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ABSTRACT. We introduce the Bergman fan of a polymatroid and prove that the Chow ring of the Bergman fan is
isomorphic to the Chow ring of the polymatroid. Using the Bergman fan, we establish the Kähler package for the
Chow ring of the polymatroid, recovering and strengthening a result of Pagaria–Pezzoli.

1. INTRODUCTION

Bydefinition, amatroid on afinite setE is given by a rank function rk : 2E → Z≥0 satisfying the following:

(Submodularity) For any A1, A2 ⊆ E, we have rk(A1 ∪A2) + rk(A1 ∩A2) ≤ rk(A1) + rk(A2).

(Monotonicity) For any A1 ⊆ A2 ⊆ E, we have rk(A1) ≤ rk(A2).

(Boundedness) For any A ⊆ E, we have rk(A) ≤ |A|.

(Normalization) The rank of the empty subset is zero.

Sans “boundedness”, the axioms above define a polymatroid. Throughout this paper, we assume that the
polymatroid is loopless:

(Looplessness) The rank of any nonempty subset is nonzero.

If P is a polymatroid on E, then its rank is rk(P ) := rk(E). A flat of P is a subset F ⊆ E that is maximal
among sets of its rank. Ordered by inclusion, the flats of P form a lattice LP .1 The intersection of two flats
is a flat, so any subsetA ofE is contained in a uniqueminimal flat clP (A), called the closure ofA inP , which
is obtained by intersecting all flats that contain A.

Matroids can be viewed as combinatorial abstractions of hyperplane arrangements. More generally,
polymatroids can be viewed as combinatorial abstractions of subspace arrangements.

Example 1.1. Let V1, . . . , Vn be linear subspaces of a vector space V over a field F. The rank function

rk(A) := codimV (∩i∈AVi)

defines a polymatroid P on the set of indices E = {1, . . . , n}, which is a matroid if and only if every Vi is
a hyperplane. The map F 7→ ∩i∈FVi is a bijection between the flats of P and the subspaces of V obtained
by intersecting some of the Vi’s. A polymatroid arising in this way is said to be realizable over F, and the
subspace arrangement is called a realization of P over F. ♢

Much of a hyperplane arrangement’s combinatorial data is captured by intersection theory on its won-
derful compactification [DCP95]. To extend this fromhyperplane arrangements to non-realizablematroids,
one must replace the wonderful compactification with a combinatorial object, the Bergman fan of a ma-
troid. The purpose of the present paper is to introduce the Bergman fan of a polymatroid, a combinato-
rial model for the wonderful compactification of a subspace arrangement. As in the case of matroids, the

1Unlike in the case of matroids, the lattice of flats of a polymatroid can fail to be graded or atomic.
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Bergman fan of a polymatroid is a tropical variety of degree one. In Section 4, we show that the Chow ring
of a polymatroid satisfies the Kähler package with respect to any strictly convex piecewise linear function
on its Bergman fan, recovering and strengthening a result of Pagaria and Pezzoli [PP23, Theorems 4.7 and
4.21].

Our construction of the Bergman fan is inspired by a geometric observation: over an infinite field, the
wonderful compactification of any subspace arrangement can be realized as the wonderful compactifica-
tion of a hyperplane arrangement, taken with respect to an appropriate building set (Remark 3.5). The
construction immediately reveals that the Bergman fan of a polymatroid and the Bergman fan of the asso-
ciated matroid have the same support. Thus, the Kähler package for the polymatroid follows from that of
the associated matroid [AHK18] and the general fact that the validity of the Kähler package for the Chow
ring of a fan depends only on the support of the fan [ADH23].

1.1. The Bergman fan of a Boolean polymatroid. An important special case is that of Boolean polyma-
troids. Let π : Ẽ → E be a surjective map between finite sets. The Boolean polymatroid B(π) is the polyma-
troid on E defined by the rank function

rkB(π)(A) = |π−1(A)| for A ⊆ E.

We writeNẼ for ZẼ/Z(1, 1, . . . , 1), and, for a subset S of Ẽ, write eS for the vector
∑

i∈S ei inNẼ ⊗ R.

Definition 1.2. The Bergman fan ΣB(π) of the Boolean polymatroid B(π) is the fan inNẼ ⊗ R with cones

σF,A := cone(eπ−1(F1), . . . , eπ−1(Fk)) + cone(ei)i∈S ,

for every chain F = {∅ ⊊ F1 ⊊ F2 ⊊ · · · ⊊ Fk ⊊ E} and subset S of Ẽ not containing any fiber of π.

Throughout the paper, we write n for the cardinality of E.

Definition 1.3. An ordered transversal of π is a sequence s1, . . . , sn of elements of Ẽ such that each fiber of π
contains exactly one element of the sequence. The polypermutohedronQ(π) is the convex hull of the vectors∑n

i=1 iesi in RẼ, where s1, . . . , sn range over all ordered transversals of π.

In Appendix A, we show ΣB(π) is the inner normal fan of the polypermutohedron Q(π). It follows im-
mediately from Definition 1.2 that ΣB(π) is a complete unimodular fan inNẼ.

Example 1.4. When π is a bijection, an ordered traversal of π is a permutation of Ẽ, andQ(π) is the standard
permutohedron in RẼ. This recovers a familiar statement: the Bergman fan of the Boolean matroid is the
normal fan of the standard permutohedron. ♢

Example 1.5. When E is a singleton, an ordered transversal of π is an element Ẽ, and Q(π) is the standard
simplex in RẼ. Thus, the Bergman fan of a Boolean polymatroid on a singleton is the normal fan of the
standard simplex. ♢

Example 1.6. When |E| = n− 1 and all fibers of π have size d, the toric variety corresponding to ΣB(π) is a
generalization of the Losev–Manin space of curves which compactifies the moduli space of configurations
of n points in Ad up to translation and scaling [GR17, Corollary 5.6]. ♢

1.2. The Bergman fan of a polymatroid. Let P be a polymatroid on E, and let π : Ẽ → E be a surjective
map satisfying rkP (i) = |π−1(i)| for every i in E.



THE BERGMAN FAN OF A POLYMATROID 3

Definition 1.7. The Bergman fan ΣP of the polymatroid P is the subfan of ΣB(π) with cones

σF,S := cone(eπ−1(F1), . . . , eπ−1(Fk)) + cone(ei)i∈S ,

one for every chain of flats F = {∅ = F0 ⊊ F1 ⊊ F2 ⊊ · · · ⊊ Fk ⊊ E} of P and a subset S of Ẽ such that

rk(F ∪ π(T )) > rk(F ) + |T | for every proper flat F in F and every nonempty subset T of S \ π−1(F ).

The Bergman fan ΣP is unimodular with respect to NẼ, defining a smooth toric variety XP over C. We
write A(ΣP ) for the Chow ring of XP . We relate A(ΣP ) to the Chow ring of the polymatroid P (Definition
4.1), denoted DP(P ), introduced in [PP23, Section 4]. Our main result states the following.

Theorem 4.2. There is a natural isomorphism of graded rings DP(P ) ∼= A(ΣP ).

In Corollary 4.3, we use Theorem 4.2 to recover a Gröbner basis for DP(P ) found in [PP23]. In Corol-
lary 4.7, we prove the Kähler package forA(ΣP )with respect to the cone of strictly convex piecewise linear
function on ΣP , extending the Kähler package forDP(P )with respect to the σ-cone in [PP23]. See Remark
4.8 for a comparison of the two cones.

1.3. Building sets. In fact, our results hold for polymatroidsP equippedwith a geometric building set G (Sec-
tion 3). The statements above are specializations of our results to the case when G consists of all nonempty
flats of P . In maximal generality, we define the Bergman fan of (P,G), denoted ΣP,G (Definition 3.6). The
Chow ring DP(P,G) associated to (P,G) was introduced in [PP23], and it is isomorphic to A(ΣP,G) (Theo-
rem 4.2). All corollaries continue to hold, including the Kähler package for DP(P,G).

Organization. In Section 2, we develop the combinatorics of multisymmetric matroids and lifts, a key tool
throughout this paper. We use lifts to define the Bergman fan of a polymatroid (with respect to a geometric
building set) in Section 3. Finally, in Section 4, we show that the Chow ring of the Bergman fan agrees with
the polymatroid Chow ring of [PP23] and derive consequences. Examples 1.1 and 2.12, and Remarks 3.5,
3.12, and 4.6 explain the geometry underlying this work.

Acknowledgements. We thank Spencer Backman for comments and conversations. The second author is
partially supported by a Simons Investigator Grant and NSF Grant DMS-2053308, the third is supported by
an NDSEG fellowship, and the last is supported by a Sloan fellowship.

2. MULTISYMMETRIC MATROIDS

Many proofs in Section 4 reduce statements about polymatroids to known statements about matroids.
The key tool for this reduction is multisymmetric matroids, a new cryptomorphic formulation of polyma-
troids. LetSẼ denote the symmetric group on a finite set Ẽ. We continue to assume that all (poly)matroids
are loopless.

Definition 2.1. Amultisymmetric matroid is a matroidM on Ẽ equipped with a partition Ẽ = Ẽ1 ⊔ · · · ⊔ Ẽn

such that the action of Γ = SẼ1
× · · · ×SẼn

on Ẽ takes flats to flats. The geometric part of a subset S ⊆ Ẽ is
Sgeo := ∩γ∈Γ(γ · S). We call a subset S ⊆ Ẽ geometric if S = Sgeo.

For a multisymmetric matroidM , we write LΓ
M for its poset of geometric flats.

Example 2.2. AnymatroidM on Ẽ canbegiven the trivialmultisymmetric structureby settingΓ =
∏

e∈Ẽ S{e}.
In this case, LΓ

M = LM . ♢
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Example 2.3. IfM is multisymmetric on Ẽ = Ẽ1, thenM is a uniformmatroid, and LΓ
M is {∅, Ẽ}. ♢

Example 2.4. Let Ẽ be the set of edges of the complete graphK4, and letM be the graphic matroid ofK4.
No transposition ofSẼ preserves the flats ofM , soM has no non-trivial multisymmetric structures. ♢

Closure in a multisymmetric matroid is restricted by the group action.

Lemma 2.5. IfM is multisymmetric and S ⊆ Ẽ is geometric, then clM (S) is also geometric.

Proof. For any S ⊆ Ẽ geometric and γ ∈ Γ, we have γ · clM (S) = clM (γ · S) = clM (S). □

Corollary 2.6. IfM is multisymmetric, then the geometric flats ofM form a sublattice of LM .

Proof. If F andG are two geometric flats, then clM (F ∪G) is geometric by Lemma 2.5. The intersection of
two geometric flats is also geometric. In other words, the set of geometric flats is closed under both join
and meet, and therefore forms a sublattice of LM . □

Corollary 2.7. IfM ismultisymmetric on Ẽ = Ẽ1⊔· · ·⊔Ẽn, thenLΓ
M is the lattice of flats of the polymatroid

P on the set of indices E = {1, . . . , n} defined by the rank function rkP (A) := rkM (∪i∈AẼi).

Proof. Define π : Ẽ → E by setting π−1(i) = Ẽi. If F is a flat of P , then for all F ⊊ A ⊆ {1, . . . , n},

rkM (π−1(F )) = rkP (F ) < rkP (A) = rkM (π−1(A)).

By Lemma 2.5, clM (π−1(F )) is geometric, so we conclude that clM (π−1(F )) = π−1(F ). In other words,
π−1(F ) is a flat ofM . Conversely, if F is not a flat of P , then rkP (F ) = rkP (F ∪ i) for some i not in F . This
implies clM (π−1(F )) ⊇ π−1(F ∪ i), so π−1(F ) is not a flat of M . Therefore, F is a flat of P if and only if
π−1(F ) is a geometric flat ofM , and we have an isomorphism of lattices

LP −→ LΓ
M , F 7−→ π−1(F ). □

Lemma 2.8. LetM be a multisymmetric matroid on Ẽ = Ẽ1 ⊔ · · · ⊔ Ẽn.

(i) If S ⊆ Ẽ, then either clM (S) ∩ Ẽi = Ẽi or clM (S) ∩ Ẽi = S ∩ Ẽi.

(ii) If F is a flat ofM , then rkM (F ) = rkM (F geo) + |F \ F geo|.

Proof. A permutation of Ẽi \ S induces an automorphism ofM that fixes S. Any such automorphism also
fixes clM (S) because automorphisms commute with closure. Hence, if (Ẽi \S)∩ clM (S) is nonempty, then
Ẽi ⊆ clM (S). This proves the first part.

For the second part, let {s1, . . . , sk} = F \ F geo. If (ii) fails then for some 1 ≤ i ≤ k,

rkM (F geo ∪ {s1, . . . , si}) = rkM (F geo ∪ {s1, . . . , si+1}).

Therefore if si+1 ∈ Ẽj then Ẽj ⊆ clM (F geo ∪ {s1, . . . , si}) ⊆ F by the first part. Consequently, si+1 ∈ F geo,
a contradiction. □

Lemma 2.9. Amultisymmetric matroid is determined by its geometric sets and their ranks.

Proof. Let M and M ′ be two multisymmetric matroids on Ẽ = Ẽ1 ⊔ · · · ⊔ Ẽn, and suppose that for all
A ⊂ {1, . . . , n}, rkM (∪i∈AẼi) = rkM ′(∪i∈AẼi). If F is a flat ofM , and F ′ is the closure of F inM ′, then

rkM ′(F ) ≤ rkM ′(F geo) + rkM ′(F \ F geo) ≤ rkM (F geo) + |F \ F geo| = rkM (F )
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by Lemma 2.8(ii). Symmetrically, rkM (F ′) ≤ rkM ′(F ′), so

rkM ′(F ) ≤ rkM (F ) ≤ rkM (F ′) ≤ rkM ′(F ′).

The left- and rightmost terms are equal, so F = F ′ because F is a flat ofM . This shows thatM andM ′ have
the same flats, and that their flats have the same ranks, soM andM ′ are equal. □

Remark 2.10. The closure of a geometric set is a geometric flat by Lemma 2.8(i), so Lemma 2.9 implies that
a multisymmetric matroid is also determined by its geometric flats and their ranks.

2.1. Lifts. LetP beapolymatroid onE = {1, . . . , n} andM amultisymmetricmatroid on Ẽ = Ẽ1 ⊔ · · · ⊔ Ẽn.
If P is the polymatroid given by Corollary 2.7, then we say thatM is amultisymmetric lift of P . If rkM (Ẽi) =

|Ẽi| for all 1 ≤ i ≤ n, then we say thatM is aminimalmultisymmetric lift of P .

Theorem 2.11. A polymatroid P has a unique minimal multisymmetric lift P̃ constructed as follows. For
1 ≤ i ≤ n, let Ẽi = {1, . . . , rkP (i)}, and Ẽ = Ẽ1 ⊔ · · · ⊔ Ẽn. Define the projection π : Ẽ → E by π−1(i) = Ẽi.

The minimal multisymmetric lift of P is the matroid P̃ on Ẽ with rank function

rkP̃ (S) = min{rkP (A) + |S \ π−1(A)| : A ⊆ E}.

Example 2.12. Suppose P is the polymatroid realized by an arrangement of subspaces V1, . . . , Vn in V as in
Example 1.1. The minimal multisymmetric lift P̃ is realized by any hyperplane arrangement

{Vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ rkP (i)},

where Vi,1, . . . , Vi,rkP (i) are generic hyperplanes containing Vi. Under the correspondence between flats of
P̃ and intersections of the Vi,j ’s, the geometric flats correspond to the subspaces of V arise in for any choice
of {Vi,j}i,j . ♢

Versions of the construction in Theorem 2.11 makemany independent appearances in the literature, for
example, in [Hel74, §2] and [Lov77, Propositions 3.1 and 3.2]. Themost complete treatment we are aware of
is [Ngu86, §2], whose terminology differs from ours.

Notation. We continue to use the notations of Theorem 2.11 in the remainder of this section. For visual
clarity, we often writeM = P̃ . As usual, Γ stands for the product of symmetric groups that acts onM .

Proposition 2.13. The minimal liftM = P̃ is a multisymmetric matroid. Explicitly,

(i) rkM is a matroid rank function, and

(ii) the action of Γ preserves flats.

Proof. The proof of the first part is reproduced from [Oxl11, Proof of Theorem 11.1.9]. We need to check that
rkM is non-negative, increasing, submodular, and satisfies rkM (S) ≤ |S| for S ⊆ Ẽ.

It is clear that values of rkM are non-negative. Let S ⊆ Ẽ and s ∈ Ẽ \ S. For all A ⊆ E,

rkP (A) + |S \ π−1(A)| ≤ rkP (A) + |S ∪ a \ π−1(A)|,

so rkM is increasing. Moreover, by induction on |S|,

rkM (S ∪ s) =min{rkP (A) + |S ∪ s \ π−1(A)| : A ⊆ E}

≤min{rkP (A) + |S \ π−1(A)| : A ⊆ E}+ 1 = rkM (S) + 1 ≤ |S|+ 1 = |S ∪ s|,
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so it only remains to check that rkM is submodular. Let S1, S2 ⊆ Ẽ and A1, A2 ⊆ E such that rkM (Si) =

rkP (Ai) + |Si \ π−1(Ai)|. Then

rkM (S1) + rkM (S2) = rkP (A1) + |S1 \ π−1(A1)|+ rkP (A2) + |S2 \ π−1(A2)|

≥ rkP (A1 ∪A2) + rkP (A1 ∩A2) + |S1 \ π−1(A1)|+ |S2 \ π−1(A2)| by submodularity of rkP
≥ rkP (A1 ∪A2) + rkP (A1 ∩A2) + |(S1 ∪ S2) \ π−1(A1 ∪A2)|+ |(S1 ∩ S2) \ π−1(A1 ∩A2)|

≥ rkM (S1 ∪ S2) + rkM (S1 ∩ S2).

For the second part, let γ ∈ Γ and S ⊆ Ẽ. For any A ⊆ E, we have |S \ π−1(A)| = |(γ · S) \ π−1(A)|, and
hence rkM (S) = rkM (γ · S). □

The following lemma implies P̃ is a multisymmetric lift of P .

Lemma 2.14. Fix notation as in Theorem 2.11, and setM := P̃ . If S ⊆ Ẽ is stable under Γ, then rkM (S) =

rkP (π(S)).

Proof. Since S is stable under the action of Γ, S is a union of fibers of π. Hence,

rkM (S) =min{rkP (A) + |S \ π−1(A)| : A ⊆ E} by the definition of rkM
=min{rkP (A) + |S \ π−1(A)| : A ⊆ π(S)} because rkP is increasing

=min

{
rkP (A) +

∑
i∈π(S)\A

|π−1(i)| : A ⊆ π(S)

}
because S is a union of fibers of π

=min

{
rkP (A) +

∑
i∈π(S)\A

rkP (i) : A ⊆ π(S)

}
by the definition of π in Theorem 2.11

≥ rkP (π(S)) by submodularity of rkP .

On the other hand, taking A = π(S) in the definition of rkM (S), we have rkM (S) ≤ rkP (π(S)). □

Proof of Theorem 2.11. Let P be a polymatroid, and letM = P̃ on Ẽ = Ẽ1 ⊔ · · · ⊔ Ẽn, acted upon by Γ, be as
in the statement of Theorem 2.11. By Proposition 2.13 and Lemma 2.14,M is a multisymmetric lift of P . It
is minimal because

rkM (Ẽi) = rkP (π(Ẽi)) = rkP (i) = |Ẽi|.

The uniqueness statement follows from Lemma 2.9 and the fact that the ranks of geometric sets in any lift
of P are determined by P . □

2.2. Operations. The formation of minimal multisymmetric lifts commutes with some polymatroid oper-
ations. Let F be a flat of a polymatroid P on E. The restriction of P to F , denoted P |F , is the polymatroid
on F with rank function

rkP |F (A) := rkP (A), A ⊆ F.

There is a lattice isomorphism

LP |F → {G ∈ LP : G ≤ F}, H 7→ H.

If P1 and P2 are polymatroids onE1 andE2, respectively, then their direct sum is the polymatroid P1⊕P2

on E1 ⊔ E2 with rank function

rkP1⊕P2
(S) = rkP1

(S ∩ E1) + rkP2
(S ∩ E2).
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There is a lattice isomorphism

LP1
× LP2

→ LP1⊕P2
, (F,G) 7→ F ⊔G.

Lemma 2.15. If P1 and P2 are polymatroids, then P̃1 ⊕ P2 = P̃1 ⊕ P̃2.

Proof. From Corollary 2.7 and the definition of P1 ⊕ P2, it follows that P̃1 ⊕ P̃2 lifts P1 ⊕ P2. If Γ1 and Γ2

are the groups acting on P̃1 and P̃2, then Γ1 × Γ2 acts on P̃1 ⊕ P̃2, so it is multisymmetric. It is minimal by
minimality of P̃1 and P̃2, so the lemma holds by the uniqueness statement of Theorem 2.11. □

Lemma 2.16. If F is a flat of a polymatroid P , then P̃ |F = P̃ |π−1(F ).

Proof. The rank functions of both sides are obtained by restriction, so P̃ |π−1(F ) liftsP |F . IfΓ acts on P̃ , then
a subset of Γ’s factors acts on P̃ |π−1(F ), so it is multisymmetric. It is minimal because P̃ is, so Theorem 2.11
implies the lemma. □

3. BUILDING SETS AND BERGMAN FANS

Here, we recall the combinatorics of geometric building sets. We then generalize the definition of the
Bergman fan of a polymatroid given in the introduction by associating a fan to each polymatroid equipped
with a geometric building set.

3.1. Geometric building sets. Let P be a polymatroid. If G ⊆ LP and F is a flat, let

G≤F := {G ∈ G : G ≤ F}

and writemaxG for the set of maximal elements of G.

Definition 3.1. A geometric building set2 of a polymatroid P is a collection G of nonempty flats such that for
all F ∈ LP \ {∅}, the map ∏

G∈maxG≤F

LP |G → LP |F

is an isomorphism, and ∑
G∈maxG≤F

rk(G) = rk(F ).

IfE ∈ G, then a nested set of P with respect to G is a subsetN ⊆ G such that for all {F1, . . . , Fk} ⊆ N pairwise
incomparable with k ≥ 2, we have that

clP (F1 ∪ · · · ∪ Fk) ̸∈ G.

With respect to a fixed geometric building set, a subset of a nested set is nested, so nested sets form a
simplicial complex. All building sets are henceforth assumed to contain E3.

Example 3.2. The maximal geometric building set of P is the collection of all nonempty flats. With respect
to this building set, the nested sets are flags of nonempty flats. ♢

2Our terminology is that of [FK04, Definition 4.4]. In [PP23], geometric building sets are called “combinatorial building sets”, but
[FK04] uses this term for collections that satisfy only the isomorphism condition. The “combinatorial building sets” of [FK04] are the
same as the “building sets” of [FY04]. Postnikov considers only building sets for the Boolean lattice in [Pos09, Definition 7.1]; all such
building sets are geometric.

3In the realizable case, this assumption guarantees the associated wonderful compactification is smooth and can be described as
an iterated blow-up [DCP95, §4.1]. Combinatorially, we lose nothing by this assumption [PP23, Remark 4.1].
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Lemma 3.3. Let P be a polymatroid, P̃ its minimal multisymmetric lift, and π as in Theorem 2.11. If G is a
geometric building set for P , then

G̃ = {π−1(G) : G ∈ G} ∪ {atoms of LP̃ }

is a geometric building set for P̃ .

Proof. Let F be a flat ofM = P̃ . By Lemma 2.15 and Lemma 2.16, the map∏
G∈max G̃≤F geo

LM |G → LM |F

factors into a chain of isomorphisms∏
G∈max G̃≤F geo

LM |G
∼=

∏
H∈maxG≤π(F geo)

L
P̃ |H

∼= L ˜P |π(F geo)

∼= LM |F geo ,

and by Lemma 2.14,∑
G∈max G̃≤F geo

rkM (G) =
∑

G∈max G̃≤F geo

rkP (π(G)) =
∑

H∈maxG≤π(F geo)

rkP (H) = rkP (π(F
geo)) = rkM (F geo).

Consequently, by Lemma 2.8(ii),∏
G∈max G̃≤F

LM |G =
∏

G∈max G̃≤F geo

LM |G ×
∏

i∈F\F geo

LM |{i}
∼= LM |F geo ×

∏
i∈F\F geo

LM |{i}
∼= LM |F ,

and ∑
G∈max G̃≤F

rkM (G) = rkM (F geo) +
∑

i∈F\F geo

rkM (i) = rkM (F geo) + |F \ F geo| = rkM (F ),

as desired. □

Lemma3.4. IfG is a geometric building set forP , thenN ⊆ G isG-nested if andonly if Ñ = {π−1(F ) : F ∈ N}
is G̃-nested.

Proof. Set M = P̃ . Let {F1, . . . , Fk} ⊆ N be a set of pairwise incomparable flats. By Corollary 2.6, the
geometric flats ofM form a sublattice of LM , isomorphic to LP by Theorem 2.11. Hence,

clM (π−1(F1) ∪ · · ·π−1(Fk)) ∈ G̃ ⇐⇒ clP (F1 ∪ · · · ∪ Fk) ∈ G. □

Remark 3.5 (Geometry of building sets). Let {Vi}i be a subspace arrangement in V , defining a polymatroid
P . Let G be a building set for P . By [DCP95, §1.6], the wonderful compactification of {Vi}i with respect to G

can be constructed by blowing up P(V ) along all subspaces ∩i∈FP(Vi) with F ∈ G, first blowing up those
of dimension 0, then those of dimension 1, and so on. Let {Vij}ij be a hyperplane arrangement realizing
P̃ , as in Example 2.12. Blowing up a codimension 1 subvariety is an isomorphism, so Lemma 3.4 implies
that the wonderful compactification of {Vi}i with respect to a building set G is isomorphic to the wonderful
compactification of {Vij}ij with respect to G̃.

3.2. Bergman fans. Let P be a polymatroid on E, with minimal lift P̃ on Ẽ. Let RẼ be the vector space
spanned by ei for i ∈ Ẽ, and write eS :=

∑
i∈S ei for S ⊆ Ẽ. If S ⊆ 2Ẽ is a collection of subsets, write

σS := cone(eS : S ∈ S) ⊆ RẼ/R(1, 1, . . . , 1).

Definition 3.6. Let P be a polymatroid on E, and G ⊆ LP a geometric building set of P . The Bergman fan
associated to (P,G) is ΣP,G := {σN}N, where N ranges over all G̃-nested sets of P̃ such that Ẽ ̸∈ N.
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If P is a matroid and G is the maximal geometric building set of P , then P̃ = P and G̃ = G. In this case,
ΣP,G coincides with the Bergman fan of [AHK18, Definition 3.2].

Lemma 3.7. Let P be a polymatroid and G be the maximal geometric building set of P . Then the G-nested
sets of P̃ are in bijection with chains of flats F = {∅ = F0 ⊊ F1 ⊊ F2 ⊊ · · · ⊊ Fk ⊊ E} of P and a subset S
of Ẽ such that

rkP (F ∪ π(T )) > rkP (F ) + |T | for every proper flat F in F and every nonempty subset T of S \ F .

Proof. Let N be a nested set of G̃, which consists of some geometric flats and some atoms. As the join of
two geometric flats is geometric, we see that the geometric flats must form a chain {∅ = F0 ⊊ π−1(F1) ⊊
π−1(F2) ⊊ · · · ⊊ π−1(Fk) ⊊ Ẽ}, where F1, . . . , Fk are flats of P . Let S be the set of atoms in N . It suffices
to check that S ∪ {π−1(F1), . . . , π

−1(Fk)} is nested if and only if

rkP (F ∪ π(T )) > rkP (F ) + |T | for every proper flat F in F and every nonempty subset T of S \ F .

If the inequality holds, then

rkP (F ∪ π(T )) > rkP (F ) + |T | ≥ rkP̃ (π
−1(F ) ∪ T )

for any F ∈ {F1, . . . , Fk} and all nonempty T ⊂ S \ π−1(F ). The left-hand side is the rank of the smallest
geometric flat containing π−1(F ) ∪ T , so the closure of π−1(F ) ∪ T cannot be geometric. This implies that
S ∪ {π−1(F1), . . . , π

−1(Fk)} is nested.

Now suppose thatS∪{π−1(F1), . . . , π
−1(Fk)} is nested, but the inequality fails for someF ∈ {F1, . . . , Fk}

and some T ⊂ S \ π−1(F ). LetG be the smallest geometric flat containing π−1(F ) ∪ T . Then

rkP̃ (π
−1(F ) ∪ T ) ≤ rkP̃ (G) = rkP (F ∪ π(T )) ≤ rkP (F ) + |T |.

If the first inequality is an equality, then rkP̃ (π
−1(F ) ∪ T ) = rkP̃ (G), and so the closure of π−1(F ) ∪ T is a

geometric flat, contradicting thatN is nested. Therefore rkP̃ (π
−1(F )∪T ) < rkP (F )+ |T | = rkP̃ (π

−1(F ))+

|T |, so there is a circuit C ⊂ π−1(F ) ∪ T with C \ π−1(F ) nonempty. For any c ∈ C \ π−1(F ), we have
c ∈ clP̃ (π

−1(F ) ∪ C \ c), and so by Lemma 2.8(i),

π−1(π(c)) ⊂ clP̃ (π
−1(F ) ∪ C \ c).

Using this for all c ∈ C \ π−1(F ), we have that

π−1(π(C)) ∪ π−1(F ) ⊂ clP̃ (π
−1(F ) ∪ C), so clP̃ (π

−1(π(C)) ∪ π−1(F )) = clP̃ (π
−1(F ) ∪ C).

Note that clP̃ (π
−1(π(C))∪π−1(F )) is geometric. BecauseC \π−1(F ) ⊂ T , this contradicts thatN is nested.

□

Corollary 3.8. If P is a polymatroid and G is the maximal geometric building set, then ΣP,G coincides with
the Bergman fan ΣP defined in the introduction (Definition 1.7).

Lemma 3.9. If P is a polymatroid and G is a geometric building set of P , thenΣP,G is a subfan of the normal
fan of a convex polytope.

Proof. Let E be the ground set of P and B be the Boolean polymatroid with rkB(i) = rkP (i) for all i ∈ E.
Suppose G is a building set for P . The definition of geometric building set implies for any flat F of P ,
maxG≤F is a partition of F . Hence, G̃ is a building set of both B̃ and P̃ , and there is an inclusion of fans
ΣP,G = Σ

P̃ ,G̃
⊆ Σ

B̃,G̃
(In fact, if all single-element subsets ofE are flats of P , then G is a geometric building

set forB, and we obtainΣP,G ⊂ Σ
B̃,G̃

= ΣB,G). The lattice of flats of B̃ is isomorphic to the lattice of subsets
of Ẽ, so Σ

B̃,G̃
is the normal fan of a convex polytope by [Pos09, Theorem 7.4]. □
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By [Bri96], for any polymatroidP and a geometric building setG,A(ΣP,G)has the following presentation.

Proposition 3.10. The Chow ring of ΣP,G satisfies

A(ΣP,G) = Z[zG : G ∈ G̃ \ {Ẽ}]/IP,G

where IP,G is the ideal generated by

zG1
· · · zGk

for any not G̃-nested collection {G1, . . . , Gk},∑
i∈G

zG −
∑
j∈F

zF for any i, j ∈ Ẽ.

In particular, the Chow ring of ΣP satisfies

A(ΣP ) = Z[zF : F nonempty proper flat of P ]⊗ Z[zi : i ∈ Ẽ]/IP ,

where IP is an ideal generated by the following polynomials where z∅ is replaced by 1 wherever it appears:

zF1zF2 , F1 and F2 are incomparable proper flats of P ,

zF
∏
i∈T

zi, F is a proper flat and T ⊆ Ẽ \ π−1(F ) is nonempty satisfying rk(F ∪ π(T )) ≤ rk(F ) + |T |,

∑
i∈F

zF −
∑
j∈G

zG, i and j are elements of Ẽ.

We identifyA1(ΣP,G)with the space of piecewise linear functions on the support ofΣP,G, modulo global
linear functions. Explicitly, a piecewise linear function ℓ is a representative of∑

uF

ℓ(uF )zF ∈ A1(ΣP,G),

where the sum is over all primitive ray generators uF of rays of ΣP,G.

Remark 3.11. A slightly different presentation of A(ΣP,G) is used by [FY04]. For F ∈ G̃, set

yF =

−
∑

i∈G zG, F = Ẽ

zF , otherwise.

In terms of the yF ’s, A(ΣP,G) is defined by the ideal IFY generated by

yG1
· · ·yGk

, {G1, . . . , Gk} not G̃-nested and∑
i∈G

yG, i ∈ Ẽ.

Remark 3.12 (Tropicalization and the Bergman fan). Suppose P is the matroid realized by an essential hy-
perplane arrangement V1, . . . , Vn in V , defined by linear functionals ℓ1, . . . , ℓn. The inclusion

P(V \ ∪iVi) ↪→ P((F∗)n), v 7→ [ℓ1(v) : . . . : ℓn(v)]

shows that P(V \ ∪iVi) is a very affine variety. Its tropicalization is the support of ΣP , by [Stu02, §9.3] and
[AK06, §3] (see also [FS05, Theorem4.1]). The corresponding statement for realizable polymatroids does not
make sense: the complement of a subspace arrangement may not be very affine, so tropicalization [MS15,
Definition 3.2.1] is not defined. Nevertheless, if {Vi}i is a subspace arrangement (soP is a polymatroid), then
generic hyperplanes {Vij}ij realizing P̃ as in Example 2.12 define a subtorus of P(

∏
i V/Vi). Tropicalizing

this torus’s intersection with P(V \ ∪iVi) gives the support of ΣP̃ , which coincides with that of ΣP .
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4. CHOW RINGS OF POLYMATROIDS

If S is a collection of sets, write ∪S for the union of the elements of S. In [PP23, Section 4], Pagaria and
Pezzoli define the Chow ring of a polymatroid as follows4.

Definition 4.1. Let P be a polymatroid and G ⊆ LP a geometric building set. The Chow ring of (P,G) is

DP(P,G) := Z[xF : F ∈ G]/I,

where I is the ideal generated by

xG1
· · ·xGk

( ∑
H≥G

xH

)b

forG ∈ G, S = {G1, . . . , Gk} ⊆ G, and b ≥ rkP (G)− rkP (∪S<G).

When P is realizable by an arrangement of subspaces,DP(P,G) is the cohomology ring of De Concini &
Procesi’s wonderful compactification of the arrangement complement. In this section, we make use of the
theory of Gröbner bases. For background on this subject, see [Eis95, Chapter 15].

Theorem 4.2. Let P be a polymatroid on E, Ẽ the ground set of P̃ , and π : Ẽ → E the projection. There is
an isomorphism DP(P,G) ∼= A(ΣP,G) sending xF to yπ−1(F ).

Proof. Let IDP ⊆ Z[xF : F ∈ G] be the defining ideal of DP(P,G), and let IFY ⊆ Z[yF : F ∈ G̃] be the
defining ideal ofA(ΣP,G) as in [FY04] (See Remark 3.11). We define the following map on polynomial rings.

φ : Z[xF : F ∈ G] → Z[yF : F ∈ G̃], xF 7→ yπ−1(F )

First we show that φ(IDP ) ⊆ IFY . Write f ∈ IDP for one of the defining relations of IDP :

f =
( ∏

F∈S

xF

)( ∑
G∋H≥G

xH

)b

.

By [FY04, Theorems 1 and 3], IFY contains the following two types of polynomials:∏
F∈S

yF , S not G̃-nested,

∏
F∈N

yF

( ∑
H≥G

yG

)d

, N a nested antichain, ∪N < G, and d = rk(G)− rk(∪N).

If S is not G-nested, then S̃ := {π−1(F ) : F ∈ S} is not G̃-nested by Lemma 3.4. Hence, φ(f) is divisible
by a relation of the first type. Otherwise, S is G-nested, so S̃ is G̃-nested. In this case, φ(f) is divisible by a
relation of the second type because

b ≥ rkP (G)− rkP (∪S<G) = rkP̃ (π
−1(G))− rkP̃ (∪S̃<π−1(G)) = rkP̃ (π

−1(G))− rkP̃ (∪max S̃<π−1(G)).

This proves that φ(IDP ) ⊆ IFY , so φ descends to φ̄ : DP(P,G) → A(ΣP,G).

If F ∈ G̃ is a flat of rank greater than 1, then yF is in the image of φ̄. By the linear relation
∑

i∈G yG = 0,
it follows that yi is also in the image of φ̄. Therefore, φ̄ is surjective. It remains to show that φ̄ is injective.
By [FY04, Theorem 2], the generators of IFY in the previous paragraph are a Gröbner basis with respect to
any lexicographic monomial order< in which F1 ⊆ F2 implies yF1

> yF2
. Any such order is an elimination

order with respect to {yi : i ∈ Ẽ}. By [Eis95, Proposition 15.29]5, the generators of IFY in the previous
paragraph that do not involve any yi, i ∈ Ẽ, are a Gröbner basis for im(φ) ∩ IFY . Any such polynomial is
the image of a generator of IDP , so φ−1(IFY ) = IDP . This implies φ̄ is an isomorphism. □

4Unlike [PP23], we use Z-coefficients.
5Eisenbud’s proof of this statement works over Z because all leading coefficients in our Gröbner basis are 1.
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The proof of Theorem 4.2 also shows the following, originally obtained from [PP23, Corollary 2.8].

Corollary 4.3. The defining relations ofDP(P,G) in Definition 4.1 form a Gröbner basis with respect to any
lexicographic< such that xF1

< xF2
whenever F1 ⊋ F2.

This recovers the monomial basis of [PP23].

Corollary 4.4. The following monomials are a Z-basis of DP(P,G):

xa1

G1
· · ·xak

Gk

where N = {G1, . . . , Gk} is a nested set of G, and

1 ≤ ai < rk(Fi)− rk(∪N<Fi) for all 1 ≤ i ≤ k.

Proof. Immediate fromTheorem4.2 and [FY04, Corollary 1] (or Corollary 4.3 and [Eis95, Theorem 15.3]). □

Remark 4.5. In [PP23, Corollary 2.8], degree-lexicographic order (also called “homogeneous lexicographic”
or “graded lexicographic” order) is used. Since the defining relations ofDP(P,G) in Definition 4.1 are all ho-
mogeneous, their initial terms with respect to the lex or degree-lex orders are the the same. Consequently,
they are a Gröbner basis with respect to one order if and only if they are with respect to the other.

Remark 4.6. Suppose P is a polymatroid with building set G, realized by an arrangement {Vi}i in V . Let
{Vij}ij realize P̃ as in Example 2.12. In this case, an alternate proof of Theorem 4.2 is possible. By [FY04,
§4], A(ΣP,G) is isomorphic to the Chow ring of the wonderful compactification of {Vij}ij with respect to G̃.
By Remark 3.5, the wonderful compactifications of {Vij}ij with respect to G̃ and {Vi}i with respect to G are
isomorphic. Hence, their Chow rings are isomorphic. The Chow ring of the latter space is isomorphic to
DP(P,G) by a comparison of the presentations in Definition 4.1 and [DCP95, Theorem 5.2].

In the remainder of this section, we recover [PP23, Theorem 4.7] and generalize [PP23, Theorem 4.21]
using Theorem 4.2 and the tropical Hodge theory of [ADH23]. IfR is a Z-algebra, defineRQ := R⊗Z Q and
RR likewise.

Corollary 4.7. LetK = Q,R. LetP be a polymatroid of rank r and G a geometric building set. Let ℓ be anyK-
valued strictly convex piecewise linear function onΣP,G, viewed as an element ofA1(ΣP,G)K ∼= DP1(P,G)K.

(i) (Poincaré duality) There is an isomorphism

deg : DP(P,G)r−1 → Z,

and for all 0 ≤ k < r/2, the pairing

DPk(P,G)×DPr−k−1(P,G) → Z, (a, b) 7→ deg(ab)

is non-degenerate.

(ii) (Hard Lefschetz) For every 0 ≤ k < r/2, the multiplication map

DPk(P,G)K → DPr−k−1(P,G)K, a 7→ ℓr−2k−1a

is an isomorphism.

(iii) (Hodge-Riemann) For every 0 ≤ k < r/2, the bilinear form

DPk(P,G)K ×DPk(P,G)K → K, (a, b) 7→ (−1)k deg(ℓr−2k−1ab)

is positive definite on the kernel of multiplication by ℓr−2k.
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Proof. LetM = P̃ . By [FY04, Theorem 4], ΣM is a refinement of ΣP,G. In particular, the two fans have the
same support. By [AHK18, Proposition 2.4] and Lemma 3.9, both fans are subfans of the normal fans of
convex polytopes, so both fans support strictly convex piecewise linear functions. By [FY04, Proposition 2],
ΣP,G is a smooth fan.

The desired statements now follow by applying [ADH23, Theorem 1.6], [AHK18, Proposition 5.2], and
[AHK18, Theorems 6.19 and 8.8]. Loosely, [ADH23, Theorem 1.6] says properties (i), (ii), and (iii) hold for
A(ΣP,G)R ∼= DP(P,G)R if and only if they hold for A(ΣM )R, and [AHK18] verifies them for A(ΣM )R.

Properties (ii) and (iii) for DP(P,G)Q follow immediately from those for DP(P,G)R. For (i), note that
[ADH23]’s Poincaré duality arguments go through over Z. (Explicitly, one must check statements 6.6–6.9,
and Propositions 6.16, 6.17 of [ADH23].) □

Remark 4.8. In [PP23], Corollary 4.7 is proved for ℓ in the σ-cone [PP23, Definition 4.15], the positive span of

−
∑

G∈G≥F

xG, F ∈ G

inDP(P,G). Theσ-cone is generally a proper subset of the cone of strictly convexpiecewise linear functions
on ΣP,G. For example, ifM is a loopless matroid onE and G is its maximal building set, then for any i ∈ E,

β :=
∑
i̸∈F

zF = −
∑
|G|>1

(
|G| − 1

)
yG

is in the closure of the cone of strictly convex piecewise linear functions on ΣM [AHK18, Proposition 4.3,
Lemma 9.7]. However, β may not be in the closure of the σ-cone, e.g. whenM is Boolean of rank at least 3.
For comparisonof theσ-cone to the ample coneof thewonderful compactification, see [PP23, Remark 4.22].

APPENDIX A. COMBINATORICS OF THE BERGMAN FAN OF BOOLEAN POLYMATROIDS

In this appendix we describe the combinatorics of the Bergman fans of Boolean polymatroids, proving
in particular that they are the normal fans of polypermutohedra as stated in the introduction. We also give
a description of polypermutohedra as a Minkowski sum of simplices. Throughout this appendix, we let
π : Ẽ → E be a surjective map of finite sets, with associated Boolean polymatroid B(π) on E given by the
rank function rkB(π)(A) = |π−1(A)| for A ⊆ E. We write n for the cardinality of E.

A.1. The Bergman fan as a configuration space.

Definition A.1. Letw = (wi)i ∈ RẼ be a weight on the elements of Ẽ. Write Lowestπ(w) for the set of i ∈ Ẽ

such that i has minimal weight among the elements of π−1(π(i)) with respect to w. We equip Lowestπ(w)

with the natural partial order given by i ⪯ j if wi ≤ wj .

Adding a multiple of the all ones vector tow does not change Lowestπ(w), so Lowestπ(w) is well defined
forw ∈ RẼ/R(1, 1, . . . , 1).

Lemma A.2. Two points w,v ∈ RẼ/(1, 1, . . . , 1) lie in the relative interior of the same cone of the ΣB(π) if
and only if Lowestπ(v) = Lowestπ(w) as posets.

Proof. Recall that a cone σF,S of ΣB(π) is specified by a chain of sets F = {∅ ⊊ F1 ⊊ · · · ⊊ Fk ⊊ E} and a
set S ⊆ Ẽ such that S does not contain a fiber of π. The relative interior of σF,S contains w if and only if
the underlying set of Lowestπ(w) is equal to Ẽ \ S and i ≺ j whenever there exists r such that i ̸∈ Fr and
j ∈ Fr. Therefore LowestP (w) can be recovered from σF,A and vice versa. □
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A.2. The Bergman fan as the normal fan of a polytope. Recall that an ordered transversal of π is a sequence
s1, . . . , sn of elements of Ẽ such that each fiber of π contains exactly one element of the sequence.

Definition A.3. Given real numbers 0 ≤ c1 < c2 < . . . < cn, define the associated polypermutohe-
dron Q(π; c1, c2, . . . , cn) as the convex hull of the vectors vs1,s2,...,sn := c1es1 + c2es2 + . . . + cnesn , where
s1, s2, . . . , sn runs over all ordered transversals of π and ei ∈ RẼ is the standard basis vector of i ∈ Ẽ.

Lemma A.4. Let w = (wi)i ∈ RẼ be a weight on the elements of Ẽ, and let s1, s2, . . . , sn be an ordered
transversal of π. Denote by ⟨−,−⟩ the standard dot product on RẼ. Then the linear functional ⟨w,−⟩
achieves its minimum overQ(π; c1, c2, . . . , cn) at the vector vs1,s2,...,sn if and only if

(i) sj has minimum weight among the elements of π(π−1(sj)) with respect tow for all j, and

(ii) ws1 ≤ ws2 ≤ . . . ≤ wsn .

Proof. Suppose that vs1,s2,...,sn minimizes ⟨w,−⟩ overQ(π; c1, c2, . . . , cn). Assume contrary to (i) that there
is some j and r ∈ π(π−1(sj)) such thatwsj > wr. Then replacing sj with r gives another ordered transversal
of π whose corresponding vector has smaller dot product withw:

⟨w, vs1,...,sj ,...,sn⟩ = c1ws1 + . . .+ cjwsj + . . .+ cnwsn > c1ws1 + . . .+ cjwr + . . .+ cnwsn = ⟨w, vs1,...,r,...,sn⟩.

This proves (i). Now assume contrary to (ii) that there is some j such that wsj > wsj+1 . Then switching
the order of sj and sj+1 gives another ordered transversal, and thus another vector v′ ∈ Q(π; c1, c2, . . . , cn),
where by assumption ⟨w,vs1,s2,...,sn⟩ ≤ ⟨w,v′⟩. Thus cjwsj + cj+1wsj+1

≤ cjwsj+1
+ cj+1wsj , which contra-

dicts the fact that ab+ cd > ac+ bd whenever a > c and b > d. This proves (ii).

For the other direction, assume thatw satisfies the two conditions. If ⟨w,−⟩ achieves its minimum over
Q(π; c1, c2, . . . , cn) on a vector vs′1,s

′
2,...,s

′
n
, then by the first directionwemust have thatwsj = ws′j

. Therefore
⟨w,−⟩ also achieves it minimum on vs1,s2,...,sn . □

Proposition A.5. The inner normal fan ofQ(π; c1, c2, . . . , cn), modulo the all ones vector, is ΣB(π).

Proof. By Lemma A.4, the vertices of Q(π; c1, c2, . . . , cn) correspond to ordered transversals of π, and the
set of vertices on which a given linear functional ⟨w,−⟩ achieves its minimum is equivalent to the data of
LowestP (w). Therefore the proposition follows by Lemma A.2. □

A.3. Minkowski sums of simplices. For S ⊆ Ẽ, let∆S be the convex hull of the vectors ei, for i ∈ S.

Proposition A.6. The polytopeQ(π; 1, 2, . . . , n) is the Minkowski sum
∑

{i,j}⊆E ∆π−1({i,j}).

In the sum, we allow i = j. When π is a bijection, this recovers the description of the usual permutohe-
dron as the graphical zonotope of the complete graph.

Proof. The proof of Proposition A.5 shows that the inner normal fan of∆π−1(S) is a coarsening of ΣB(π) for
anyS ⊆ E. In particular, the inner normal fan of theMinkowski sum

∑
{i,j}⊆E ∆π−1({i,j}) is a coarsening of

ΣB(π). Wemay thenfind all vertices of theMinkowski sumby choosing amaximal cone ofΣB(π) andfinding
the vertex of the Minkowski sum on which any vector in the interior of this cone achieves its minimum.

The maximal cones of ΣB(π) correspond to maximal chains F = {∅ ⊊ F1 ⊊ · · · ⊊ Fk ⊊ E} of sub-
sets of E and subsets S ⊆ Ẽ such that |π−1(i) \ S| = 1 for all i. This data is equivalent to the data of an
ordered transversal s1, . . . , sn of π. Choose a maximal cone ofΣB(π) corresponding to an ordered transver-
sal s1, . . . , sn, and choose a vector in the relative interior of this cone. We can compute the vertex of the
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Minkowski sum onwhich this vector achieves itsminimumby adding up theminimal vertices of each sum-
mand. The minimal vertex of a summand of the form ∆π−1(i) is esk , where k is the unique element of Ẽ
such that π(sk) = i. The minimal vertex of a summand of the form ∆π−1({i,j}) for i ̸= j is esℓ , where ℓ is
the smaller index of the two elements of π−1({i, j}) ∩ {s1, . . . , sn}. We see that the minimal vertex of the
Minkowski sum is

∑n
i=1 iesi , as desired. □

Remark A.7. One can deduce from the theory of building sets, e.g., [Pos09, Proposition 7.5], that ΣB(π) is
the normal fan of the Minkowski sum

∑
∅≠S⊆E ∆π−1(S).
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