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RESOLUTIONS OF LOCAL FACE MODULES, FUNCTORIALITY, AND VANISHING

OF LOCAL h-VECTORS

MATT LARSON, SAM PAYNE, AND ALAN STAPLEDON

Abstract. We study the local face modules of triangulations of simplices, i.e., the modules over face
rings whose Hilbert functions are local h-vectors. In particular, we give resolutions of these modules by
subcomplexes of Koszul complexes as well as functorial maps between modules induced by inclusions of
faces. As applications, we prove a new monotonicity result for local h-vectors and new results on the
structure of faces in triangulations with vanishing local h-vectors.

1. Introduction

In this paper, we study the modules over face rings, introduced by Athanasiadis and Stanley, whose
Hilbert functions are the relative local h-vectors of quasi-geometric homology triangulations of simplices, a
broad class of formal subdivisions that includes all geometric triangulations and is natural from the point of
view of combinatorial commutative algebra. See Section 2.1 for the precise definition and further references.

Fix an infinite field k. Let σ : Γ → 2V be a quasi-geometric homology triangulation of a simplex, and let
E be a face of Γ. Say that a face G ∈ Γ is interior if σ(G) = V , and let I be the ideal in the face ring
k[lkΓ(E)] generated by the faces that are interior relative to E, i.e.,

I = (xF : F ⊔E is interior).

Let d = |V | − |E|, which is the Krull dimension of k[lkΓ(E)], and let θ1, . . . , θd be a special l.s.o.p., as in
[Sta92, Ath12a]. See also §2.2, where we recall the definition and construction of special l.s.o.p.s.

Definition 1.1. The local face module L(Γ, E) is the image of I in k[lkΓ(E)]/(θ1, . . . , θd).

Note that L(Γ, E) is a finite dimensional graded k-vector space. The local h-vector is its Hilbert function:

ℓ(Γ, E) := (ℓ0, . . . , ℓd), where ℓi := dimL(Γ, E)i.

The local face module L(Γ, E) depends on the choice of a special l.s.o.p., but ℓ(Γ, E) is an invariant of the
triangulation with the symmetry ℓi = ℓd−i. See §2.1 for details and references. In the past few years, there
has been significant research activity on the combinatorics of local h-vectors and relations to intersection
homology [Ath16, KS16, Sta17, dCMM18]. Recent advances include a proof that every non-negative integer
vector satisfying ℓ0 = 0 and ℓi = ℓd−i is the local h-vector of a quasi-geometric triangulation for E = ∅
[JKMS19], and a relative hard Lefschetz theorem that yields unimodality of local h-vectors for regular sub-
divisions in a more general setting (for regular nonsimplicial polyhedral subdivisions that are not necessarily
rational) [Kar19].

Here, we investigate the local face modules L(Γ, E) using methods of combinatorial commutative algebra.
In particular, we describe natural combinatorial resolutions of these modules as well as natural maps of
k[lkΓ(E)]-modules, L(Γ, E) → L(Γ, E′), for E ⊂ E′. Our first theorem gives explicit generators for the
kernel of the natural map I → k[lkΓ(E)]/(θ1, . . . , θd). Moreover, we extend this to an exact sequence of
graded k[lkΓ(E)]-modules in which each term is a direct sum of degree-shifted monomial ideals.
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Label the vertices of the simplex V = {v1, . . . , vn}. For a subset U ⊂ V , let U c := V rU . After relabeling,
we may assume that σ(E)c = {v1, . . . , vb}. Given S ⊂ {v1, . . . , vd}, we define the ideal IS ⊂ k[lkΓ(E)] by

IS := (xF : σ(F ⊔ E)c ⊂ S).

Note that IS′ ⊂ IS for S′ ⊂ S, and IS depends only on S ∩ {v1, . . . , vb}. For instance, I∅ = I and
IS = k[lkΓ(E)] if {v1, . . . , vb} ⊂ S. By the definition of a special l.s.o.p. (Definition 2.3), after reordering,
we may assume

supp(θi) ⊂ {w ∈ lkΓ(E) : vi ∈ σ(w)},

for 1 ≤ i ≤ b. As a consequence, for any vi ∈ S, multiplication by θi induces a degree 1 map λi : IS → ISr{vi}.

Theorem 1.2. There is an exact sequence of graded k[lkΓ(E)]-modules

0 → k[lkΓ(E)][−d] →
⊕

|S|=d−1

IS [−(d− 1)] → · · · →
⊕

|S|=1

IS [−1] → I → L(Γ, E) → 0,

where, for S = {vi0 , . . . , vik}, with i0 < · · · < ik, the differential restricted to IS is ⊕k
j=0(−1)jλij .

Corollary 1.3. The kernel of the surjection I → L(Γ, E) is the ideal J generated by
{

θi · x
F : F ⊔E is interior

}

∪
{

θj · x
G : σ(G ⊔E) = {vj}

c, for 1 ≤ j ≤ b
}

.

We also construct maps between local face modules, as follows. For faces E ⊂ E′ in Γ, let Star(E′
r E)

denote the closed star of E′
r E in lkΓ(E). We have a natural inclusion of complexes lkΓ(E

′) ⊂ lkΓ(E).

Theorem 1.4. Let E ⊂ E′ be faces of Γ, with

d = n− |E|, d′ = n− |E′|, and b′ = n− |σ(E′)|.

Let {θ1, . . . , θd} be a special l.s.o.p. for k[lkΓ(E)], and let θ′i := θi|Star(E′
rE). Then there is a unique

homomorphism of graded k-algebras

φ : k[lkΓ(E)]/(θ1, . . . , θd) → k[lkΓ(E
′)]/(k[lkΓ(E

′)] ∩ (θ′1, . . . , θ
′
d))

whose kernel contains {[xF ] : F 6∈ Star(E′
r E)} and satisfies φ(xF ) = xF for all F ∈ lkΓ(E

′). Moreover,
there is a special l.s.o.p. ζ1, . . . , ζd′ for k[lkΓ(E

′)] such that (ζ1, . . . , ζd′) = k[lkΓ(E
′)]∩ (θ′1, . . . , θ

′
d) and, up to

reordering, we have θi|lkΓ(E′) = ζi, for 1 ≤ i ≤ b′. With this choice of special l.s.o.p., φ(L(Γ, E)) ⊂ L(Γ, E′).

Remark 1.5. Theorem 1.4 may be viewed as a functoriality statement for local face modules. Start by fixing
the special l.s.o.p. θ1, . . . , θd. Then L(Γ, E) is well-defined. For E′ ⊃ E the special l.s.o.p. ζ1, . . . , ζd′ depends
on some choices, but the ideal that it generates does not, nor does the map φ : L(Γ, E) → L(Γ, E′). Moreover,
for E′′ ⊃ E′, one readily checks that the maps φ′ : L(Γ, E′) → L(Γ, E′′) and φ′′ : L(Γ, E) → L(Γ, E′′) are
independent of all choices and satisfy φ′′ = φ′ ◦ φ. Thus one obtains a functor from the poset of faces of Γ
that contain E to graded vector spaces, given by E′ 7→ L(Γ, E′).

We now give two applications of the above theorems. The first is a monotonicity property for local
h-vectors.

Theorem 1.6. Let E ⊂ E′ be faces of Γ such that σ(E) = σ(E′). Then ℓ(Γ, E) ≥ ℓ(Γ, E′).

The inequality in Theorem 1.6 is term by term, i.e., dimL(Γ, E)i ≥ dimL(Γ, E′)i for all i. The proof is by
showing that the map φ : L(Γ, E) → L(Γ, E′) given by Theorem 1.4 is surjective.

Our second application of the above theorems is to a decades old problem posed by Stanley, who introduced
and studied local h-vectors in the special case where E = ∅ and asked for a characterization of triangulations
for which they vanish [Sta92, Problem 4.13]. This problem remains open, and is of enduring interest [Ath16,
Problem 2.12]. The extension to the case where E is not empty is particularly relevant for applications
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to the monodromy conjecture [Igu78, DL98, Sta17]. In [LPS22], we prove a theorem on the structure of
geometric triangulations with vanishing local h-vectors that is tailored to this purpose, and we use it to
prove the monodromy conjectures for all singularities that are nondegenerate with respect to a simplicial
Newton polyhedron. See Theorems 1.1.1, 1.4.3, and 4.1.3 in loc. cit.

Here, we apply Theorem 1.2 to prove another theorem on the structure of faces in triangulations with
vanishing local h-vectors. Let F ∈ lkΓ(E) be a face such that F ⊔E is interior. Following terminology from
the monodromy conjecture literature (see, e.g., [LVP11]), we say that F is a pyramid with apex w ∈ F if
(F ⊔E)r w is not interior. Let

AF := {w ∈ F : F is a pyramid with apex w}, and Vw := σ((F ⊔ E)r w)c.

The elements of Vw correspond to the base directions of F , i.e., the facets of 2V that contain the base of F ,
when viewed as a pyramid with apex w. We say F is a U -pyramid if there is an apex w ∈ AF such that
|Vw| = 1. In other words, a U -pyramid is a pyramid with a unique base direction, for some choice of apex.

Definition 1.7. Let F ∈ lkΓ(E) be a face. An interior partition of F is a decomposition

F = F1 ⊔ F2 ⊔ AF

such that F1 ⊔AF ⊔ E and F2 ⊔ AF ⊔ E are both interior.

Theorem 1.8. Suppose ℓ(Γ, E) = 0 and F ∈ lkΓ(E) has an interior partition F = F1 ⊔ F2 ⊔ AF such that
|F1| ≤ 2. Then F is a U -pyramid.

See Remark 3.2 for a short proof in a special case that illustrates the naturality of the U -pyramid condition.
The method of proof breaks down when |Fi| ≥ 3. See Example 5.3.

Remark 1.9. The analogous theorem in [LPS22] requires that the triangulation be geometric and that the
interior partition satisfies the additional condition σ(F2 ⊔ E)c =

⋃

w∈AF
Vw. But then the hypothesis that

|F1| ≤ 2 is dropped entirely. So, even for geometric triangulations, there are cases of Theorem 1.8 that are not
necessarily covered by [LPS22, Theorem 4.1.3]. It should be interesting to look for a common generalization of
these vanishing results, and to pursue further progress on Stanley’s problem of characterizing triangulations
with vanishing local h-vector more generally.

Remark 1.10. To the best of our knowledge, all of the theorems stated in the introduction are new even
for regular triangulations. The reader who prefers to do so may safely restrict attention to geometric or even
regular triangulations. However, while the structure results for triangulations with vanishing local h-vectors
in [dMGP+20] and [LPS22] rely on special properties of geometric triangulations, the proofs presented here
work equally well for quasi-geometric homology triangulations, and we find it natural to work in this level
of generality.

We conclude the introduction with an example illustrating the above theorems.

Example 1.11. Let Γ be the triforce triangulation, which figures prominently in [dMGP+20] and in the
adventures of hero protagonist Link in the video game series The Legend of Zelda.

u

vw

c

a

bΓ
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Let xa := x{a}, xb := x{b}, xc := x{c}, xu := x{u}, xv := x{v}, xw := x{w}. Consider first E = ∅. The
face ring is

k[lkΓ(E)] = k[xa, xb, xc, xu, xv, xw]/(xaxu, xbxv, xcxw, xuxv, xuxw, xvxw),

and its ideal of interior faces is

I = (xaxb, xaxc, xbxc).

A special l.s.o.p. is of the form θ1, θ2, θ3, with

supp(θ1) = {b, c, u}, supp(θ2) = {a, c, v}, supp(θ3) = {a, b, w},

subject to the condition that the restrictions (of the corresponding affine linear functions) to the face {a, b, c}
are linearly independent. Our resolution of the local face module L(Γ, E) also involves the monomial ideals

Iu = (xa, xbxc), Iv = (xb, xaxc), Iw = (xc, xaxb),
Iuv = (xa, xb, xw), Iuw = (xa, xc, xv), Ivw = (xb, xc, xu).

The resolution given by Theorem 1.2 is then

0 → k[lkΓ(E)]

[

θ1
−θ2
θ3

]

−−−−−→ Ivw ⊕ Iuw ⊕ Iuv

[

0 −θ3 −θ2
−θ3 0 θ1
θ2 θ1 0

]

−−−−−−−−−−−→ Iu ⊕ Iv ⊕ Iw
[ θ1 θ2 θ3 ]
−−−−−−→ I → L(Γ, E) → 0

In particular, we have L(Γ, E) ∼= I/J , where

(θ1 · xa, θ2 · xb, θ3 · xc) ⊂ J.

Since θ1, θ2, and θ3 restrict to linearly independent functions on {a, b, c}, the elements {θ1 ·xa, θ2 ·xb, θ3 ·xc}
span the 3-dimensional subspace 〈xaxb, xaxc, xbxc〉 of k[lkΓ(E)]. Hence I = J and L(Γ, E) = 0.

Next, consider E′ = {c}. Then

k[lkΓ(E
′)] = k[xa, xb, xu, xv]/(xaxu, xbxv, xuxv).

A special l.s.o.p. is any l.s.o.p. of the form ζ1, ζ2, where supp(ζ1) ⊂ {a, b}. The ideal of interior faces in this
case is I ′ = (xa, xb), and the resolution given by Theorem 1.2 is

0 → k[lkΓ(E
′)]

[

−ζ2
ζ1

]

−−−−→ k[lkΓ(E
′)]⊕ I ′

[ ζ1 ζ2 ]
−−−−→ I ′ → L(Γ, E′) → 0.

Note, in particular, that L(Γ, E′) ∼= I ′/J ′, where J ′ = (ζ1, ζ2xa, ζ2xb). Thus one sees that L(Γ, E′) has
dimension 1 in degree 1, i.e., ℓ(Γ, E′) = (0, 1, 0).

Let us now consider Theorem 1.4 in this example. Let θ′i denote the restriction of θi to k[Star(E′
r E)].

Note that ζ1 := θ′3 is supported on lkΓ(E
′). Extend {ζ1} to a basis for k[lkΓ(E)] ∩ (θ′1, θ

′
2, θ

′
3), e.g., by

choosing ζ2 to be a linear combination of θ′1 and θ′2 in which the coefficient of xc vanishes. Then ζ1, ζ2 is a
special l.s.o.p. for k[lkΓ(E

′)], and the map φ in Theorem 1.4 is given as follows. First, we set

φ(xa) = xa, φ(xb) = xb, φ(xu) = xu, φ(xv) = xv, φ(xw) = 0.

Then, writing θ2 = λcxc + λaxa + λvxv, with all three coefficients nonzero, we set

φ(xc) =
−1

λc
(λaxa + λvxv).

Note that there is no subset of {θ1, θ2, θ3} whose restrictions to k[lkΓ(E′)] form an l.s.o.p. This explains and
motivates our two-step process for constructing the map: first restricting to Star(E′

rE) and then intersecting
with k[lkΓ(E

′)] to produce the special l.s.o.p. that yields the functorial map φ : L(Γ, E) → L(Γ, E′).
Let also describe how Theorems 1.6 and 1.8 manifest in this example. For Theorem 1.8, observe that the

face F = {a, b} in lkΓ(E
′) has an interior partition F = {a} ⊔ {b}. The proof in this case shows that the

classes of both xa and xb are nonzero in L(Γ, E′), for any choice of special l.s.o.p.
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Finally, note that L(Γ, E) = 0 and L(Γ, E′) 6= 0, so there is no surjective map of graded vector space
L(Γ, E) → L(Γ, E′). In this case, σ(E) 6= σ(E′). Thus, we see that the hypothesis σ(E) = σ(E′) cannot be
dropped in Theorem 1.6.

Acknowledgments. We thank the referees for their helpful comments. The work of ML is supported by
an NDSEG fellowship and the work of SP is supported in part by NSF DMS–2001502 and DMS–2053261.

2. Preliminaries

We begin by recalling definitions and background results that will be used throughout, following [Sta96,
Chapter III] and [Ath16]. We work over a field k. In particular, all rings are commutative k-algebras and
singular homology is computed with coefficients in k.

2.1. Triangulations of simplices. In this section only, for the purposes of providing context, we allow
that the field k may be finite, and the triangulation σ : Γ → 2V is not necessarily quasi-geometric.

We recall the notion of a homology triangulation, following [Ath12b]. A d-dimensional simplicial complex
Γ with trivial reduced homology is a homology ball of dimension d if there is a subcomplex ∂Γ ⊂ Γ such that

• ∂Γ is a homology sphere of dimension d− 1,
• lkΓ(F ) is a homology sphere of dimension d− |F | for F 6∈ ∂Γ.
• lkΓ(F ) is a homology ball of dimension d− |F | for all nonempty F ∈ ∂Γ.

The interior faces of a homology ball Γ are the faces not contained in ∂Γ. A homology triangulation of the
simplex 2V is a finite simplicial complex Γ and a map σ : Γ → 2V such that for every non-empty U ⊂ V ,

• the simplicial complex ΓU := σ−1(2U ) is a homology ball of dimension |U | − 1.
• σ−1(U) is the set of interior faces of the homology ball σ−1(2U ).

Note that the Betti numbers of a simplicial complex, and hence the property of being a homology ball,
depend only on the characteristic of the field k. Homology triangulations are a special case of the (strong)
formal subdivisions of Eulerian posets considered in [Sta92, §7] and [KS16, §3].

The carrier of a face F ∈ Γ is σ(F ). A homology triangulation σ : Γ → 2V is quasi-geometric if there
is no face F ∈ Γ and U ⊂ V such that the dimension of ΓU is strictly smaller than the dimension of F
and the carrier of every vertex in F is contained in U . A homology triangulation is geometric if it can be
realized in R

n as the subdivision of a geometric simplex into geometric simplices. Every geometric homology
triangulation is quasi-geometric.

The local h-vector, which we have defined in the introduction as the Hilbert function of the local face
module, can be expressed in terms of h-vectors of subcomplexes of links of faces in the homology balls ΓU :

(1) ℓ(Γ, E) =
∑

U⊃σ(E)

(−1)|V |−|U|h(lkΓU
(E)).

Note that (1) makes sense even when k is finite or σ : Γ → 2V is not quasi-geometric, and should be taken
as the definition of the local h-vector in this broader context.

Theorem 2.1 ([Sta92, Ath12b, KS16]). Let σ : Γ → 2V be a homology triangulation, let E be a face of Γ
and let d = |V | − |E|. Then the local h-vector (ℓ0, . . . , ℓd) satisfies:

• (symmetry) ℓi = ℓd−i;
• (non-negativity) if Γ is quasi-geometric, then ℓi ≥ 0;
• (unimodality) if Γ is regular, then ℓ0 ≤ ℓ1 ≤ · · · ≤ ℓ⌊d/2⌋.

Note that the proof of non-negativity for quasi-geometric triangulations, due to Stanley and Athanasiadis,
is via the identification with the Hilbert function of the local face module. It suffices to consider the case
where k is infinite, since (1) is invariant under field extensions.
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2.2. Face rings and special l.s.o.p.s. Here, and for the remainder of the paper, the field k is fixed and
infinite, and all triangulations are quasi-geometric homology triangulations.

Given a finite simplicial complex Γ with vertex set V = {v1, . . . , vn}, let k[Γ] denote the face ring. In
other words, for each subset F ⊂ V , let xF be the corresponding squarefree monomial in the polynomial
ring k[x1, . . . , xn], i.e., x

F :=
∏

vi∈F xi. Then the face ring is

k[Γ] := k[x1, . . . , xn]/(x
F : F is not a face in Γ).

Given a subcomplex Γ′ of Γ, we have a natural restriction map k[Γ] → k[Γ′], taking xF to xF if F ∈ Γ′ and
to 0 otherwise. Given θ ∈ k[Γ], let θ|Γ′ denote the image of θ in k[Γ′]. In particular, each F in Γ may be
viewed as a subcomplex, and we write θ|F for the restriction of θ to this subcomplex.

Note that k[Γ] is graded by degree. By definition, a linear system of parameters (l.s.o.p.) for a finitely
generated graded k-algebra R of Krull dimension d is a sequence of elements θ1, . . . , θd in R1 such that
R/(θ1, . . . , θd) is a finite-dimensional k-vector space. If Γ is a Cohen-Macaulay complex (i.e., if k[Γ] is a
Cohen-Macaulay ring) and θ1, . . . , θd is an l.s.o.p. for k[Γ], then (θ1, . . . , θd) is a regular sequence and the
h-polynomial of Γ is the Hilbert series of k[Γ]/(θ1, . . . , θd). Links of faces in triangulations of simplices are
Cohen-Macaulay [Rei76].

Suppose Γ has dimension d− 1, so k[Γ] has Krull dimension d. Then a sequence of elements θ1, . . . , θd in
k[Γ]1 is an l.s.o.p. for k[Γ] if and only if the following condition is satisfied [Sta96, Lemma 2.4(a)]:

(∗) For every face F ∈ Γ (or equivalently, for every facet F ∈ Γ), the restrictions θ1|F , . . . , θd|F span a
vector space of dimension |F |.

This characterization provides flexibility in constructing l.s.o.p.s in which the linear functions have specified
support, where the support of θ =

∑

aixi is supp(θ) := {vi : ai 6= 0}.

Lemma 2.2. Let S1, . . . , Sd be subsets of the vertices of Γ. Then there is an l.s.o.p. θ1, . . . , θd for k[Γ] such
that supp(θi) = Si for 1 ≤ i ≤ d if and only if, for every face F ∈ Γ,

(2) |{Si : Si ∩ F 6= ∅}| ≥ |F |.

Proof. The argument is similar to that given by Stanley in [Sta92, Corollary 4.4]. The necessity of (2) follows
immediately from (*). We now prove its sufficiency. Suppose S1, . . . , Sd are chosen such that (2) holds for
every F ∈ Γ. Let N = |S1| + · · · + |Sd|, and consider the space kN parametrizing tuples (θ1, . . . , θd) with
supp(θi) ⊂ Si. Fix F = {v1, . . . , vk} ∈ Γ. Let XF ⊂ kN parametrize the tuples whose restrictions to F
span a vector space of dimension |F |. Note that XF is Zariski open. By Hall’s Marriage Theorem, there is
a permutation σ ∈ Sd such that vi ∈ Sσ(i). If we set θσ(i) = xi for 1 ≤ i ≤ k, and θσ(i) = 0 for i > k, then

θ ∈ XF , and hence XF is nonempty. Also, the subset of kN where all coordinates are nonzero is Zariski
open and nonempty. Since k is infinite, the intersection of these nonempty Zariski open subsets of kN is
nonempty, and hence there is an l.s.o.p. θ1, . . . , θd with supp(θi) = Si. �

Let σ : Γ → 2V be a quasi-geometric homology triangulation, and let E ∈ Γ be a face.

Definition 2.3 ([Sta92, Ath12a]). A linear system of parameters θ1, . . . , θd for k[lkΓ(E)] is special if, for
each vertex v ∈ V with v 6∈ σ(E), there is an element θv of the l.s.o.p. such that supp(θv) consists of vertices
in lkΓ(E) whose carrier contains v, and such that θv 6= θv′ for v 6= v′.

In other words, after reordering so that σ(E)c = {v1, . . . , vb}, an l.s.o.p. for k[lkΓ(E)] is special if we can
order it θ1, . . . , θd such that

supp(θi) ⊂ {w ∈ lkΓ(E) : vi ∈ σ(w)},

for 1 ≤ i ≤ b. The existence of special l.s.o.p.s is well-known to experts and the proof is similar to Stanley’s
argument in the case E = ∅. For completeness, we provide a short proof.
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Proposition 2.4. Suppose k is infinite. Let σ : Γ → 2V be a quasi-geometric homology triangulation of a
simplex, and let E be a face of Γ. Then there is a special l.s.o.p. for k[lkΓ(E)].

Proof. Let V = {v1, . . . , vn}. After renumbering, we may assume that σ(E)c = {v1, . . . , vb}. Fix d = n−|E|.
Note that b ≤ d. We define subsets S1, S2, . . . , Sd of the vertices in lkΓ(E), as follows. For i ≤ b, let Si be
the set of vertices w such that vi ∈ σ(w). For i > b, let Si be the set of all vertices of lkΓ(E). Because σ
is quasi-geometric, for each face F of lkΓ(E), the union of the sets σ(w) ⊂ V , as w ranges over vertices of
E ⊔ F , has size at least |E| + |F |. It follows that |{i ≤ b : Si ∩ F 6= ∅}| ≥ |F | − (d − b). Since Sj ∩ F 6= ∅
for j > b, we conclude that |{i : Si ∩ F 6= ∅}| ≥ |F |. Hence, by Lemma 2.2, there is an l.s.o.p. θ1, . . . , θd for
k[lkΓ(E)] with supp(θi) = Si. �

3. A resolution of the local face module

In this section, we prove Theorem 1.2, giving an explicit resolution of the local face module L(Γ, E) by a
subcomplex of the Koszul resolution of k[lkΓ(E)]/(θ1, . . . , θd). We continue to use the notation established
above. In particular, σ : Γ → 2V is a quasi-geometric homology triangulation of the simplex with vertex set
V = {v1, . . . , vn}. We consider a face E ∈ Γ with d = n − |E| and b = n − |σ(E)|. After reordering, we
assume σ(E)c = {v1, . . . , vb}. For S ⊂ {v1, . . . , vd}, we consider the ideal IS ⊂ k[lkΓ(E)] given by

IS := (xF : σ(F ⊔ E)c ⊂ S).

Let θ1, . . . θd be a special l.s.o.p. for k[lkΓ(E)]. We may assume that

supp(θi) ⊂ {w ∈ lkΓ(E) : vi ∈ σ(w)},

for 1 ≤ i ≤ b. For any vi ∈ S, multiplication by θi gives a map λi : IS → ISr{vi}, and we consider the
complex of graded k[lkΓ(E)]-modules

(3) 0 → k[lkΓ(E)][−d] →
⊕

|S|=d−1

IS [−(d− 1)] → · · · →
⊕

|S|=1

IS [−1] → I → L(Γ, E) → 0,

in which the differential restricted to IS , for S = {vi0 , . . . , vik}, with i0 < · · · < ik, is ⊕k
j=0(−1)jλij .

Example 3.1. If E is an interior face of Γ then every l.s.o.p. is special, IS = k[lkΓ(E)] for all S, and (3) is
the Koszul resolution of L(Γ, E) = k[lkΓ(E)]/(θ1, . . . , θd).

Proof of Theorem 1.2. We must show (3) is exact. We begin by considering two complexes of k[lkΓ(E)]-
modules studied by Stanley and Athanasiadis. Recall that, for U ⊂ V , we write ΓU := σ−1(2U ).

Say U ⊃ σ(E) and U r σ(E) = {vi0 , . . . , vik}, with i0 < · · · < ik. For 0 ≤ j ≤ k, let ρj : k[lkΓU
(E)] →

k[lkΓUr{vij
}
(E)] be the restriction map. The first complex we consider is

(4) k[lkΓ(E)]
⊕

U⊃σ(E)
|U|=n−1

k[lkΓU
(E)]

⊕

U⊃σ(E)
|U|=n−2

k[lkΓU
(E)] · · · k[lkΓσ(E)

(E)] 0,

in which the differential restricted to k[lkΓU
(E)] is

⊕

j(−1)jρj . Next, we consider its quotient by (θ1, . . . , θd):

(5) k[lkΓ(E)]
(θ1,...,θd)

⊕

U⊃σ(E)
|U|=n−1

k[lkΓU
(E)]

(θ1,...,θd)

⊕

U⊃σ(E)
|U|=n−2

k[lkΓU
(E)]

(θ1,...,θd)
· · ·

k[lkΓσ(E)
(E)]

(θ1,...,θd)
0.

For any U ⊂ V , with U ⊃ σ(E), let SU be defined as

SU := (U ∩ {v1, . . . , vb}) ∪ {vb+1, . . . , vd}.
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Then dim k[lkΓU
(E)] = |SU | and it follows that the restriction of θi to lkΓU

(E) is nonzero if and only if
vi ∈ SU . Furthermore, {θi|lkΓU

(E) : vi ∈ SU} is a special l.s.o.p. for k[lkΓU
(E)]. Stanley and Athanasiadis

proved that both (4) and (5) are exact, and the kernel of the first arrow in (5) is L(Γ, E). (We will recall the
proofs below.) Using the additivity of Hilbert functions in exact sequences, they deduced that the Hilbert
function of L(Γ, E) satisfies (1) [Sta92, Ath12b].

With the goal of proving that (3) is exact, we take Koszul resolutions of each term in (5) to build a double
complex of k[lkΓ(E)]-modules. Since k[lkΓU

(E)] is Cohen-Macauley, the special l.s.o.p. {θi|lkΓU
(E) : vi ∈ SU}

is a regular sequence. Hence the corresponding Koszul complex K•
U

0 k[lkΓU
(E)]SU

⊕

S⊂SU

|S|=|SU |−1

k[lkΓU
(E)]S · · ·

⊕

S⊂SU

|S|=1

k[lkΓU
(E)]S k[lkΓU

(E)]
k[lkΓU

(E)]

(θ1,...,θd)
0,

is exact. Here, for a graded module M and a finite set S, we write MS := M [−|S|]. Replacing each term in
(5) with its corresponding Koszul resolution, gives a complex of complexes

(6) K•
V

⊕

U⊃σ(E)
|U|=n−1

K•
U

⊕

U⊃σ(E)
|U|=n−2

K•
U · · · K•

σ(E) 0,

which may be expanded as the commuting double complex shown in Figure 1. The columns of this complex
are exact by construction. We claim that the rows are also exact, and prove this using ideas from [Sta92,
Theorem 4.6]. First, we show that all rows except for the top row are exact. Choose a subset S of {v1, . . . , vd},
and consider the piece of the complex indexed by S:

(7) k[lkΓ(E)]S
⊕

S⊂SU

|U|=n−1

k[lkΓU
(E)]S

⊕

S⊂SU

|U|=n−2

k[lkΓU
(E)]S · · · 0.

When S = ∅, we obtain (4). Observe that the complex (7) is multigraded by N
m, where m is the number

of vertices of lkΓ(E). Explicitly, deg xα1
1 · · ·xαm

m = (α1, . . . , αm). Therefore it suffices to show exactness on
graded pieces. Fix α = (α1, . . . , αm). By the definition of the face ring, every term of (7) will have 0 in the
graded piece corresponding to α unless the set of vertices with αi 6= 0 forms a face F , in which case the
α-graded part can be identified with the augmented cochain complex of a simplex, indexed by all U that
contain σ(E) ∪ σ(F ) ∪ S, and hence is exact.

We now recall the proof that the top row of the double complex, (5), is exact.

k[lkΓ(E)]
(θ1,...,θd)

⊕

U⊃σ(E)
|U|=n−1

k[lkΓU
(E)]

(θ1,...,θd)

⊕

U⊃σ(E)
|U|=n−2

k[lkΓU
(E)]

(θ1,...,θd)
· · ·

k[lkΓσ(E)
(E)]

(θ1,...,θd)
0

The proof involves showing that the quotients of (4) by (θd, . . . , θd−(r−1)) is exact by induction on r. The
case of r = 0 is the exactness of the second row.

Now assume that (4) remains exact after quotienting by (θd, . . . , θd−(r−1)). Let C
i denote the ith term of

(4) tensored with k[lkΓ(E)]/(θd, . . . , θd−(r−1)). By the induction hypothesis, we have an exact sequence

C• : C0 → C1 → · · · → Cb → 0.

Set m = d− r. Recall that θi = 0 ∈ k[lkΓU
(E)] if vi /∈ SU , and that {θi|lkΓU

(E) : vi ∈ SU} is a special l.s.o.p.

for k[lkΓU
(E)]. Also, for σ(E) ⊂ U , vm /∈ SU if and only if vm /∈ U . Hence, we have an exact sequence

(8) 0 → B• → C• θm−−→ C• → C•/(θm) → 0,
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0 0 0 · · · 0

k[lkΓ(E)]
(θ1,...,θd)

⊕

U⊃σ(E)
|U|=n−1

k[lkΓU
(E)]

(θ1,...,θd)

⊕

U⊃σ(E)
|U|=n−2

k[lkΓU
(E)]

(θ1,...,θd)
· · ·

k[lkΓσ(E)
(E)]

(θ1,...,θd)
0

k[lkΓ(E)]
⊕

U⊃σ(E)
|U|=n−1

k[lkΓU
(E)]

⊕

U⊃σ(E)
|U|=n−2

k[lkΓU
(E)] · · · k[lkΓσ(E)

(E)] 0

⊕

|S|=1

k[lkΓ(E)]S
⊕

U⊃σ(E)
|U|=n−1

⊕

S⊂SU

|S|=1

k[lkΓU
(E)]S

⊕

U⊃σ(E)
|U|=n−2

⊕

S⊂SU

|S|=1

k[lkΓU
(E)]S · · ·

⊕

S⊂Sσ(E)

|S|=1

k[lkΓσ(E)
(E)]S 0

⊕

|S|=2

k[lkΓ(E)]S
⊕

U⊃σ(E)
|U|=n−1

⊕

S⊂SU

|S|=2

k[lkΓU
(E)]S

⊕

U⊃σ(E)
|U|=n−2

⊕

S⊂SU

|S|=2

k[lkΓU
(E)]S · · ·

⊕

S⊂Sσ(E)

|S|=2

k[lkΓσ(E)
(E)]S 0.

...
...

... · · ·
...

⊕

|S|=d−1

k[lkΓ(E)]S
⊕

U⊃σ(E)
|U|=n−1

k[lkΓ(E)]SU
0

k[lkΓ(E)]{v1,...,vd} 0

0

Figure 1. The double complex obtained by taking the Koszul resolution of (5).

where

Bi =
⊕

U⊃σ(E), |U|=n−i
vm 6∈U

k[lkΓU
(E)]/(θd, . . . , θm+1).

For example, when m > b, vm ∈ σ(E) and B• = 0. Up to signs and a degree shift, we can then identify
B• with the complex (4) for Γ|{vm}c quotiented by (θd, . . . , θm+1). Then B• is exact by the induction

hypothesis applied to Γ|{vm}c . By breaking (8) up into two short exact sequences we see that Hi(C•/(θm)) ∼=
Hi+2(B•) = 0 as desired.
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Now that we know the exactness of (6), let

A• = ker

(

K•
V →

⊕

U⊃σ(E)
|U|=n−1

K•
U

)

.

Then, by construction, we have an exact sequence of complexes

0 A• K•
V

⊕

U⊃σ(E)
|U|=n−1

K•
U

⊕

U⊃σ(E)
|U|=n−2

K•
U · · · K•

σ(E) 0.

As above, we repeatedly apply the long exact sequence on cohomology to see that A• is exact. We may then
identify A• with the exact sequence

0 → k[lkΓ(E)][−n] → ⊕|S|=d−1IS [−(n− 1)] → · · · → ⊕|S|=1IS [−1] → I → A0 → 0.

Since I surjects onto A0 and A0 ⊂ k[lkΓ(E)]/(θ1, . . . , θd), we conclude that A0 = L(Γ, E), as required. �

Remark 3.2. Let σ : Γ → 2V be a quasi-geometric homology triangulation of a simplex, and let E be a face
of Γ. Let F ∈ lkΓ(E) such that F ⊔ E is interior, and suppose that F = AF is an interior partition of F ,
i.e., with F1 = F2 = ∅. Suppose that F is not a U -pyramid. By Corollary 1.3, J is generated by elements
of the form θi · xF for F ⊔ E interior or θj · xG for some G with σ(G ⊔ E) = {vj}c. Because F is not a
U -pyramid, no monomial appearing in any of these generators divides xF , so xF is nonzero in L(Γ, E). This
proves Theorem 1.8 in the special case when F1 = F2 = ∅.

4. Functorial properties of local face modules

In this section, we prove Theorem 1.4, giving natural maps between local face modules. Consider a
quasi-geometric homology triangulation σ : Γ → 2V , and let E ⊂ E′ be faces of Γ.

Lemma 4.1. Let R be a graded k-algebra with R0 = k. Let {θ1, . . . , θn} be an l.s.o.p. for R[x1, . . . , xm],
where each xj has degree 1. Then there is a unique graded R-algebra isomorphism

φ : R[x1, . . . , xm]/(θ1, . . . , θn) → R/R ∩ (θ1, . . . , θn).

Moreover, any k-basis for R1 ∩ (θ1, . . . , θn) is an l.s.o.p. for R and generates R ∩ (θ1, . . . , θn).

Proof. Consider the exact sequence of k-linear maps

0 → R1 → R[x1, . . . , xm]1 → (x1, . . . , xm)1 → 0,

where the right hand map takes r +
∑

i αixi to
∑

i αixi, for any r ∈ R1 and αi ∈ k. This restricts to an
exact sequence of k-linear maps

0 → R1 ∩ (θ1, . . . , θn)1 → (θ1, . . . , θn)1 → (x1, . . . , xm)1 → 0,

where the surjectivity of the right-hand map follows from the fact that θ1, . . . , θn is an l.s.o.p. Hence, for
1 ≤ i ≤ m, we can write xi = ri + si, for some ri ∈ R1 and si ∈ (θ1, . . . , θn)1. For any R-algebra map
φ : R[x1, . . . , xm]/(θ1, . . . , θn) → R/R ∩ (θ1, . . . , θn), we must have that φ(xi) = ri, so there is a unique
such map. On the other hand, the R-algebra homomorphism defined by φ(xi) = ri is well-defined, since if
xi = r′i + s′i, for some r′i ∈ R1 and s′i ∈ (θ1, . . . , θn)1, then ri − r′i ∈ R1 ∩ (θ1, . . . , θn)1. Note that the unique
R-algebra homomorphism from R/R ∩ (θ1, . . . , θn) to R[x1, . . . , xm]/(θ1, . . . , θn) is the inverse of φ.

Since φ is an isomorphism and factors through R/(R1 ∩ (θ1, . . . , θn)1), we conclude that the R-ideal
R ∩ (θ1, . . . , θn) is generated in degree 1 and hence any k-basis for R1 ∩ (θ1, . . . , θn) is an l.s.o.p. for R. �
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Proof of Theorem 1.4. Note that Star(E′
rE) is the join of E′

rE with lkΓ(E
′). The face ring k[Star(E′

rE)]
is therefore a polynomial ring over k[lkΓ(E

′)]. Its Krull dimension is equal to d = dim k[lkΓ(E)], and hence
the restrictions θ′1, . . . , θ

′
d form an l.s.o.p., where θ′i := θi|Star(E′

rE). By Lemma 4.1, there is a unique graded
k[lkΓ(E

′)]-algebra homomorphism k[Star(E′
rE)]/(θ′1, . . . , θ

′
d) → k[lkΓ(E

′)]/(k[lkΓ(E
′)]∩(θ′1, . . . , θ

′
d)), which

lifts to the unique homomorphism φ in the statement of the theorem. It remains to construct a special l.s.o.p.
for k[lkΓ(E

′)] with the specified properties.
After reordering, we may assume that

σ(E)c = {v1, . . . , vb}, supp(θi) ⊂ {w : vi ∈ σ(w)}, for 1 ≤ i ≤ b, and σ(E′)c = {v1, . . . , vb′}.

Note, in particular, that θ′i is supported on vertices in the link of E′, for 1 ≤ i ≤ b′. By Lemma 4.1, any
k-basis for k[lkΓ(E

′)] ∩ (θ′1, . . . , θ
′
d) is an l.s.o.p. for k[lkΓ(E

′)]. Set ζi = θi|lkΓ(E′), for 1 ≤ i ≤ b′, and note
that {ζ1, . . . , ζb′} is linearly independent. Extending this independent set to a basis produces a special l.s.o.p.
for k[lkΓ(E

′)]. It remains to verify that φ(L(Γ, E)) ⊂ L(Γ, E′). Let F ∈ lkΓ(E) be a face with F ⊔E interior.
If F is not in Star(E′

r E), then φ(xF ) = 0. Otherwise, F can be written uniquely as the join of possibly
empty faces F1 ⊂ E′

rE and F2 ∈ lkΓ(E
′). Then F2⊔E′ is interior, and φ(xF ) = φ(xF1 )xF2 ∈ (xF2 ). Hence

φ(xF ) ∈ L(Γ, E′), as required. �

Proof of Theorem 1.6. Let E ⊂ E′ be faces of a quasi-geometric homology triangulation Γ of a simplex, and
assume that σ(E) = σ(E′). It is enough to show that the induced map φ : L(Γ, E) → L(Γ, E′) given by
Theorem 1.4 is surjective. Note that L(Γ, E′) is generated by the monomials xF such that F ∈ lkΓ(E

′) and
F ⊔ E′ is interior. If F is such a face, then it is also in the link of E and, since σ(E) = σ(E′), the face
(F ⊔E) < (F ⊔ E′) is also interior. Then φ(xF ) = xF , and the theorem follows. �

5. Restrictions of local face modules

In this section, we use the resolution found in Theorem 1.2 to show that the vanishing of a local face
module L(Γ, E) implies the vanishing of a restricted local face module L(Γ,AF ⊔E)|F1⊔F2 , for certain interior
partitions F1 ⊔F2 ⊔AF . We then develop algebraic arguments, inspired by ideas from [dMGP+20], to show
that F being a U -pyramid is necessary for the vanishing of the restricted local face module when |F1| ≤ 2
and thus prove Theorem 1.8.

We use the notation introduced in the introduction. Let ∆ be a subcomplex of lkΓ(E). For any k[lkΓ(E)]-
module M , the restriction of M to ∆ is M |∆ := M ⊗k[lkΓ(E)] k[∆], where k[∆] is a k[lkΓ(E)]-module via
the restriction map. By the resolution of L(Γ, E) in Theorem 1.2 and the right exactness of tensoring with
k[∆], we have an exact sequence

(9)
⊕

|S|=1

IS |∆[−1] → I|∆ → L(Γ, E)|∆ → 0.

Recall from Corollary 1.3 that L(Γ, E) ∼= I/J , where J is the ideal generated by {θix
F : F ⊔ E is interior}

and {θjxG : σ(G ⊔ E) = {vj}c}. Hence, L(Γ, E)|∆ ∼= I|∆/J |∆, where I|∆, J |∆ are the k[∆]-ideals

(10) I|∆ = (xH : H ⊂ ∆, σ(H ⊔ E) = V ),

(11) J |∆ = (θ1|∆, . . . , θd|∆) · I|∆ + (θj |∆x
G : G ⊂ ∆, σ(G ⊔ E) = {vj}

c).

For example, if F is a face of lkΓ(E), then k[F ] is a polynomial ring with variables indexed by the vertices
of F , and L(Γ, E)|F is identified with a quotient of ideals in this polynomial ring.
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Lemma 5.1. Let σ : Γ → 2V be a quasi-geometric homology triangulation of a simplex, and let E be a face
of Γ. Let F ∈ lkΓ(E) be a face with F ⊔ E interior. Assume that F is not a U -pyramid. Then there is a
surjective graded k[F ]-module homomorphism

L(Γ, E)|F → L(Γ,AF ⊔ E)|FrAF
[−|AF |],

where the second term is a k[F ]-module via the restriction map k[F ] 7→ k[F rAF ].

Proof. If ∆ is a subcomplex of lkΓ(E) contained in the closed star of AF , then xAF is a non-zero divisor in
k[∆]. In particular, xAF is a non-zero divisor in k[F ] (this is also clear since k[F ] is a polynomial ring). Note
that every face of F with carrier codimension at most 1 contains AF . Thus I|F = xAF ·M and J |F = xAF ·N ,
where M and N are the ideals in k[F ]

M = (xH : H ⊂ F rAF , σ(H ⊔ AF ⊔ E) = V ),

N = (θ1|F , . . . , θd|F ) ·M + (θj |Fx
G : G ⊂ F rAF , σ(G ⊔ AF ⊔ E) = {vj}

c).

Then we have surjective graded k[F ]-module homomorphisms

I|F /J |F → M/N [−|AF |] → M |FrAF
/N |FrAF

[−|AF |],

where the first map is the isomorphism taking xAF xH 7→ xH and the second map is restriction. Finally the
right hand term can be identified with L(Γ,AF ⊔ E)|FrAF

[−|AF |]. �

We will derive Theorem 1.8 from the following more technical statement.

Theorem 5.2. Let σ : Γ → 2V be a quasi-geometric homology triangulation, and let E be a face. Let
F ∈ lkΓ(E) be a face with F ⊔E interior. Suppose AF = ∅ and F admits an interior partition F = F1 ⊔F2.
Assume that F has no faces G with G ⊔ E interior and |G| < |F1|. If |F1| ≤ 2, then L(Γ, E)|F is non-zero
in degree |F1|.

Example 5.3. The conclusion of Theorem 5.2 can fail when |F1| ≥ 3, even for AF = E = ∅. Consider a
geometric triangulation σ : Γ → 2V , where V = {v1, . . . , v6} with a face F = {w1, . . . , w6} such that

σ(w1) = {v1, v3, v6} σ(w2) = {v1, v4, v5} σ(w3) = {v2, v3, v5}
σ(w4) = {v2, v4, v6} σ(w5) = {v3, v4, v5} σ(w6) = {v3, v5, v6}

Then AF = ∅, and F admits an interior partition given by F1 = {w1, w4, w5}, F2 = {w2, w3, w6}. Then (9)
gives generators and relations for L(Γ, ∅)|F , and a linear algebra computation shows that L(Γ, ∅)|F = 0.

Before proceeding with the proof of Theorem 5.2, we show how Theorem 1.8 follows from it.

Proof of Theorem 1.8. We may assume that F = F ′
1⊔F ′

2⊔AF is an interior partition of F with |F ′
1| minimal

among all possible interior partitions of F . In particular, if |F ′
1| = 2, then there is no vertex v ∈ F r AF

such that {v} ⊔ AF ⊔ E is interior, as then {v} ⊔ (F ′
1 ⊔ F ′

2 r {v}) ⊔ AF would be an interior partition.
Hence there are no faces G of F rAF with G ⊔AF ⊔E interior and with cardinality smaller than |F ′

1|. By
Theorem 5.2, L(Γ,AF ⊔ E)|F ′

1⊔F ′
2
is non-zero in degree |F ′

1|. Then, by Lemma 5.1, L(Γ, E) is nonzero in
degree |F ′

1|+ |AF |. �

We now proceed with the proof of Theorem 5.2. We begin with a series of three lemmas. Inspired by the
results of [dMGP+20] in the case E = ∅, we consider the internal edge graph of a subcomplex ∆ ⊂ lkΓ(E).
This is the graph contained in the 1-skeleton of lkΓ(E) consisting of edges e ⊂ ∆ with e ⊔E interior.

Lemma 5.4. Assume σ(E) has codimension at least 2. Let ∆ be a subcomplex of lkΓ(E), and assume ∆
has no vertices v with {v} ⊔ E interior. If L(Γ, E)|∆ is zero in degree 2, then each connected component of
the internal edge graph of ∆ satisfies one of the following.
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(1) The component is a tree, and it has at most one vertex v with {v} ⊔ E having carrier codimension
more than 1.

(2) The component has a unique cycle, and the carrier codimension of {w} ⊔ E is equal to 1 for every
vertex w in the component.

Proof. From (9), we have the following exact sequence for the degree 2 part of L(Γ, E)|∆.
⊕

|S|=1

(IS)1 ⊗k[lkΓ(E)] k[∆] → I2 ⊗k[lkΓ(E)] k[∆] → (L(Γ, E)|∆)2 → 0.

Because (L(Γ, E)|∆)2 = 0, the first map in the above complex is surjective. As ∆ has no vertices v with
{v} ⊔E interior, we see that

(12) (xe : e ⊂ ∆, e ⊔ E is interior )2 = (x{v}θi : v ⊂ ∆, σ({v} ⊔ E) = {vi}
c)2.

Thus the number of edges e with e ⊔ E interior is less than or equal to the number of vertices w with the
carrier codimension of {w} ⊔E equal to 1. If σ({v} ⊔E) = {vi}c and θi =

∑

wj
ai,jx

{wj}, then

x{v}θi =
∑

{v,wj}⊔E interior

ai,jx
{v,wj}.

In particular, both vector spaces in (12) naturally decompose into a direct sum of vector spaces indexed
by the connected components of the internal edge graph. Therefore, in each connected component of the
internal edge graph, the number of edges e with e⊔E interior is less than or equal to the number of vertices
v with {v} ⊔ E of carrier codimension 1. As the only connected graphs (V,E) where |E| ≤ |V | are either
trees or contain a unique cycle, the result follows. �

Lemma 5.5. Assume σ(E) has codimension at least 2. Let F ⊂ lkΓ(E) be a face. Assume F has no vertices
v with {v} ⊔E interior. If L(Γ, E)|F is zero in degree 2, then no component of the internal edge graph of F
contains a cycle of length 4.

Proof. Suppose a component of the internal edge graph contains a 4-cycle of vertices F = {t1, t2, u1, u2}.
By Lemma 5.4, this is the unique cycle in this component and every vertex w ∈ F has {w} ⊔ E of carrier
codimension 1. Because F is a face and there are no 3-cycles in this component of the internal edge graph,
we may assume that σ({ti} ⊔ E) = {v1}c and σ({ui} ⊔ E) = {v2}c. Restricting to F and using that
(L(Γ, E)|F )2 = 0, we have that

(x{t1,u1}, x{u1,t2}, x{t2,u2}, x{u2,t1}) = (x{t1}θ2, x
{t2}θ2, x

{u1}θ1, x
{u2}θ1).

The relation θ1θ2 − θ2θ1 = 0 expands into a relation between the generators of the right-hand side. But the
left-hand side is 4-dimensional, a contradiction. �

Lemma 5.6. Assume σ(E) has codimension 1. Let ∆ ⊂ lkΓ(E) be a subcomplex. Then

dim(L(Γ, E)|∆)1 ≥ |{v ∈ ∆ : {v} ⊔ E interior}| − 1.

Proof. By considering the degree 1 part of (9), as the codimension of σ(E) is 1, we get the following exact
sequence.

k
⊕

w∈∆
{w}⊔E interior

k · xw (L(Γ, E)|∆)1 0,

and the result follows. �
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Proof of Theorem 5.2. We must show that L(Γ, E)|F is non-zero in degree |F1|. Recall that L(Γ, E)|F is
isomorphic to I|F /J |F , where I|F and J |F are described in (10) and (11) respectively. First we handle the
cases when |F1| ≤ 1. If F1 = ∅, then E is interior and x∅ = 1, but J |F is a proper ideal as it is generated by
elements of positive degree, so xF1 6∈ J |F . If F1 = {v}, then we assume that E is not an interior face. Then
J |F is generated by elements of degree at least 2, so xF1 6∈ J |F .

Suppose |F1| = 2. We assume that there are no vertices v with {v} ⊔ E interior and E is not interior.
If σ(E) has codimension 1, then both F1 and F2 must have a vertex v with {v} ⊔ E interior. Then by
Lemma 5.6, we see that dimL(Γ, E)|F ≥ 1. Hence we may assume that σ(E) has codimension at least 2.

Let F1 = {u, t} and assume that L(Γ, E)|F has no non-zero elements in degree 2. Consider the connected
component of the internal edge graph containing F1. By Lemma 5.4, we may assume that σ({u}⊔E) = {v1}c.
Note that v1 ∈ σ(t). There is a vertex t′ ∈ F2 such that v1 ∈ σ(t′), so {u, t′}⊔E is interior. Therefore either
{t} ⊔ E or {t′} ⊔ E has carrier codimension 1.

If σ({t} ⊔ E) = {v2}c, then there is a vertex u′ ∈ F2 such that v2 ∈ σ(u′). First assume u′ and t′ are
distinct. Since at least one of {u′} ⊔E and {t′} ⊔E has carrier codimension 1, it follows that {u′, t′} ⊔E is
interior. Then {u, t, u′, t′} forms a 4-cycle, contradicting Lemma 5.5.

If u′ = t′, then the internal edge graph contains a cycle and hence every vertex w in it (including t) has
{w}⊔E of carrier codimension 1. As F2 is interior and {u′}⊔E has carrier codimension 1, there is a vertex
w ∈ F2 such that {u′, w} ⊔ E is interior. But then either {u,w} ⊔ E or {t, w} ⊔ E is interior, contradicting
the uniqueness of the cycle in Lemma 5.4.

If {t} ⊔ E does not have carrier codimension 1, then we may assume that σ({t′} ⊔ E) = {v2}c. Choose
a vertex u′ ∈ F2 with v2 ∈ σ(u′). Then {t′, u′} ⊔ E is interior, so {u′} ⊔ E has carrier codimension 1. If
v1 ∈ σ(u′), then {u, u′}⊔E is interior. If v1 6∈ σ(u′), then {t, u′}⊔E is interior. In either case, there is a cycle
and a vertex v with {v} ⊔ E of carrier codimension more than 1 in the internal edge graph, contradicting
Lemma 5.4. �

Remark 5.7. One can use the same overall strategy more generally to show that other combinatorial types of
faces cannot appear in triangulations with vanishing local h-vectors. For instance, suppose V = {v1, . . . , v6}
and σ : Γ → 2V is a geometric triangulation with a facet F = {w1, . . . , w6} such that

σ(w1) = {v1} σ(w2) = {v2} σ(w3) = {v3}
σ(w4) = {v1, v4, v5} σ(w5) = {v2, v4, v6} σ(w6) = {v3, v5, v6}

Then the interior 2-faces of F are {w1, w5, w6}, {w2, w4, w6}, {w3, w4, w5}, and {w4, w5, w6}. But F has no
interior vertices or edges, and it has only three edges with carrier codimension one, namely {w4, w5}, {w4, w6},
and {w5, w6}. Thus L(Γ, ∅)|F is non-zero in degree three. Note that F is not a pyramid and does not admit
an interior partition.
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