algebraically trivial.

Now (ii)⇒ (iii) is Lemma 2.8. For the converse (ii)⇐ (iii), Chow’s Lemma 0200 and
Lemma 2.9 together show that it is enough to consider the projective case. But when X
is, furthermore, projective, Lemma 4.2 gives (iii)⇒ (i) and all three statements are then
equivalent. �

Theorem 4.4 (Finiteness of PicτX/k). Let X be a proper scheme over a field k. Then PicτX/k
is a quasi-compact closed subscheme of PicX/k.

Proof. Using Chow’s Lemma 0200, functoriality of the torsion component from Lemma
2.5, and Proposition 1.4 it suffices to consider the case X is projective and k is algebraically
closed. Since PicX/k is locally of finite type over k from Proposition 1.3, it suffices to
show that PicτX/k is quasi-compact, from which everything else follows from Lemma 2.3.
Now Proposition 4.3 shows that τ-triviality and numerical triviality are the same, and so
Lemma 4.2 gives a scheme T of finite type over k and amorphism [M ]: T → PicX/k whose

https://stacks.math.columbia.edu/tag/08A8
https://stacks.math.columbia.edu/tag/0DPC
https://stacks.math.columbia.edu/tag/0200
https://stacks.math.columbia.edu/tag/0200
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image contains all geometric points corresponding to τ-trivial invertible OX -modules. In
other words, by Lemma 2.7(ii) and Lemma 1.6,

[M ](T ) ⊇ PicτX/k.

Being finite type over k, T is a Noetherian topological space, and so is any subspace.
Thus PicτX/k is Noetherian and hence quasi-compact. �

5.Finiteness of Cycles Modulo Numerical Equivalence

In this section, we show that the group of cycles modulo numerical equivalence is of
finite rank using a cycle class map into a Weil cohomology theory, after which finiteness
comes from finiteness of Weil cohomology theories generally.

Throughout this section, we take X to be a smooth projective variety of dimension
d over an algebraically closed field k. Then Chapters 0AZ6 and 0FFG on intersection
theory and Weil cohomology theories apply.

Definition 5.1. Let 0≤ i ≤ d and let α ∈ CHi(X ).
(i) We say that α is numerically trivial if deg(α ·β) = 0 for every β ∈ CHd−i(X ). Here,

deg: CH∗(X )→ CH∗(Spec(k)) = Z is the degree map and α ·β is the intersection
product of Section 0B0G.

(ii) We say that α is H∗-trivial it lies in the kernel of γ: CHi(X )→ H2i(X )(i), the
cycle class map associated with H∗.

Write CHi(X )num and CHi(X )H∗ for the subgroups of cycles which are numerically trivial
and H∗-trivial, respectively, and let

Numi(X ) ··= CHi(X )/CHi(X )num

be the numerical group of codimension i cycles.

The goal of this section is to bound the rank of the numerical group in terms of Betti
numbers of a Weil cohomology theory. The relevance of this to our situation is given by
the first Chern class homomorphism

c1 : PicX/k(k)→ CH1(X )

see Section 02SI. Since X is smooth, Lemma 0BE9 shows that c1 is an isomorphism. The
following shows that the two notions of numerical triviality in Definitions 2.6 and 5.1 are
compatible under c1.

Lemma 5.2. An invertible OX -module L is numerically trivial if and only if c1(L ) is
numerically trivial. Thus c1 induces an isomorphism of abelian groups

PicX/k(k)/PicτX/k(k)
∼= Num1(X ).

Proof. The invertible module L is numerically trivial if and only if for every integral
curve C in X , deg(L|C) = 0. By Lemma 0BEY, this degree is the numerical intersection
number on the left of

(L · C) = deg(c1(L ) · [C]).
By Lemma 0BFI, the numerical intersection number is compatible with the Chow-theoretic
intersection number on the right, the vanishing of which is equivalent to numerical
triviality of c1(L ). �

https://stacks.math.columbia.edu/tag/0AZ6
https://stacks.math.columbia.edu/tag/0FFG
https://stacks.math.columbia.edu/tag/0B0G
https://stacks.math.columbia.edu/tag/02SI
https://stacks.math.columbia.edu/tag/0BE9
https://stacks.math.columbia.edu/tag/0BEY
https://stacks.math.columbia.edu/tag/0BFI
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We now proceed to bound the ranks of the numerical groups.

Lemma 5.3. CHi(X )H∗ ⊆ CHi(X )num ⊆ CHi(X ).

Proof. We need to show that any codimension i cycle α that is H∗-trivial is numerically
trivial. So consider any β ∈ CHd−i(X ). By the cycle class axioms (C)(c) of Section 0FHA,
and Lemma 0FHR,

deg(α · β) =
∫

X
γ(α)∪ γ(β) = 0. �

In particular, this means that the numerical group is a quotient of CHi(X )/CHi(X )H∗ .
We use this observation to bound the rank over Z of Numi(X ) in terms terms of the
dimension over F of H2i(X ) by exploiting the compatibility between the intersection
pairing on cycles and the perfect pairing on H∗. The situation is abstracted into the
following technical result:

Lemma 5.4. Suppose given
– a field F containing a ring R,
– finite dimensional vector spaces V1 and V2 over F ,
– R-submodules A1 ⊆ V1 and A2 ⊆ V2, and
– a F -bilinear map 〈−,−〉: V1 × V2→ F .

Let Ā1 ··= 〈A1,−〉 ⊆ HomF (V2, F). If
(i) the restriction of 〈−,−〉 to A1 × A2 takes values in R, and
(ii) the F -span of A2 is V2,

then rankR(Ā1)≤ dimF (V2).

Proof. Consider the R-module U ··= {ϕ ∈ HomF (V2, F) | ϕ(A2) ⊆ R}. Condition (i)
means that Ā1 ⊆ U . Thus it suffices to show that U is an R-module of rank at most
d = dimF (V2). Use condition (ii) to choose a R-submodule M ⊆ A2 free of rank d and
such that M ⊗R F = V2. Then

HomF (V2, F) = HomF (M ⊗R F, F)∼= HomR(M , F),

and since M ⊆ A2, U is mapped under this isomorphism to a submodule of Rd ∼=
HomR(M , R) ⊆ HomR(M , F). Thus U , and hence A1, has rank over R at most d. �

Proposition 5.5. Let X be a smooth projective variety of dimension d over an algebraically
closed field k. Then for every Weil cohomology theory H∗ over k and every 0≤ i ≤ d,

rankZ(Numi(X ))≤ dimF (H
2i(X )).

Proof. We apply Lemma 5.4. Set R ··= Z and F the characteristic 0 coefficient field of H∗.
Set

A1 ··= CHi(X )/CHi(X )H∗ ⊂ H2i(X )(i) =·· V1

where the inclusion is given by the cycle class map. Set

A2 ··= CHd−i(X )/CHd−i(X )H∗

and V2 the F -span of the image of A2 inside of H2(d−i)(X )(d − i) under the cycle class
map. Finally, let 〈−,−〉: V1 × V2→ F be the restriction of the pairing on H∗. Condition

https://stacks.math.columbia.edu/tag/0FHA
https://stacks.math.columbia.edu/tag/0FHR
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5.4(i) now follows from from compatibility of intersection products with 〈−,−〉, and
5.4(ii) is true by construction.

It remains to observe that, thanks again to the compatibility between intersection
products and the pairing on H∗, the image Ā1 of

CHi(X )/CHi(X )H∗ ⊆ H2i(X )(i)
∼=−→ HomF (H

2(d−i)(X )(d − i), F)

� HomF (CHd−i(X )/CHd−i(X )H∗ , F) = HomF (V2, F)

is exactly Numi(X ) = CHi(X )/CHi(X )num: indeed, an element in the kernel above is
represented by a cycle of CHi(X ) which intersects every cycle of CHd−i(X ) trivially. Thus
the Lemma gives the first inequality in

rankZ(Numi(X ))≤ dimF (V2)≤ dimF (H
2(d−i)(X )) = dimF (H

2i(X ))

and where the last equality comes from Poincaré duality for H∗. �

6.Alterations in Families

In this section, we formulate a version of de Jong’s Alteration Theorem [dJ96] in
families. This will be used to study the behavior of the Picard rank in families in the
following section.

Lemma 6.1. Let X be a proper scheme over a perfect field k. Then there exists a smooth
projective scheme X ′ over k and a surjective morphism X ′→ X over k.

Proof. Let {Vi}i∈I be the reduced irreducible components of X . For each i, apply the de
Jong’s Alterations Theorem, [dJ96, Theorem 4.1], to choose a smooth projective alteration
V ′i → Vi . Set X ′ ··=

∐

i∈I V ′i and X ′→ X as the composition X ′→
∐

i∈I Vi → X . �

Lemma 6.2. Let A be a Noetherian domain with fraction field K , then the perfect closure
Kperf is a filtered union of rings B, each of which contains a subring A f with 0 6= f ∈ A such
that A f ⊂ B is finite free and a universal homeomorphism.

Proof. We may assume Fp ⊂ A. We will show every finitely generated A-algebra C =
A[x1, . . . , xn] with A⊂ C ⊂ Kperf is contained in some B as in the statement of the lemma.
Since K ⊂ Kperf is purely inseparable, there is a p-th power q such that xq

i ∈ K for all i.
Thus we can find 0 6= f ∈ A such that xq

i ∈ A f for all i; thus each x i is integral over A f .
Then A f [x1, . . . , xn] is a finitely-generated A f module so there is a further localization
(A f [x1, . . . , xn]) f ′ = A f f ′[x1, . . . , xn], 0 6= f ′ ∈ A, which is free over A f f ′ . Take this as
our B. Then A f f ′ ⊂ B is finite free and a universal homeomorphism by Lemma 0CNF. �

Lemma 6.3. Let S be an integral scheme. Let X → S be a proper morphism of schemes.
Then there exists a nonempty open set U ⊂ S, a finite locally free universal homeomorphism
S′→ U , a smooth projective morphism X ′→ S′, and a surjective morphism X ′→ X ×S S′.

Proof. Let K be the function field of S. Then by Lemma 6.1, there exists a smooth
projective scheme Y over the perfect closure Kperf of K together with a surjective
morphism Y → X ×S Spec(Kperf). Lemma 6.2 now gives an open U ⊂ S, a finite free

https://stacks.math.columbia.edu/tag/0CNF
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universal homeomorphism S′→ U , and a projective scheme morphism X ′→ S′ with a
morphism X ′→ X ×S S′ such that the diagram

X ×Spec(K) Spec(Kperf) X ×S S′

Y X ′

Spec(Kperf) S′

is commutative and the bottom square is Cartesian. By possibly further changing S′, we
may arrange for X ′ → S′ to be smooth, see Lemma 0C0C, and for X ′ → X ×S S′ to be
surjective, see Lemma 07RR. �

7.Theorem of the Base

Let X be a proper scheme over an algebraically closed field k. The Néron–Severi group
of X is the abelian group

NS(X ) ··= PicX/k(k)/Pic0
X/k(k)

parameterizing the components of the Picard scheme; its rank ρ(X ) is the Picard rank of
X . The goal of this section is to show in Theorem 7.4 that NS(X ) is a finitely generated
abelian group. We then study its behavior in families in Lemmas 7.5 and 7.6. Everything
is put together in Theorem 7.7.

Two general observations before we begin. Given a normal subgroup-scheme H of
a group scheme G locally of finite type over an algebraically closed field k, Lemma 1.5
shows (G/H)(k) = G(k)/H(k). Second, Yred(k) = Y (k) for any scheme Y over any field
k, since field valued points are insensitive to nonreduced structure.

To formulate our results, we find it helpful to consider the following slight enrichment
of the Néron–Severi group:

Definition 7.1. Néron–Severi scheme of a proper scheme X over k is the commutative
group scheme

NSX/k ··= PicX/k/Pic0
X/k,red.

This is a scheme of dimension 0 which is, by Proposition 1.3, locally of finite type over
k. When k is algebraically closed, we recover the Néron–Severi group as the group of
k-points:

NSX/k(k) = PicX/k(k)/Pic0
X/k(k) = NS(X ).

The constructions of Definition 2.1 give subgroup schemes of NSX/k closely related to the
corresponding subgroup schemes of PicX/k:

NS0
X/k
∼= Pic0

X/k/Pic0
X/k,red and NSτX/k

∼= PicτX/k/Pic0
X/k,red.

The torsion subgroup and the torsion-free quotient of the Néron–Severi group can now
be realized as groups of points as follows:

https://stacks.math.columbia.edu/tag/0C0C
https://stacks.math.columbia.edu/tag/07RR
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Lemma 7.2. Let X be a proper scheme over an algebraically closed field k. Then the torsion
subgroup of NS(X ) is the finite group

NS(X )tors = PicτX/k(k)/Pic0
X/k(k) = NSτX/k(k).

The torsion-free quotient is

NS(X )tf ··= NS(X )/NS(X )tors = PicX/k(k)/PicτX/k(k).

Proof. The class [L ] lies in NS(X )tors if and only if

n[L ] = [L ⊗n] = [OX ] for some integer n 6= 0.

As NS(X ) is the component group of PicX/k, this means L ⊗n ∈ Pic0
X/k, so L ∈ PicτX/k.

Hence the identification of NS(X )tors. That this is finite then follows from Theorem 4.4:
NSτX/k is a zero-dimensional scheme of finite type over k, so it has only finitely many
k-points.

As for NS(X )tf, consider the short exact sequence of group schemes

0→ NSτX/k→ NSX/k→ NSX/k/NSτX/k→ 0.

Then the preceding discussion shows NSX/k/NSτX/k
∼= PicX/k/PicτX/k and taking points

identifies the torsion-free quotient. �

Theorem 7.3 (Theorem of the Base, Smooth Projective Case). Let X be a smooth projective
scheme over an algebraically closed field k. Then

(i) NS(X ) is a finitely generated abelian group, and
(ii) ρ(X )≤ dimF (H2(X )) for any Weil cohomology theory H∗ over k.

Proof. We have X =
∐

i X i with X i the connected components of X , and PicX/k =
∏

i PicX i/k, so NS(X ) =
⊕

i NS(X i). Since also H2(X ) =
⊕

i H2(X i), it suffices to prove
the Theorem for each X i. Thus we may assume X is a smooth projective variety. The
short exact sequence

0→ NS(X )tors→ NS(X )→ NS(X )tf→ 0

implies it suffices to show that NS(X )tors is finite and that NS(X )tf is of finite rank. Lemma
7.2 already gives finiteness of torsion; it moreover identifies the quotient as the numerical
group of invertible modules, giving the first isomorphism in

NS(X )tf ∼= PicX/k(k)/PicτX/k(k)
∼= Num1(X ).

Since X is smooth projective, the first Chern class identifies the numerical group of
invertible modules with the numerical group Num1(X ) of divisors on X , as in Lemma 5.2.
Then Proposition 5.5 shows that the rank of this is at most the dimension of H2(X ) for
any Weil cohomology theory H∗ over k. �

We can now deduce finite generation of NS(X ) for any proper scheme over k by
reducing to the smooth projective case above:

Theorem 7.4 (Theorem of the Base, Proper Case). Let X be a proper scheme over an
algebraically closed field k. Then NS(X ) is a finitely generated abelian group.
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Proof. As before, it suffices to show that NS(X ) has finite torsion and that its torsion-free
quotient is of finite rank. Finiteness of torsion is again handled by Lemma 7.2. As for the
torsion-free quotient, observe that if f : Y → X is a surjective morphism, then Lemma
2.9 says that an OX -module L is τ-trivial if and only if f ∗L is τ-trivial; thus pullback
induces an injective homomorphism f ∗ : NS(X )tf→ NS(Y )tf. If the latter is of finite rank,
then so is the former. Thus to prove that X has finite Picard rank, we may replace X by
schemes surjecting onto it. But by Lemma 6.1, there is a surjective morphism Y → X
with Y a smooth projective scheme over k. We conclude by Theorem 7.3. �

We consider how the Néron–Severi group varies in families. More precisely, consider
a proper morphism f : X → S. For each point s ∈ S, let κ(s) be its residue field and let

s̄ : Spec(κ(s))→ S

be a geometric point lying above s. Let X s̄ ··= X ×S s̄ be the geometric fibre of f over s.
Then the Theorem of the Base allows us to define numerical functions

torsX/S : S→ Z ρX/S : S→ Z

s 7→ #NS(X s̄)tors, s 7→ ρ(X s̄),

giving the torsion size and Picard rank of geometric fibres.
In order to study the function torsX/S, we will need to make use of the subfunctor

PicτX/S ⊂ PicX/S consisting of sections ξ ∈ PicX/S(T ) such that ξ| t̄ ∈ PicτX t̄/ t̄( t̄) for every
geometric point t̄ of T . Note that for a geometric point s̄ of S, we have (PicτX/S)s̄ = PicX s̄/s̄.

Lemma 7.5 (Bounded Torsion). Let f : X → S be a proper morphism. If S is Noetherian,
then the function torsX/S is bounded.

Proof. By Noetherian induction, it suffices to find a non-empty open of S on which ρX/S
is bounded. Since torsX/S concerns geometric fibres, we may replace S by its reduction
and assume S is reduced. We may then replace S by an irreducible component since a
non-empty open of an irreducible component contains a non-empty open of S. Thus we
may assume S is integral.

For a point s ∈ S, consider the base change map ϕ(s) : ( f∗OX )s⊗OS,s
κ(s)→ H0(Xs,OXs

).
When s is the generic point of S this map is an isomorphism by Lemma 02KH, since
Spec(κ(s)) → S is flat. Therefore, there exists a nonempty open of S consisting of
points s ∈ S such that ϕ(s) is an isomorphism, and after replacing S with this open, the
formation of f∗OX commutes with arbitrary base change by [EGAIII, §7.7]. Therefore by
Theorem 1.1, we may assume PicX/S is representable by an algebraic space. Then [SGAVI,
Exposé XIII, Théorème 4.7] shows that PicτX/S is an algebraic space of finite type over
S. Since the generic fibre of PicτX/S → S is a scheme being a finite type group algebraic
space over a field, by Lemma 07SR we may assume after replacing S by a nonempty
open that PicτX/S is a scheme. For every s ∈ S,

torsX/S(s) = #(connected components of (PicτX/S)s̄).

There is a nonempty open subset of S on which the number of connected components of
fibres is constant, see Lemma 055H; replacing S by such an open completes the proof. �

https://stacks.math.columbia.edu/tag/02KH
https://stacks.math.columbia.edu/tag/07SR
https://stacks.math.columbia.edu/tag/055H
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To bound Picard ranks in families, we assume that there exists a Weil cohomology
theory that varies in families. That is, suppose we have the following situation: fix a
coefficient field F ; for every scheme S and every geometric point

s̄ : Spec(κ(s))→ S,

we have a Weil cohomology theory H∗s̄ over κ(s) with coefficients in F . The important hy-
pothesis is: for every smooth projective morphism X → S, the function s 7→ dimF (H2

s̄ (X s̄))
is constructible on S.

Such a theory exists: for example, one may take `-adic étale cohomology for suitable `.
The required constructibility result is then the Théorème de Finitude et Spécialisations
of [SGAIV, Exposé XVI Corollaire 2.2]. See also Proposition 0GLI.

Lemma 7.6 (Bounded Ranks). Assume that there exists a Weil cohomology theory that
varies in families as above. Let f : X → S be a proper morphism of schemes. If S is
Noetherian, then ρX/S is bounded.

Proof. By Noetherian induction, it suffices to find a non-empty open of S on which ρX/S
is bounded. Since ρX/S concerns geometric fibres, we may replace S by its reduction
to assume S is reduced. We may then replace S by an irreducible component since a
non-empty open of an irreducible component contains a non-empty open of S. Thus we
assume S is integral.

By the Alterations Theorem in Families, Lemma 6.3, after replacing S by a non-empty
open we may assume there exist: a finite surjective morphism S′→ S, a smooth projective
morphism X ′→ S′, and a surjective morphism X ′→ X ×S S′. Since S′→ S is surjective
and X → S and X ×S S′ → S′ have the same geometric fibres, in order to show ρX/S
is bounded it suffices to show ρX×SS′/S′ is bounded. Thus we may replace S by S′ and
assume there exists a surjective morphism X ′→ X with X ′ smooth and projective over S.
But then as observed in the proof of the Theorem of the Base, Lemma 2.9 implies that
ρX/S ≤ ρX ′/S , so we may replace X with X ′.

Thus we are in the situation where X → S is a smooth projective morphism with S an
integral Noetherian scheme. The Theorem of the Base in the projective case, Theorem
7.3, implies that for every s ∈ S, ρX/S(s) ≤ dimF (H2

s̄ (X s̄)). Our hypothesis about the
Weil cohomology theory in families is that the latter function is constructible on S, and
so since S is Noetherian, it is actually uniformly bounded on S. Therefore ρX/S is also
bounded on S. �

Putting the results of this section together yields the following result, originally due to
[SGAVI, Exposé XIII, Théorème 5.1]:

Theorem 7.7 (Boundedness of Néron–Severi in Families). Let X → S be a proper morphism.
If S is Noetherian, then NS(X s̄) is a finitely generated abelian group for every geometric
point s̄ of S. Moreover, the order of torsion and ranks of these groups are bounded over S.

Proof. This is Theorem 7.4 together with Lemmas 7.5 and 7.6. �

8.Examples of Picard Schemes

We close this chapter by giving three examples of Picard schemes.

https://stacks.math.columbia.edu/tag/0GLI
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Example 8.1 (Picard schemes of quotients). The Picard schemes of quotients by finite
commutative group schemes G often contain the Cartier dual G∨, see [Jen78]. To explain,
let S be a scheme and G a finite locally free commutative group scheme over S. The
presheaf of abelian groups on the category Sch/S of schemes over S given by

G∨ : T 7→ HomT (GT , (Gm)T ),

the right side being homomorphisms in the category of group schemes over T , is
representable by a finite locally free commutative group scheme over S called the Cartier
dual of G. The functor G 7→ G∨ defines a duality on the category of finite locally free
commutative group schemes over S in that G 7→ (G∨)∨ is isomorphic to the identity
functor.

The Cartier dual often appears in the Picard scheme of a quotient:

Lemma 8.2. Let S be a scheme, G a finite locally free commutative group scheme over S,
π: Y → X be a G-torsor with X and Y algebraic spaces over S. Assume (Y → S)∗OY = OS
holds universally. Then there is an exact sequence

0→ G∨→ PicX/S
π∗

−→ PicY /S

of sheaves on (Sch/S)fppf.

Proof. It suffices to see that for every T → S, there is an exact sequence

0→ G∨(T )→ Pic(XT )→ Pic(YT ).

By descent theory, the kernel of Pic(XT ) → Pic(YT ) can be identified with the set of
GT -equivariant structures on OYT

, see Lemma 043U. By definition, this is an isomorphism
OGT×T XT

→OGT×T XT
satisfying two conditions. Such an isomorphism is given by a section

of
H0(GT ×T XT ,OGT×T XT

)× = H0(GT ,OGT
)×

by the assumption on the pushforward of the structure sheaf. This is also the same thing
as a morphism GT → (Gm)T of schemes over T . The two conditions in the definition of
an equivariant structure say exactly that this morphism is a homomorphism of group
schemes. Thus the kernel is canonically identified with G∨(T ). �

Now for a particular example. Take S ··= Spec(k) for k an algebraically closed field
of characteristic p > 0, and let G be the constant group scheme Z/p. Then G∨ = µp.
Fix d ≥ 2. Then there exists a smooth complete intersection Y of dimension d in some
projective space that carries a free G action, see [Ser58, Proposition 15]. Then the fppf
quotient sheaf X ··= Y /G is a scheme and the quotient map Y → X is a G-torsor in the
fppf topology, see Lemma 07S7. It follows from Lemma 0BBM that X is separated. Since
Y → X is étale and surjective and Y is smooth over k, X is smooth over k by Lemma
02K5. Since Y → X surjective and Y is proper and irreducible, so is X , see Lemma 03GN.
Thus Y is a smooth proper variety over k. Since the group scheme µp is connected, the
exact sequence of Lemma 8.2 gives an exact sequence

0→ µp→ Pic0
X/k→ Pic0

Y /k.

On the one hand, H1(Y,OY ) = 0 since Y is a complete intersection of dimension d ≥ 2.
On the other hand, the same group is Ext1

Y (OY ,OY ) and hence is the tangent space to the

https://stacks.math.columbia.edu/tag/043U
https://stacks.math.columbia.edu/tag/07S7
https://stacks.math.columbia.edu/tag/0BBM
https://stacks.math.columbia.edu/tag/02K5
https://stacks.math.columbia.edu/tag/03GN
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Picard scheme at the identity, see Lemma 08VW. Thus Pic0
Y /k = 0 and so Pic0

X/k = µp. In
particular, the Picard scheme of the smooth proper variety X is nonreduced. �

Example 8.3 (Pointless conic). We will give an example of a section of the Picard functor
that cannot be represented by a line bundle. Let

X ··= Proj(R[x , y, z]/(x2 + y2 + z2)) ⊂ P2
R.

Then X is a smooth curve over R such that X (R) = ; and XC
∼= P1

C. By Lemma 0D27,
there is an exact sequence

0→ Pic(Spec(R))→ Pic(X )→ PicX/R(R).

We show that Pic(X )→ PicX/R(R) is not surjective.
First, observe that PicX/R(R) → PicX/R(C) is an isomorphism. It’s injective since

Spec(C)→ Spec(R) is a covering for the fppf, even étale topology. For surjectivity, note
that by Lemmas 0D28 and 0BXJ,

PicX/R(C) = PicXC/C(C) = Pic(P1
C) = Z · OP1

C
(1) =·· Z · O (1).

The class of O (1) descends along the étale covering Spec(C) → Spec(R). Indeed, its
two pullbacks to XC⊗RC

∼= P1
C

∐

P1
C must give O (1) on each copy of P1

C, since for an
isomorphism f : P1

C → P1
C of schemes, not necessarily over C, f ∗O (1) ∼= O (1): the

pullback must generate the Picard group, and among the two possibilities, only one of
them has a nonzero global section.

Thus to show Pic(X )→ PicX/R(R) is not surjective, we just have to show O (1) is not
the pullback of a line bundle on X . If it were, then X would have a degree 1 line bundle
L with a nonzero section, as

H0(X ,L )⊗R C∼= H0(P1
C,O (1)) 6= 0.

But then the zero locus of any nonzero section of L is an R-rational point, contradicting
the fact that X (R) = ;. �

Example 8.4 (Nodal curves). Let X be a nodal curve over an algebraically closed field
k, see Section 0C47. Let p1, . . . , pn ∈ X be the nodes of X and let ν: X ν → X be its
normalization. We will show that there is a short exact sequence of group schemes

0→ Gn
m→ PicX/k→ PicX ν/k→ 0.

This shows that if X is not smooth, then Pic0
X/k is not proper, since it contains Gn

m as a
closed subgroup scheme with n≥ 1.

The normalization morphism gives a short exact sequence

0→OX
v#

−→ ν∗(OX ν)→
⊕n

i=1
Opi
→ 0

of coherent sheaves on X . Indeed, the cokernel of consists of skyscraper sheaves supported
on the pi since there are exactly two points in X ν lying above each pi , see Lemma 0CBW.

For any flat morphism Y → X , pullback yields a short exact sequence

0→OY → νY,∗(OX ν×X Y )→
⊕n

i=1
OYpi
→ 0

https://stacks.math.columbia.edu/tag/08VW
https://stacks.math.columbia.edu/tag/0D27
https://stacks.math.columbia.edu/tag/0D28
https://stacks.math.columbia.edu/tag/0BXJ
https://stacks.math.columbia.edu/tag/0C47
https://stacks.math.columbia.edu/tag/0CBW
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which remains valid upon replacing Y by any object in the small étale site Yét of Y , since
such objects are flat over Y . Thus upon taking units we obtain a short exact sequence

0→ Gm→ νY,∗Gm,X ν×X Y →
⊕n

i=1
(Ypi
→ Y )∗Gm,Ypi

→ 0

of sheaves on Yét. Since νY : X ν×X Y → Y and Ypi
→ Y are finite, the long exact sequence

of cohomology gives

0→ H0(Y,OY )
×→ H0(X ν ×X Y,OX ν×X Y )

×→
n
⊕

i=1

H0(Ypi
,OYpi

)×

→ Pic(Y )→ Pic(X ν ×X Y )→
⊕n

i=1
Pic(Ypi

)→ ·· · .

Now take Y = XT for T an object in (Sch/k)fppf. Since H0(X ,OX ) = H0(X ν,OX ν) = k,

0→ H0(T,OT )
× = H0(T,OT )

× 0
−→
⊕n

i=1
H0(T,OT )

×

→ Pic(XT )→ Pic((X ν)T )→
⊕n

i=1
Pic(T )→ ·· · .

Furthermore, elements of Pic(T ) vanish Zariski locally on T , and therefore elements of
Pic((X ν)T ) Zariski locally on T come from Pic(XT ). Since we obtain PicX/k by sheafifying
the rule T 7→ Pic(XT ) and similarly for X ν, we see that we have obtained a short exact
sequence

0→ Gn
m→ PicX/k→ PicX ν/k→ 0,

as promised.
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