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THE BERGMAN FAN OF A POLYMATROID
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AND BOTONG WANG

Abstract. We introduce the Bergman fan of a polymatroid and prove that

the Chow ring of the Bergman fan is isomorphic to the Chow ring of the
polymatroid. Using the Bergman fan, we establish the Kähler package for

the Chow ring of the polymatroid, recovering and strengthening a result of

Pagaria–Pezzoli.

1. Introduction

By definition, amatroid on a finite set E is given by a rank function rk: 2E → Z≥0

satisfying the following for all subsets A1, A2 ⊆ E:

(Submodularity) rk(A1 ∪A2) + rk(A1 ∩A2) ≤ rk(A1) + rk(A2).
(Monotonicity) If A1 ⊆ A2, then rk(A1) ≤ rk(A2).
(Boundedness) The rank of a subset is at most its cardinality.
(Normalization) The rank of the empty subset is zero.

Sans “boundedness”, the axioms above define a polymatroid. Throughout this pa-
per, we assume that the polymatroid is loopless:

(Looplessness) The rank of any nonempty subset is nonzero.

If P is a polymatroid on E, then its rank is rk(P ) := rk(E). A flat of P is a subset
F ⊆ E that is maximal among sets of its rank. Ordered by inclusion, the flats of
P form a lattice LP .

1 The intersection of two flats is a flat, so any subset A of E
is contained in a unique minimal flat clP (A), called the closure of A in P , which is
obtained by intersecting all flats that contain A.

Matroids are combinatorial abstractions of hyperplane arrangements, and more
generally, polymatroids are combinatorial abstractions of subspace arrangements.

Example 1.1. Let V1, . . . , Vn be linear subspaces of a vector space V over a field
F. There is a polymatroid P on the set E = {1, . . . , n} defined by the rank function

rk(A) := codimV (∩i∈AVi).

The polymatroid P is a matroid if and only if every Vi is a hyperplane. The map
F 7→ ∩i∈FVi is a bijection between the flats of P and the subspaces of V obtained
by intersecting some of the Vi’s. A polymatroid arising in this way is said to be
realizable over F, and the subspace arrangement is called a realization of P over F.

Much of a hyperplane arrangement’s combinatorial data is captured by intersec-
tion theory on its wonderful compactification [5]. To extend this from hyperplane

1Unlike in the case of matroids, the lattice of flats of a polymatroid can fail to be graded or
atomic.
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arrangements to non-realizable matroids, one must replace the wonderful compact-
ification with a combinatorial object, the Bergman fan of a matroid. The purpose
of the present paper is to introduce the Bergman fan of a polymatroid, a combi-
natorial model for the wonderful compactification of a subspace arrangement. As
in the case of matroids, the Bergman fan of a polymatroid is a tropical variety of
degree one. In Section 4, we show that the Chow ring of a polymatroid satisfies
the Kähler package with respect to any strictly convex piecewise linear function on
its Bergman fan, recovering and strengthening a result of Pagaria and Pezzoli [15,
Theorems 4.7 and 4.21].

Our construction of the Bergman fan is inspired by a geometric observation:
over an infinite field, the wonderful compactification of any subspace arrangement
can be realized as the wonderful compactification of a hyperplane arrangement,
taken with respect to an appropriate building set (Remark 3.5). The construction
immediately reveals that the Bergman fan of a polymatroid and the Bergman fan
of the associated matroid have the same support. Thus, the Kähler package for the
polymatroid follows from that of the associated matroid [1] and the general fact
that the validity of the Kähler package for the Chow ring of a fan depends only on
the support of the fan [2].

1.1. The Bergman fan of a Boolean polymatroid. An important special case

is that of Boolean polymatroids. Let π : Ẽ → E be a surjective map between finite
sets. The Boolean polymatroid B(π) on E is defined by the rank function

rkB(π)(A) = |π−1(A)| for A ⊆ E.

We write NẼ for ZẼ/Z(1, 1, . . . , 1), and for S ⊆ Ẽ, write eS for
∑

i∈S ei in NẼ ⊗R.

Definition 1.2. The Bergman fan ΣB(π) of the Boolean polymatroid B(π) is the
fan in NẼ ⊗ R with cones

σF,S := cone(eπ−1(F1), . . . , eπ−1(Fk)) + cone(ei)i∈S ,

for every chain F = {∅ ⊊ F1 ⊊ F2 ⊊ · · · ⊊ Fk ⊊ E} and subset S of Ẽ not
containing any fiber of π.

Throughout the paper, we write n for the cardinality of E.

Definition 1.3. An ordered transversal of π is a sequence s1, . . . , sn of elements

of Ẽ such that each fiber of π contains exactly one element of the sequence. The

polypermutohedron Q(π) is the convex hull of the vectors
∑n

i=1 iesi in RẼ , where
s1, . . . , sn range over all ordered transversals of π.

In Appendix A, we show ΣB(π) is the inner normal fan of the polypermutohedron
Q(π). Definition 1.2 implies that ΣB(π) is a complete unimodular fan in NẼ .

Example 1.4. If π is a bijection, an ordered traversal of π is a permutation of Ẽ,

and Q(π) is the standard permutohedron in RẼ . This recovers a familiar fact: the
Bergman fan of the Boolean matroid is the normal fan of the permutohedron.

Example 1.5. When E is a singleton, an ordered transversal of π is an element

Ẽ, and Q(π) is the standard simplex in RẼ . Thus, the Bergman fan of a Boolean
polymatroid on a singleton is the normal fan of the standard simplex.
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Example 1.6. When |E| = n− 1 and all fibers of π have size d, the toric variety
corresponding to ΣB(π) is a generalization of the Losev–Manin space of curves which

compactifies the moduli space of configurations of n points in Ad up to translation
and scaling [9, Corollary 5.6].

1.2. The Bergman fan of a polymatroid. Let P be a polymatroid on E, and

let π : Ẽ → E be a surjective map satisfying rkP (i) = |π−1(i)| for every i in E.

Definition 1.7. The Bergman fan ΣP is the subfan of ΣB(π) with cones given by

σF,S := cone(eπ−1(F1), . . . , eπ−1(Fk)) + cone(ei)i∈S ,

one for every chain of flats F = {∅ = F0 ⊊ F1 ⊊ F2 ⊊ · · · ⊊ Fk ⊊ E} of P and a

subset S of Ẽ such that rkP (Fi ∪ π(T )) > rkP (Fi) + |T | for all 0 ≤ i ≤ k and all
nonempty T ⊆ S \ π−1(Fi).

The Bergman fan ΣP is unimodular with respect to NẼ , defining a smooth toric
variety XP over C. We write A(ΣP ) for the Chow ring of XP . We relate A(ΣP ) to
the Chow ring of the polymatroid P (Definition 4.1), denoted DP(P ), introduced
in [15, Section 4]. Our main result states the following.

Theorem 4.2. There is a natural isomorphism of graded rings DP(P ) ∼= A(ΣP ).

In Corollary 4.3, we use Theorem 4.2 to recover a Gröbner basis for DP(P ) found
in [15]. In Corollary 4.7, we prove the Kähler package for A(ΣP ) with respect to the
cone of strictly convex piecewise linear function on ΣP , extending the Kähler pack-
age for DP(P ) with respect to the σ-cone in [15]. See Remark 4.8 for a comparison
of the two cones.

1.3. Building sets. In fact, our results hold for polymatroids P equipped with
a geometric building set G (Section 3). The statements above are specializations
of our results to the case when G consists of all nonempty flats of P . In maximal
generality, we define the Bergman fan of (P,G), denoted ΣP,G (Definition 3.6). The
Chow ring DP(P,G) associated to (P,G) was introduced in [15], and it is isomorphic
to A(ΣP,G) (Theorem 4.2). All corollaries continue to hold, including the Kähler
package for DP(P,G).

Example 1.8. Let P be the polymatroid on E = {a, b, c} with flats (depicted in
Fig. 1) satisfying rkP (a) = rkP (b) = 1, rkP (ab) = rkP (c) = 2, and rkP (abc) = 3.

Define π : Ẽ = {a, b, c1, c2} → E by π(a) = a, π(b) = b, and π(ci) = c. The

Bergman fan ΣP is a pure 2-dimensional simplicial fan in RẼ/R(1, 1, 1, 1) with rays
generated by the vectors

ea, eb, ec1 , ec2 , eab, ec1c2

and 2-dimensional cones

σ{c},c1 = cone(ec1c2 , ec1), σ{c},c2 = cone(ec1c2 , ec2)

σ{a},c1 = cone(ea, ec1), σ{a},c2 = cone(ea, ec2)

σ{b},c1 = cone(eb, ec1), σ{b},c2 = cone(eb, ec2)

σ{a⊂ab},∅ = cone(ea, eab), σ{b⊂ab},∅ = cone(eb, eab)

In Section 3, we will come to understand ΣP as the nested set fan (Section 3) of a

matroid P̃ , called the multisymmetric lift of P (Definition-Proposition 2.11), with

respect to a building set G̃ constructed from the maximal building set of P .
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Figure 1. The lattice of flats of P (left), and of its multisymmet-

ric lift P̃ (right). The symmetric group of order 2 acts on P̃ by
swapping c1 and c2, and the “geometric” flats invariant under this
action (drawn in blue) are precisely the sets of the form π−1(F )

with F a flat of P . Elements of the building set G̃ for P̃ are un-
derlined.

Organization. In Section 2, we develop the combinatorics of multisymmetric ma-
troids and lifts, a key tool throughout this paper. We use lifts to define the Bergman
fan of a polymatroid (with respect to a geometric building set) in Section 3. Fi-
nally, in Section 4, we show that the Chow ring of the Bergman fan agrees with the
polymatroid Chow ring of [15] and derive consequences. Examples 1.1 and 2.12,
and Remarks 3.5, 3.12, and 4.6 explain the geometry underlying this work.

Acknowledgements. We thank Spencer Backman for comments and conversa-
tions. The second author is partially supported by a Simons Investigator Grant
and NSF Grant DMS-2053308, the third is supported by an NDSEG fellowship,
and the last is supported by a Sloan fellowship.

2. Multisymmetric matroids

Many proofs in Section 4 reduce statements about polymatroids to known state-
ments about matroids. The key tool for this reduction is multisymmetric matroids,
a new cryptomorphic formulation of polymatroids. Let SẼ denote the symmetric

group on a finite set Ẽ. We continue to assume that all (poly)matroids are loopless.

Definition 2.1. A multisymmetric matroid is a matroid M on Ẽ equipped with

a partition Ẽ = Ẽ1 ⊔ · · · ⊔ Ẽn such that the action of Γ = SẼ1
× · · · ×SẼn

on Ẽ

takes flats to flats. The geometric part of a subset S ⊆ Ẽ is Sgeo := ∩γ∈Γ(γ · S).
We call a subset S ⊆ Ẽ geometric if S = Sgeo.

For a multisymmetric matroid M , we write LΓ
M for its poset of geometric flats.

Example 2.2. Any matroid M on Ẽ can be given the trivial multisymmetric
structure by setting Γ =

∏
e∈Ẽ S{e}. In this case, LΓ

M = LM .

Example 2.3. If M is multisymmetric on Ẽ = Ẽ1, then M is a uniform matroid,

and LΓ
M is {∅, Ẽ}.

Example 2.4. Let Ẽ be the set of edges of the complete graph K4, and let M be
the graphic matroid of K4. No transposition of SẼ preserves the flats of M , so M
has no non-trivial multisymmetric structures.
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Closure in a multisymmetric matroid is restricted by the group action.

Lemma 2.5. If M is multisymmetric and S ⊆ Ẽ is geometric, clM (S) is geometric.

Proof. If S ⊆ Ẽ is geometric and γ ∈ Γ, γ · clM (S) = clM (γ · S) = clM (S). □

Corollary 2.6. If M is multisymmetric, then the geometric flats of M form a
sublattice of LM .

Proof. If F and G are two geometric flats, then clM (F ∪ G) is geometric by
Lemma 2.5. The intersection of two geometric flats is also geometric. In other
words, the set of geometric flats is closed under both join and meet, and therefore
forms a sublattice of LM . □

Corollary 2.7. If M is multisymmetric on Ẽ = Ẽ1 ⊔ · · · ⊔ Ẽn, then LΓ
M is the

lattice of flats of the polymatroid P on the set of indices E = {1, . . . , n} defined by

the rank function rkP (A) := rkM (∪i∈AẼi).

Proof. Define π : Ẽ → E by setting π−1(i) = Ẽi. If F is a flat of P , then for all
F ⊊ A ⊆ {1, . . . , n},

rkM (π−1(F )) = rkP (F ) < rkP (A) = rkM (π−1(A)).

By Lemma 2.5, clM (π−1(F )) is geometric, so we conclude that clM (π−1(F )) =
π−1(F ). In other words, π−1(F ) is a flat of M . Conversely, if F is not a flat of
P , then rkP (F ) = rkP (F ∪ i) for some i not in F . This implies clM (π−1(F )) ⊇
π−1(F ∪ i), so π−1(F ) is not a flat of M . Therefore, F is a flat of P if and only if
π−1(F ) is a geometric flat of M , and we have an isomorphism of lattices

LP −→ LΓ
M , F 7−→ π−1(F ). □

Lemma 2.8. Let M be a multisymmetric matroid on Ẽ = Ẽ1 ⊔ · · · ⊔ Ẽn.

(i) If S ⊆ Ẽ, then either clM (S) ∩ Ẽi = Ẽi or clM (S) ∩ Ẽi = S ∩ Ẽi.

(ii) If F is a flat of M , then rkM (F ) = rkM (F geo) + |F \ F geo|.

Proof. A permutation of Ẽi \ S induces an automorphism of M that fixes S. Any
such automorphism also fixes clM (S) because automorphisms commute with clo-

sure. Hence, if (Ẽi \ S) ∩ clM (S) is nonempty, then Ẽi ⊆ clM (S). This proves (i).
To prove (ii), let {s1, . . . , sk} = F \ F geo. If (ii) fails then for some 1 ≤ i ≤ k,

rkM (F geo ∪ {s1, . . . , si}) = rkM (F geo ∪ {s1, . . . , si+1}).

Therefore if si+1 ∈ Ẽj then Ẽj ⊆ clM (F geo ∪ {s1, . . . , si}) ⊆ F by the first part.
Consequently, si+1 ∈ F geo, a contradiction. □

Lemma 2.9. A multisymmetric matroid is determined by its geometric sets and
their ranks.

Proof. Let M and M ′ be two multisymmetric matroids on Ẽ = Ẽ1 ⊔ · · · ⊔ Ẽn, and

suppose that for all A ⊆ {1, . . . , n}, rkM (∪i∈AẼi) = rkM ′(∪i∈AẼi). If F is a flat of
M , and F ′ is the closure of F in M ′, then

rkM ′(F ) ≤ rkM ′(F geo) + rkM ′(F \ F geo) ≤ rkM (F geo) + |F \ F geo| = rkM (F )

by Lemma 2.8(ii). Symmetrically, rkM (F ′) ≤ rkM ′(F ′), so

rkM ′(F ) ≤ rkM (F ) ≤ rkM (F ′) ≤ rkM ′(F ′).
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The left- and rightmost terms are equal, so F = F ′ because F is a flat of M . This
shows that M and M ′ have the same flats, and that their flats have the same ranks,
so M and M ′ are equal. □

Remark 2.10. The closure of a geometric set is a geometric flat by Lemma 2.8(i),
so Lemma 2.9 implies that a multisymmetric matroid is also determined by its
geometric flats and their ranks.

2.1. Lifts. Let P be a polymatroid on E = {1, . . . , n} and M a multisymmetric

matroid on Ẽ = Ẽ1 ⊔ · · · ⊔ Ẽn. If P is the polymatroid given by Corollary

2.7, then we say that M is a multisymmetric lift of P . If rkM (Ẽi) = |Ẽi| for all
1 ≤ i ≤ n, then we say that M is a minimal multisymmetric lift of P .

Definition-Proposition 2.11. A polymatroid P has a unique minimal multisym-

metric lift P̃ constructed as follows. For 1 ≤ i ≤ n, let Ẽi = {1, . . . , rkP (i)}, and
Ẽ = Ẽ1 ⊔ · · · ⊔ Ẽn. Define the projection π : Ẽ → E by π−1(i) = Ẽi.

The minimal multisymmetric lift of P is the matroid P̃ on Ẽ with rank function

rkP̃ (S) = min{rkP (A) + |S \ π−1(A)| : A ⊆ E}.

Example 2.12. Suppose P is the polymatroid realized by an arrangement of sub-

spaces V1, . . . , Vn in V as in Example 1.1. The minimal multisymmetric lift P̃ is
realized by any hyperplane arrangement

{Vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ rkP (i)},

where Vi,1, . . . , Vi,rkP (i) are generic hyperplanes containing Vi. Here, we assume

that the vector space is defined over an infinite field. The flats of P̃ are in bijection
with the subspaces that can be obtained by intersecting some of the hyperplanes
Vi,j . Under this bijection, the geometric flats correspond to intersections of any
collection of Vi’s.

Versions of the construction in Definition-Proposition 2.11 make many indepen-
dent appearances in the literature, for example, in [10, §2] and [11, Propositions
3.1 and 3.2]. The most complete treatment we are aware of is [13, §2], whose
terminology differs from ours.

Notation. We continue to use the notations of Definition-Proposition 2.11 in the

remainder of this section. For visual clarity, we often write M = P̃ . As usual, Γ
stands for the product of symmetric groups that acts on M .

Proposition 2.13. The minimal lift M = P̃ is multisymmetric. Explicitly,

(i) rkM is a matroid rank function, and

(ii) the action of Γ preserves flats.

Proof. The proof of the first part is reproduced from [14, Proof of Theorem 11.1.9].
We need to check that rkM is non-negative, increasing, submodular, and satisfies

rkM (S) ≤ |S| for S ⊆ Ẽ.

Clearly values of rkM are non-negative. Let S ⊆ Ẽ and s ∈ Ẽ \S. For all A ⊆ E,

rkP (A) + |S \ π−1(A)| ≤ rkP (A) + |S ∪ s \ π−1(A)|,
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so rkM is increasing. Moreover, by induction on |S|,

rkM (S ∪ s) =min{rkP (A) + |S ∪ s \ π−1(A)| : A ⊆ E}
≤min{rkP (A) + |S \ π−1(A)| : A ⊆ E}+ 1

= rkM (S) + 1 ≤ |S|+ 1 = |S ∪ s|,

so it only remains to check that rkM is submodular. Let S1, S2 ⊆ Ẽ and A1, A2 ⊆ E
such that rkM (Si) = rkP (Ai) + |Si \ π−1(Ai)|. Then

rkM (S1) + rkM (S2) = rkP (A1) + |S1 \ π−1(A1)|+ rkP (A2) + |S2 \ π−1(A2)|
≥ rkP (A1 ∪A2) + rkP (A1 ∩A2)

+ |S1 \ π−1(A1)|+ |S2 \ π−1(A2)| by submodularity of rkP

≥ rkP (A1 ∪A2) + rkP (A1 ∩A2)

+ |(S1 ∪ S2) \ π−1(A1 ∪A2)|+ |(S1 ∩ S2) \ π−1(A1 ∩A2)|
≥ rkM (S1 ∪ S2) + rkM (S1 ∩ S2).

For the second part, let γ ∈ Γ and S ⊆ Ẽ. For any subset A ⊆ E, we have that
|S \ π−1(A)| = |(γ · S) \ π−1(A)|, and hence rkM (S) = rkM (γ · S). □

The following lemma implies P̃ is a multisymmetric lift of P .

Lemma 2.14. Fix notation as in Definition-Proposition 2.11, and set M := P̃ . If

S ⊆ Ẽ is stable under Γ, then rkM (S) = rkP (π(S)).

Proof. Since S is stable under the action of Γ, S is a union of fibers of π. Hence,

rkM (S) =min{rkP (A) + |S \ π−1(A)| : A ⊆ E} by the definition of rkM

=min{rkP (A) + |S \ π−1(A)| : A ⊆ π(S)} because rkP is increasing

=min

{
rkP (A) +

∑
i∈π(S)\A

|π−1(i)| : A ⊆ π(S)

}
because S = π−1(π(S))

=min

{
rkP (A) +

∑
i∈π(S)\A

rkP (i) : A ⊆ π(S)

}
by Definition-Proposition 2.11

≥ rkP (π(S)) by submodularity of rkP .

On the other hand, taking A = π(S) in Definition-Proposition 2.11, we have
rkM (S) ≤ rkP (π(S)). □

Proof of Definition-Proposition 2.11. Let P be a polymatroid, and let M = P̃

on Ẽ = Ẽ1 ⊔ · · · ⊔ Ẽn, acted upon by Γ, be as in the statement of Definition-
Proposition 2.11. By Proposition 2.13 and Lemma 2.14, M is a multisymmetric lift
of P . It is minimal because

rkM (Ẽi) = rkP (π(Ẽi)) = rkP (i) = |Ẽi|.

The uniqueness statement follows from Lemma 2.9 and the fact that the ranks of
geometric sets in any lift of P are determined by P . □



8 CROWLEY, HUH, LARSON, SIMPSON, AND WANG

2.2. Operations. The formation of minimal multisymmetric lifts commutes with
some polymatroid operations. Let F be a flat of a polymatroid P on E. The
restriction of P to F , denoted P |F , is the polymatroid on F with rank function

rkP |F (A) := rkP (A), A ⊆ F.

There is a lattice isomorphism

LP |F → {G ∈ LP : G ≤ F}, H 7→ H.

If P1 and P2 are polymatroids on E1 and E2, respectively, then their direct sum
is the polymatroid P1 ⊕ P2 on E1 ⊔ E2 with rank function

rkP1⊕P2(S) = rkP1(S ∩ E1) + rkP2(S ∩ E2).

There is a lattice isomorphism

LP1
× LP2

→ LP1⊕P2
, (F,G) 7→ F ⊔G.

Lemma 2.15. If P1 and P2 are polymatroids, then P̃1 ⊕ P2 = P̃1 ⊕ P̃2.

Proof. From Corollary 2.7 and the definition of P1⊕P2, it follows that P̃1⊕ P̃2 lifts

P1 ⊕ P2. If Γ1 and Γ2 are the groups acting on P̃1 and P̃2, then Γ1 × Γ2 acts on

P̃1 ⊕ P̃2, so it is multisymmetric. It is minimal by minimality of P̃1 and P̃2, so the
lemma holds by the uniqueness statement of Definition-Proposition 2.11. □

Lemma 2.16. If F is a flat of a polymatroid P , then P̃ |F = P̃ |π−1(F ).

Proof. The rank functions of both sides are obtained by restriction, so P̃ |π−1(F )

lifts P |F . If Γ acts on P̃ , then a subset of Γ’s factors acts on P̃ |π−1(F ), so it is

multisymmetric. It is minimal because P̃ is, so Definition-Proposition 2.11 implies
the lemma. □

3. Building sets and Bergman fans

Here, we recall the combinatorics of geometric building sets. We then generalize
the definition of the Bergman fan of a polymatroid given in the introduction by
associating a fan to each polymatroid equipped with a geometric building set.

3.1. Geometric building sets. If P is a polymatroid, G ⊆ LP , and F ∈ LP , let

G≤F := {G ∈ G : G ≤ F},
and write maxG for the set of maximal elements of G.

Definition 3.1. A geometric building set of a polymatroid P is a collection G of
nonempty flats such that for all F ∈ LP \ {∅}, the map∏

G∈maxG≤F

LP |G → LP |F

is an isomorphism, and ∑
G∈maxG≤F

rk(G) = rk(F ).

If E ∈ G, then a nested set of P with respect to G is a subset N ⊆ G such that for
all {F1, . . . , Fk} ⊆ N pairwise incomparable with k ≥ 2, we have that

clP (F1 ∪ · · · ∪ Fk) ̸∈ G.
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With respect to a fixed geometric building set, a subset of a nested set is nested,
so nested sets form a simplicial complex. All building sets are henceforth assumed
to contain E2.

Example 3.2. The maximal geometric building set of P is the collection of all
nonempty flats. With respect to this building set, the nested sets are flags of
nonempty flats.

Lemma 3.3. Let P be a polymatroid, P̃ its minimal multisymmetric lift, and π as
in Definition-Proposition 2.11. If G is a geometric building set for P , then

G̃ = {π−1(G) : G ∈ G} ∪ {atoms of LP̃ }

is a geometric building set for P̃ .

Proof. Let F be a flat of M = P̃ . By Lemma 2.15 and Lemma 2.16, the map∏
G∈max G̃≤F geo

LM |G → LM |F

factors into a chain of isomorphisms∏
G∈max G̃≤F geo

LM |G
∼=

∏
H∈maxG≤π(F geo)

L
P̃ |H

∼= L ˜P |π(F geo)

∼= LM |F geo ,

and by Lemma 2.14,∑
G∈max G̃≤F geo

rkM (G) =
∑

G∈max G̃≤F geo

rkP (π(G))

=
∑

H∈maxG≤π(F geo)

rkP (H) = rkP (π(F
geo)) = rkM (F geo).

Consequently, by Lemma 2.8(ii), the first displayed condition of Definition 3.1 holds:∏
G∈max G̃≤F

LM |G =
∏

G∈max G̃≤F geo

LM |G ×
∏

i∈F\F geo

LM |{i}

∼= LM |F geo ×
∏

i∈F\F geo

LM |{i}
∼= LM |F ,

Also by Lemma 2.8(ii), the second displayed condition of Definition 3.1 holds:∑
G∈max G̃≤F

rkM (G) = rkM (F geo) +
∑

i∈F\F geo

rkM (i)

= rkM (F geo) + |F \ F geo| = rkM (F ).

□

Lemma 3.4. If G is a geometric building set for P , then N ⊆ G is G-nested if and

only if Ñ = {π−1(F ) : F ∈ N} is G̃-nested.

2In the realizable case, this assumption guarantees the associated wonderful compactification
is smooth and can be described as an iterated blow-up [5, §4.1]. Combinatorially, we lose nothing

by this assumption [15, Remark 4.1].
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Proof. Set M = P̃ . Let {F1, . . . , Fk} ⊆ N be a set of pairwise incomparable flats.
By Corollary 2.6, the geometric flats of M form a sublattice of LM , isomorphic to
LP by Definition-Proposition 2.11. Hence,

clM (π−1(F1) ∪ · · ·π−1(Fk)) ∈ G̃ ⇐⇒ clP (F1 ∪ · · · ∪ Fk) ∈ G. □

Remark 3.5 (Geometry of building sets). Let {Vi}i be a subspace arrangement in V ,
defining a polymatroid P . Let G be a building set for P . By [5, §1.6], the wonderful
compactification of {Vi}i with respect to G can be constructed by blowing up P(V )
along all subspaces ∩i∈FP(Vi) with F ∈ G, first blowing up those of dimension 0,
then those of dimension 1, and so on. Let {Vij}ij be a hyperplane arrangement

realizing P̃ , as in Example 2.12. Blowing up a codimension 1 subvariety is an
isomorphism, so Lemma 3.4 implies that the wonderful compactification of {Vi}i
with respect to a building set G is isomorphic to the wonderful compactification of

{Vij}ij with respect to G̃.

3.2. Bergman fans. Let P be a polymatroid on E, with minimal lift P̃ on Ẽ.

Let RẼ be the vector space spanned by ei for i ∈ Ẽ, and write eS :=
∑

i∈S ei for

S ⊆ Ẽ. If S ⊆ 2Ẽ is a collection of subsets, write

σS := cone(eS : S ∈ S) ⊆ RẼ/R(1, 1, . . . , 1).

Definition 3.6. Let P be a polymatroid on E, and G ⊆ LP a geometric building
set of P . The Bergman fan associated to (P,G) is ΣP,G := {σN}N, where N ranges

over all G̃-nested sets of P̃ such that Ẽ ̸∈ N.

If P is a matroid and G is the maximal geometric building set of P , then P̃ = P

and G̃ = G. In this case, ΣP,G coincides with the Bergman fan of [1, Definition 3.2].

Lemma 3.7. Let P be a polymatroid and let G be the maximal geometric building

set of P . Then the G̃-nested sets of P̃ are in bijection with the chains of flats

F = {∅ = F0 ⊊ F1 ⊊ F2 ⊊ · · · ⊊ Fk ⊊ E} of P and a subset S of Ẽ such that
rkP (F ∪π(T )) > rkP (F )+ |T | for all proper F ∈ F and nonempty T ⊆ S \π−1(F ).

Proof. Let N be a nested set of G̃, which consists of some geometric flats and some
atoms. As the join of two geometric flats is geometric, we see that the geometric

flats must form a chain {∅ = F0 ⊊ π−1(F1) ⊊ π−1(F2) ⊊ · · · ⊊ π−1(Fk) ⊊ Ẽ},
where F1, . . . , Fk are flats of P . Let S be the set of atoms in N . It suffices to check
that S∪{π−1(F1), . . . , π

−1(Fk)} is nested if and only if rkP (F∪π(T )) > rkP (F )+|T |
for all proper F ∈ F and nonempty T ⊆ S \ π−1(F ).

If the inequality holds, then

rkP (F ∪ π(T )) > rkP (F ) + |T | ≥ rkP̃ (π
−1(F ) ∪ T )

for any F ∈ {F1, . . . , Fk} and all nonempty T ⊆ S \ π−1(F ). The left-hand side
is the rank of the smallest geometric flat containing π−1(F ) ∪ T , so the closure of
π−1(F ) ∪ T cannot be geometric. Therefore S ∪ {π−1(F1), . . . , π

−1(Fk)} is nested.
Now suppose that S ∪ {π−1(F1), . . . , π

−1(Fk)} is nested, but the inequality fails
for some F ∈ {F1, . . . , Fk} and some T ⊆ S \ π−1(F ). Let G be the smallest
geometric flat containing π−1(F ) ∪ T . Then

rkP̃ (π
−1(F ) ∪ T ) ≤ rkP̃ (G) = rkP (F ∪ π(T )) ≤ rkP (F ) + |T |.
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If the first inequality is an equality, then rkP̃ (π
−1(F ) ∪ T ) = rkP̃ (G), and so the

closure of π−1(F ) ∪ T is a geometric flat, contradicting that N is nested. There-
fore rkP̃ (π

−1(F ) ∪ T ) < rkP (F ) + |T | = rkP̃ (π
−1(F )) + |T |, so there is a circuit

C ⊆ π−1(F ) ∪ T with C \ π−1(F ) nonempty. For any c ∈ C \ π−1(F ), we have
c ∈ clP̃ (π

−1(F ) ∪ C \ c), and so by Lemma 2.8(i),

π−1(π(c)) ⊆ clP̃ (π
−1(F ) ∪ C \ c).

Using this for all c ∈ C \π−1(F ), we have π−1(π(C))∪π−1(F ) ⊆ clP̃ (π
−1(F )∪C),

so clP̃ (π
−1(π(C))∪π−1(F )) = clP̃ (π

−1(F )∪C). Note that clP̃ (π
−1(π(C))∪π−1(F ))

is geometric. Because C \ π−1(F ) ⊆ T , this contradicts that N is nested. □

Corollary 3.8. If P is a polymatroid and G is the maximal geometric building set,
then ΣP,G coincides with the Bergman fan ΣP defined in Definition 1.7.

Lemma 3.9. If P is a polymatroid and G is a geometric building set of P , then
ΣP,G is a subfan of the normal fan of a convex polytope.

Proof. Let E be the ground set of P and B be the Boolean polymatroid with
rkB(i) = rkP (i) for all i ∈ E. Suppose G is a building set for P . The definition
of geometric building set implies for any flat F of P , maxG≤F is a partition of

F . Hence, G̃ is a building set of both B̃ and P̃ , and there is an inclusion of fans
ΣP,G = Σ

P̃ ,G̃
⊆ Σ

B̃,G̃
(In fact, if all single-element subsets of E are flats of P , then G

is a geometric building set for B, and we obtain ΣP,G ⊆ Σ
B̃,G̃

= ΣB,G). The lattice

of flats of B̃ is isomorphic to the lattice of subsets of Ẽ, so Σ
B̃,G̃

is the normal fan

of a convex polytope by [16, Theorem 7.4]. □

By [4], for any polymatroid P and a geometric building set G, A(ΣP,G) has the
following presentation.

Proposition 3.10. The Chow ring of ΣP,G satisfies

A(ΣP,G) = Z[zG : G ∈ G̃ \ {Ẽ}]/IP,G

where IP,G is the ideal generated by

zG1
· · · zGk

for any not G̃-nested collection {G1, . . . , Gk},∑
i∈G

zG −
∑
j∈F

zF for any i, j ∈ Ẽ.

In particular, the Chow ring of ΣP satisfies

A(ΣP ) = Z[zF : F nonempty proper flat of P ]⊗ Z[zi : i ∈ Ẽ]/IP ,
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where IP is an ideal generated by the following polynomials where z∅ is replaced by
1 wherever it appears:

zF − zi, π−1(F ) = {i} is a singleton set,

zF1
zF2

, F1 and F2 are incomparable proper flats of P ,

zF
∏
i∈T

zi, F is a proper flat and T ⊆ Ẽ \ π−1(F ) is nonempty satisfying

rkP (F ∪ π(T )) ≤ rkP (F ) + |T |,∑
i∈F

zF −
∑
j∈G

zG, i and j are elements of Ẽ.

We identify A1(ΣP,G) with the space of piecewise linear functions on the support
of ΣP,G, modulo global linear functions. Explicitly, a piecewise linear function ℓ is
a representative of ∑

uF

ℓ(uF )zF ∈ A1(ΣP,G),

where the sum is over all primitive ray generators uF of rays of ΣP,G.

Remark 3.11. A slightly different presentation of A(ΣP,G) is used by [8]. For F ∈ G̃,

yF :=

{
−
∑

i∈G zG, F = Ẽ

zF , otherwise.

In terms of the yF ’s, A(ΣP,G) is defined by the ideal IFY generated by

yG1
· · ·yGk

, {G1, . . . , Gk} not G̃-nested and∑
i∈G

yG, i ∈ Ẽ.

Remark 3.12 (Tropicalization and the Bergman fan). Suppose P is the matroid
realized by an essential hyperplane arrangement V1, . . . , Vn in V , that is, the inter-
section V1∩· · ·∩Vn is equal to the origin. Denote the defined the defining equation
of Vi by ℓi = 0. The inclusion

P(V \ ∪iVi) ↪→ P((F∗)n), v 7→ [ℓ1(v) : . . . : ℓn(v)]

shows that P(V \ ∪iVi) is a very affine variety. Its tropicalization is the support
of ΣP , by [17, §9.3] and [3, §3] (see also [7, Theorem 4.1]). The corresponding
statement for realizable polymatroids does not make sense: the complement of a
subspace arrangement may not be very affine, so tropicalization [12, Definition
3.2.1] is not defined. Nevertheless, if {Vi}i is a subspace arrangement (so P is a

polymatroid), then generic hyperplanes {Vij}ij realizing P̃ as in Example 2.12 define
a subtorus of P(

∏
i V/Vi). Tropicalizing this torus’s intersection with P(V \ ∪iVi)

gives the support of ΣP̃ , which coincides with that of ΣP .

4. Chow rings of polymatroids

If S is a collection of sets, write ∪S for the union of the elements of S. In [15,
Section 4], Pagaria and Pezzoli define the Chow ring of a polymatroid as follows3.

3Unlike [15], we use Z-coefficients.
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Definition 4.1. Let P be a polymatroid and G ⊆ LP a geometric building set.
The Chow ring of (P,G) is

DP(P,G) := Z[xF : F ∈ G]/IDP,

where IDP is the ideal generated by

xG1
· · ·xGk

( ∑
G∋H≥G

xH

)b

for G ∈ G, S = {G1, . . . , Gk} ⊆ G, and b ≥ rkP (G)− rkP (∪S<G).

When P is realizable by an arrangement of subspaces, DP(P,G) is the cohomol-
ogy ring of De Concini & Procesi’s wonderful compactification of the arrangement
complement. In this section, we make use of the theory of Gröbner bases. For
background on this subject, see [6, Chapter 15].

Theorem 4.2. Let P be a polymatroid on E with lift P̃ on Ẽ, and π : Ẽ → E the
projection. There is an isomorphism DP(P,G) ∼= A(ΣP,G) sending xF to yπ−1(F ).

Proof. Let IDP ⊆ Z[xF : F ∈ G] be the defining ideal of DP(P,G), and let IFY ⊆
Z[yF : F ∈ G̃] be the defining ideal of A(ΣP,G) as in [8] (See Remark 3.11). We
define the following map on polynomial rings.

φ : Z[xF : F ∈ G] → Z[yF : F ∈ G̃], xF 7→ yπ−1(F )

First we show φ(IDP ) ⊆ IFY . Write f for one of the defining relations of IDP :

f =
( ∏

F∈S

xF

)( ∑
G∋H≥G

xH

)b

.

By [8, Theorems 1 and 3], IFY contains the following two types of polynomials:∏
F∈S

yF , S not G̃-nested,

∏
F∈N

yF

( ∑
H≥G

yG

)d

, N a nested antichain, ∪N < G, and d = rk(G)− rk(∪N).

If S is not G-nested, then S̃ := {π−1(F ) : F ∈ S} is not G̃-nested by Lemma 3.4.
Hence, φ(f) is divisible by a relation of the first type. Otherwise, S is G-nested, so

S̃ is G̃-nested. In this case, φ(f) is divisible by a relation of the second type because

b ≥ rkP (G)− rkP (∪S<G) = rkP̃ (π
−1(G))− rkP̃ (∪S̃<π−1(G))

= rkP̃ (π
−1(G))− rkP̃ (∪max S̃<π−1(G)).

This proves that φ(IDP ) ⊆ IFY , so φ descends to φ̄ : DP(P,G) → A(ΣP,G).

If F ∈ G̃ is a flat of rank greater than 1, then yF is in the image of φ̄. By the
linear relation

∑
i∈G yG = 0, it follows that yi is also in the image of φ̄. Therefore,

φ̄ is surjective. It remains to show that φ̄ is injective. By [8, Theorem 2], the
generators of IFY in the previous paragraph are a Gröbner basis with respect to
any lexicographic monomial order < in which F1 ⊆ F2 implies yF1

> yF2
. Any

such order is an elimination order with respect to {yi : i ∈ Ẽ}. By [6, Proposition
15.29]4, the generators of IFY in the previous paragraph that do not involve any

4Eisenbud’s proof of this statement works over Z because all leading coefficients in our Gröbner
basis are 1.
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yi, i ∈ Ẽ, are a Gröbner basis for im(φ) ∩ IFY . Any such polynomial is the image
of a generator of IDP , so φ−1(IFY ) = IDP . This implies φ̄ is an isomorphism. □

The proof of Theorem 4.2 also shows the following, originally obtained from [15,
Corollary 2.8].

Corollary 4.3. The defining relations of DP(P,G) in Definition 4.1 form a Gröbner
basis with respect to any lexicographic < such that xF1 < xF2 whenever F1 ⊋ F2.

This recovers the monomial basis of [15].

Corollary 4.4. The following monomials are a Z-basis of DP(P,G):

xa1

G1
· · ·xak

Gk

where N = {G1, . . . , Gk} is a nested set of G, and

1 ≤ ai < rk(Fi)− rk(∪N<Fi
) for all 1 ≤ i ≤ k.

Proof. Immediate from Theorem 4.2 and [8, Corollary 1] (or Corollary 4.3 and [6,
Theorem 15.3]). □

Remark 4.5. In [15, Corollary 2.8], degree-lexicographic order (also called “homo-
geneous lexicographic” or “graded lexicographic” order) is used. Since the defining
relations of DP(P,G) in Definition 4.1 are all homogeneous, their initial terms with
respect to the lex or degree-lex orders are the the same. Thus, they are a Gröbner
basis with respect to one order if and only if they are with respect to the other.

Remark 4.6. Suppose P is a polymatroid with building set G, realized by an ar-

rangement {Vi}i in V . Let {Vij}ij realize P̃ as in Example 2.12. In this case, an
alternate proof of Theorem 4.2 is possible. By [8, §4], A(ΣP,G) is isomorphic to

the Chow ring of the wonderful compactification of {Vij}ij with respect to G̃. By

Remark 3.5, the wonderful compactifications of {Vij}ij with respect to G̃ and {Vi}i
with respect to G are isomorphic. Hence, their Chow rings are isomorphic. The
Chow ring of the latter space is isomorphic to DP(P,G) by a comparison of the
presentations in Definition 4.1 and [5, Theorem 5.2].

In the remainder of this section, we recover [15, Theorem 4.7] and generalize [15,
Theorem 4.21] using Theorem 4.2 and the tropical Hodge theory of [2]. If R is a
Z-algebra, define RQ := R⊗Z Q and RR likewise.

Corollary 4.7. Let K = Q,R. Let P be a polymatroid of rank r and G a geometric
building set. Let ℓ be any K-valued strictly convex piecewise linear function on ΣP,G,

viewed as an element of A1(ΣP,G)K ∼= DP1(P,G)K.

(i) (Poincaré duality) There is an isomorphism

deg : DP(P,G)r−1 → Z,
and for all 0 ≤ k < r/2, the pairing

DPk(P,G)×DPr−k−1(P,G) → Z, (a, b) 7→ deg(ab)

is non-degenerate.

(ii) (Hard Lefschetz) For every 0 ≤ k < r/2, the multiplication map

DPk(P,G)K → DPr−k−1(P,G)K, a 7→ ℓr−2k−1a

is an isomorphism.
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(iii) (Hodge-Riemann) For every 0 ≤ k < r/2, the bilinear form

DPk(P,G)K ×DPk(P,G)K → K, (a, b) 7→ (−1)k deg(ℓr−2k−1ab)

is positive definite on the kernel of multiplication by ℓr−2k.

Proof. Let M = P̃ . By [8, Theorem 4], ΣM is a refinement of ΣP,G. In particular,
the two fans have the same support. By [1, Proposition 2.4] and Lemma 3.9, both
fans are subfans of the normal fans of convex polytopes, so both fans support strictly
convex piecewise linear functions. By [8, Proposition 2], ΣP,G is a smooth fan.

The desired statements now follow by applying [2, Theorem 1.6], [1, Proposition
5.2], and [1, Theorems 6.19 and 8.8]. Loosely, [2, Theorem 1.6] says properties (i),
(ii), and (iii) hold for A(ΣP,G)R ∼= DP(P,G)R if and only if they hold for A(ΣM )R,
and [1] verifies them for A(ΣM )R.

Properties (ii) and (iii) for DP(P,G)Q follow immediately from those for DP(P,G)R.
For (i), note that [2]’s Poincaré duality arguments go through over Z. (Explicitly,
one must check statements 6.6–6.9, and Propositions 6.16, 6.17 of [2].) □

Remark 4.8. In [15], Corollary 4.7 is proved for ℓ in the σ-cone [15, Definition 4.15],
the positive span of

−
∑

G∈G≥F

xG, F ∈ G

in DP(P,G). The σ-cone is generally a proper subset of the cone of strictly convex
piecewise linear functions on ΣP,G. For example, if M is a loopless matroid on E
and G is its maximal building set, then for any i ∈ E,

β :=
∑
i ̸∈F

zF = −
∑
|G|>1

(
|G| − 1

)
yG

is in the closure of the cone of strictly convex piecewise linear functions on ΣM [1,
Proposition 4.3, Lemma 9.7]. However, β may not be in the closure of the σ-cone,
e.g. when M is Boolean of rank at least 3. For comparison of the σ-cone to the
ample cone of the wonderful compactification, see [15, Remark 4.22].

Appendix A. Combinatorics of the Bergman fan of Boolean
polymatroids

In this appendix we describe the combinatorics of the Bergman fans of Boolean
polymatroids, proving in particular that they are the normal fans of polypermuto-
hedra as stated in the introduction. We also give a description of polypermutohedra

as a Minkowski sum of simplices. Throughout this appendix, we let π : Ẽ → E be
a surjective map of finite sets, with associated Boolean polymatroid B(π) on E
given by the rank function rkB(π)(A) = |π−1(A)| for A ⊆ E. We write n for the
cardinality of E.

A.1. The Bergman fan as a configuration space.

Definition A.1. Let w = (wi)i ∈ RẼ be a weight on the elements of Ẽ. Write

Lowestπ(w) for the set of i ∈ Ẽ such that i has minimal weight among the elements
of π−1(π(i)) with respect to w. We equip Lowestπ(w) with the natural partial
preorder given by i ⪯ j if wi ≤ wj .

Adding a multiple of the all ones vector to w does not change Lowestπ(w), so

Lowestπ(w) is well defined for w ∈ RẼ/R(1, 1, . . . , 1).
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Lemma A.2. Two points w,v ∈ RẼ/(1, 1, . . . , 1) lie in the relative interior of the
same cone of the ΣB(π) if and only if Lowestπ(v) = Lowestπ(w) as posets.

Proof. Recall that a cone σF,S of the fan ΣB(π) is determined by a chain of sets

F = {∅ ⊊ F1 ⊊ · · · ⊊ Fk ⊊ E} and a set S ⊆ Ẽ such that S does not contain a
fiber of π. The relative interior of σF,S contains w if and only if the underlying set

of Lowestπ(w) is equal to Ẽ \ S and i ≺ j whenever there exists r such that i ̸∈ Fr

and j ∈ Fr. Therefore LowestP (w) can be recovered from σF,A and vice versa. □

A.2. The Bergman fan as the normal fan of a polytope. Recall that an

ordered transversal of π is a sequence s1, . . . , sn of elements of Ẽ such that each
fiber of π contains exactly one element of the sequence.

Definition A.3. Given real numbers 0 ≤ c1 < c2 < . . . < cn, define the as-
sociated polypermutohedron Q(π; c1, c2, . . . , cn) as the convex hull of the vectors
vs1,s2,...,sn := c1es1 + c2es2 + . . .+ cnesn , where s1, s2, . . . , sn runs over all ordered

transversals of π and ei ∈ RẼ is the standard basis vector of i ∈ Ẽ.

Lemma A.4. Let w = (wi)i ∈ RẼ be a weight on the elements of Ẽ, and let
s1, s2, . . . , sn be an ordered transversal of π. Denote by ⟨−,−⟩ the standard dot

product on RẼ. Then the linear functional ⟨w,−⟩ achieves its minimum over
Q(π; c1, c2, . . . , cn) at the vector vs1,s2,...,sn if and only if

(i) sj has minimum weight among the elements of π(π−1(sj)) with respect to
w for all j, and

(ii) ws1 ≤ ws2 ≤ . . . ≤ wsn .

Proof. Suppose that vs1,s2,...,sn minimizes ⟨w,−⟩ over Q(π; c1, c2, . . . , cn). Assume
contrary to (i) that there is some j and r ∈ π(π−1(sj)) such that wsj > wr. Then
replacing sj with r gives another ordered transversal of π whose corresponding
vector has smaller dot product with w:

⟨w, vs1,...,sj ,...,sn⟩ = c1ws1 + . . .+ cjwsj + . . .+ cnwsn

> c1ws1 + . . .+ cjwr + . . .+ cnwsn = ⟨w, vs1,...,r,...,sn⟩.
This proves (i). Now assume contrary to (ii) that there is some j such that
wsj > wsj+1 . Then switching the order of sj and sj+1 gives another ordered
transversal, and thus another vector v′ ∈ Q(π; c1, c2, . . . , cn), where by assump-
tion ⟨w,vs1,s2,...,sn⟩ ≤ ⟨w,v′⟩. Thus cjwsj + cj+1wsj+1

≤ cjwsj+1
+ cj+1wsj , which

contradicts the fact that ab+ cd > ac+ bd whenever a > c and b > d. This proves
(ii).

For the other direction, assume that w satisfies the two conditions. If ⟨w,−⟩
achieves its minimum over Q(π; c1, c2, . . . , cn) on a vector vs′1,s

′
2,...,s

′
n
, then by the

first direction we must have that wsj = ws′j
. Therefore ⟨w,−⟩ also achieves it

minimum on vs1,s2,...,sn . □

Proposition A.5. The inner normal fan of Q(π; c1, c2, . . . , cn), modulo the all
ones vector, is ΣB(π).

Proof. By Lemma A.4, the vertices of Q(π; c1, c2, . . . , cn) correspond to ordered
transversals of π, and the set of vertices on which a given linear functional ⟨w,−⟩
achieves its minimum is equivalent to the data of Lowestπ(w). Therefore the propo-
sition follows by Lemma A.2. □
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A.3. Minkowski sums of simplices. For S ⊆ Ẽ, let ∆S be the convex hull of
the vectors ei, for i ∈ S.

Proposition A.6. Q(π; 1, 2, . . . , n) is the Minkowski sum
∑

{i,j}⊆E ∆π−1({i,j}).

In the sum, we allow i = j. When π is a bijection, this recovers the description
of the usual permutohedron as the graphical zonotope of the complete graph.

Proof. The proof of Proposition A.5 shows that the inner normal fan of ∆π−1(S) is
a coarsening of ΣB(π) for any S ⊆ E. In particular, the inner normal fan of the
Minkowski sum

∑
{i,j}⊆E ∆π−1({i,j}) is a coarsening of ΣB(π). We may then find

all vertices of the Minkowski sum by choosing a maximal cone of ΣB(π) and finding
the vertex of the Minkowski sum on which any vector in the interior of this cone
achieves its minimum.

Each maximal cone of the fan ΣB(π) corresponds to a maximal chain of subsets

F = {∅ ⊊ F1 ⊊ · · · ⊊ Fn−1 ⊊ E} and a subset S ⊆ Ẽ such that |π−1(i) \S| = 1 for
all i. This data is equivalent to the data of an ordered transversal s1, . . . , sn of π.
Choose a maximal cone of ΣB(π) corresponding to an ordered transversal s1, . . . , sn,
and choose a vector in the relative interior of this cone. We can compute the vertex
of the Minkowski sum on which this vector achieves its minimum by adding up the
minimal vertices of each summand. The minimal vertex of a summand of the form
∆π−1(i) is esk , where k is the unique element of Ẽ \ S such that π(sk) = i. The
minimal vertex of a summand of the form ∆π−1({i,j}) for i ̸= j is esℓ , where ℓ is

the smaller index of the two elements of π−1({i, j})∩{s1, . . . , sn}. We see that the
minimal vertex of the Minkowski sum is

∑n
i=1 iesi , as desired. □

Remark A.7. One can deduce from the theory of building sets, e.g., [16, Proposition
7.5], that ΣB(π) is the normal fan of the Minkowski sum

∑
∅̸=S⊆E ∆π−1(S).
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