RANK FUNCTIONS AND INVARIANTS OF DELTA-MATROIDS

MATT LARSON

ABSTRACT. In this note, we give a rank function axiomatization for delta-matroids and study the corresponding rank generating function. We relate an evaluation of the rank generating function to the number of independent sets of the delta-matroid, and we prove a log-concavity result for that evaluation using the theory of Lorentzian polynomials.

1. INTRODUCTION

Let $[n, \overline{n}]$ denote the set $\{1, \ldots, n, \overline{1}, \ldots, \overline{n}\}$, equipped with the obvious involution (·). Let AdS_n be the set of *admissible subsets* of $[n, \overline{n}]$, i.e., subsets S that contain at most one of i and \overline{i} for each $i \in [n]$. Set $e_{\overline{i}} := -e_i \in \mathbb{R}^n$, and for each $S \in \operatorname{AdS}_n$, set $e_S = \sum_{a \in S} e_a$.

Definition 1.1. A delta-matroid D is a collection $\mathcal{F} \subset \operatorname{AdS}_n$ of admissible sets of size n, called the *feasible* sets of D, such that the polytope

$$P(D) := \operatorname{Conv}\{e_B : B \in \mathcal{F}\}$$

has all edges parallel to e_i or $e_i \pm e_j$, for some i, j. We say that D is even if all edges of P(D) are parallel to $e_i \pm e_j$.

Delta-matroids were introduced in [Bou87] by replacing the usual basis exchange axiom for matroids with one involving symmetric difference. They were defined independently in [CK88, DH86]. For the equivalence of the definition of delta-matroids in those works with the one given above, and for general properties of delta-matroids, see [BGW03, Chapter 4].

A delta-matroid is even if and only if all sets in $\{B \cap [n] : B \in \mathcal{F}\}$ have the same parity. Even deltamatroids enjoy nicer properties than arbitrary delta-matroids. For instance, they satisfy a version of the symmetric exchange axiom [Wen93].

There are many constructions of delta-matroids in the literature. Two of the most fundamental come from matroids: given a matroid M on [n], we can construct a delta-matroid on $[n, \overline{n}]$ whose feasible sets are the sets of the form $B \cup \overline{B^c}$, for B a basis of M. We can also construct a delta-matroid whose feasible sets are the sets of the form $I \cup \overline{I^c}$, for I independent in M. Additionally, there are delta-matroids corresponding to graphs [Duc92], graphs embedded in surfaces [CMNR19, CMNR19b], and points of a maximal orthogonal or symplectic Grassmannian. Delta-matroids arising from points of a maximal orthogonal or symplectic Grassmannian are called *realizable*. See [EFLS, Section 6.2] for a discussion of delta-matroids associated to points of a maximal orthogonal Grassmannian.

Given $S, T \in AdS_n$, we define $S \sqcup T = \{a \in S \cup T : \overline{a} \notin S \cup T\}$. A function $g \colon AdS_n \to \mathbb{R}$ is called *bisubmodular* if, for all $S, T \in AdS_n$,

$$f(S) + f(T) \ge f(S \cap T) + f(S \sqcup T).$$

There is a large literature on bisubmodular functions, beginning with [DW73]. They have been studied both from an optimization perspective [FI05, Fuj17] and from a polytopal perspective [FP94, Fuj14]. Additionally, bisubmodular functions are closely related to jump systems [BC95].

Date: June 14, 2023.

For a delta-matroid D, define a function $g_D \colon \mathrm{AdS}_n \to \mathbb{Z}$ by

$$g_D(S) = \max_{B \in \mathcal{F}} (|S \cap B| - |\overline{S} \cap B|).$$

We call g_D the rank function of D. Note that g_D may take negative values. The collection of feasible subsets of D is exactly $\{S : g_D(S) = n\}$, so D can be recovered from g_D .

Theorem 1.2. A function $g: \operatorname{AdS}_n \to \mathbb{Z}$ is the rank function of a delta-matroid if and only if

(1) $g(\emptyset) = 0$ (normalization),

(2) $|g(S)| \leq 1$ if |S| = 1 (boundedness),

(3) $g(S) + g(T) \ge g(S \cap T) + g(S \sqcup T)$ (bisubmodularity), and

(4) $g(S) \equiv |S| \pmod{2}$ (parity).

Furthermore, D is even if and only if

$$g_D(S) = \frac{g_D(S \cup i) + g_D(S \cup \overline{i})}{2} \text{ whenever } |S| = n - 1 \text{ and } \{i, \overline{i}\} \cap S = \emptyset.$$

The function g_D , as well as the observation that it is bisubmodular, has appeared before in the literature [Bou88, CK88]. For example, in [Bou88, Theorem 4.1] it is shown that, if D is represented by a point of the maximal symplectic Grassmannian, then g_D can be computed in terms of the rank of a certain matrix. It was known that delta-matroids admit a description in terms of certain bisubmodular functions. However, the precise characterization in Theorem 1.2 does not appear to have been known before. Indeed, Theorem 1.2 answers a special case of [ACEP20, Question 9.4].

In [Bou97, Bou98], Bouchet gave a rank-function axiomatization of delta-matroids in the more general setting of multimatroids. His rank function differs from ours — in Section 2.2, we discuss the relationship between his results and Theorem 1.2.

Basic operations operations on delta-matroids — like products, deletion, contraction, and projection — can be simply expressed in terms of rank functions. See Section 2.1.

One of the most important invariants of a matroid M of rank r on [n] is its Whitney rank generating function. If rk_M is the rank function of M, then the rank generating function is defined as

$$R_M(u,v) := \sum_{A \subset [n]} u^{r - \operatorname{rk}_M(A)} v^{|A| - \operatorname{rk}_M(A)}.$$

The more commonly used normalization is the *Tutte polynomial*, which is $R_M(u-1, v-1)$. The characterization of delta-matroids in terms of rank functions allows us to consider an analogously-defined invariant.

Definition 1.3. Let D be a delta-matroid on $[n, \overline{n}]$. Then we define

$$U_D(u,v) = \sum_{S \in \mathrm{AdS}_n} u^{n-|S|} v^{\frac{|S|-g_D(S)}{2}}$$

Note that the bisubmodularity of g_D implies that the restriction of g_D to the subsets of any fixed $S \in \operatorname{AdS}_n$ is submodular. The boundedness of g_D then implies that $|g_D(S)| \leq |S|$. Because of the parity requirement, $|S| - g_D(S)$ is divisible by 2. Therefore $U_D(u, v)$ is indeed a polynomial. The normalization $U_D(u-1, v-1)$ is more analogous to the Tutte polynomial, but it can have negative coefficients. However, the polynomial $U_D(u, v - 1)$ has non-negative coefficients (as follows, e.g., from Theorem 3.8).

The U-polynomial of a delta-matroid was introduced by Eur, Fink, Spink, and the author in [EFLS, Definition 1.4] in terms of a Tutte polynomial-like recursion; see Proposition 3.1 for a proof that Definition 1.3 agrees with the recursive definition considered there. The specialization $U_D(0, v)$ is the *interlace polynomial* of D, which was introduced in [ABS04] for graphs and in [BH14] for general delta-matroids. See [Mor17] for a survey on the properties of the interlace polynomial.

 $\mathbf{2}$

Various Tutte polynomial-like invariants of delta-matroids have been considered in the literature, such as the Bollobás–Riordan polynomial and its specializations [BR01]. In [KMT18], a detailed analysis of delta-matroid polynomials which satisfy a deletion-contraction formula is carried out. Set $\sigma_D(A) = \frac{|A|}{2} + \frac{g_D(A)+g_D(\bar{A})}{4}$ for $A \subset [n]$. Then in [KMT18], the polynomial

$$\sum_{A \subset [n]} (x-1)^{\sigma_D([n]) - \sigma_D(A)} (y-1)^{|A| - \sigma_D(A)}$$

is shown to be, in an appropriate sense, the universal invariant of delta-matroids which satisfies a deletioncontraction formula. This polynomial is a specialization of the Bollobás–Riordan polynomial. In [EMGM⁺22], it is shown that this polynomial has several nice combinatorial properties.

Example 1.4. [EFLS, Example 5.5 and 5.6] Let M be a matroid of rank r on [n], and let $S = S^+ \cup \overline{S^-} \in \operatorname{AdS}_n$ be an admissible set with $S^+, S^- \subset [n]$. Set $V = \{i \in [n] : S \cap \{i, \overline{i}\} = \emptyset\}$. Above, we gave two examples of delta-matroids constructed from M.

(1) Let D be the delta-matroid arising from the independent sets of M. Then $g_D(S) = |S| + 2 \operatorname{rk}_M(S^+) - 2|S^+|$, and

$$U_D(u,v) = (u+1)^{n-r} R_M\left(u+3, \frac{2u+v+2}{u+1}\right).$$

(2) Let D be the delta-matroid arising from the bases of M. Then $g_D(S) = |S| - 2r + 2 \operatorname{rk}_M(S^+ \cup V) - 2|S^+| + 2 \operatorname{rk}_M(S^+)$, and

$$U_D(u,v) = \sum_{T \subset S \subset [n]} u^{|S \setminus T|} v^{r - \operatorname{rk}_M(S) + |T| - \operatorname{rk}_M(T)}.$$

We study the U-polynomial as a delta-matroid analogue of the rank generating function of a matroid. For a matroid M, the evaluation $R_M(u, 0)$ is essentially the f-vector of the independence complex of the matroid, i.e., it counts the number of independent sets of M of a given size. The coefficients of the Tutte polynomial $R_M(u-1, v-1)$ can be interpreted as counting bases of M according to their internal and external activities, certain statistics that depend on an ordering of the ground set. See [Bac]. This shows that $R_M(u, -1)$, the (unsigned) characteristic polynomial of M, is essentially the f-vector of the broken circuit complex of M.

A set $S \in AdS_n$ is *independent* if it is contained in a feasible set of a delta-matroid D. In [Bou97], Bouchet gave an axiomatization of delta-matroids in terms of their independent sets. The independent sets form a simplicial complex, called the *independence complex* of D. We relate $U_D(u, 0)$ to the f-vector of the independence complex of D (Proposition 3.4), which gives linear inequalities between the coefficients of $U_D(u, 0)$. We give a combinatorial interpretation of the coefficients of $U_D(u, v - 1)$ as counting the number of independent sets of D of a given size according to a delta-matroid version of activity (Theorem 3.8). This shows that $U_D(u, -1)$ is essentially the f-vector of a certain simplicial complex associated to D.

Following a tradition in matroid theory (see, e.g., [Mas72]), and inspired by the ultra log-concavity of $R_M(u,0)$ [ALGV, BH20], we make three log-concavity conjectures for $U_D(u,0)$. These conjectures state the sequence of the number of independent sets of a delta-matroid of a given size satisfies log-concavity properties.

Conjecture 1.5. Let D be a delta-matroid on $[n, \overline{n}]$, and let $U_D(u, 0) = a_n + a_{n-1}u + \cdots + a_0u^n$. Then, for any $k \in \{1, \ldots, n-1\}$,

(1)
$$a_k^2 \ge \frac{n-k+1}{n-k}a_{k+1}a_{k-1},$$

(2) $a_k^2 \ge \frac{2n-k+1}{2n-k}\frac{k+1}{k}a_{k+1}a_{k-1},$ and

Conjecture 1.5(1) follows from [EFLS, Conjecture 1.5], and it is proven in [EFLS, Theorem B] when Dhas an *enveloping matroid* (see Definition 3.11). This is a technical condition which is satisfied by many commonly occurring delta-matroids, including all realizable delta-matroids and delta-matroids arising from matroids (although not all delta-matroids, see [Bou97, Section 4] and [EFLS, Example 6.11]). The proof uses algebro-geometric methods. Here we prove a special case of Conjecture 1.5(2).

Theorem 1.6. Let D be a delta-matroid on $[n,\overline{n}]$ which has an enveloping matroid. Let $U_D(u,0) = a_n + a_{n-1}u + \cdots + a_0u^n$. Then, for any $k \in \{1, \ldots, n-1\}$, $a_k^2 \geq \frac{2n-k+1}{2n-k}\frac{k+1}{k}a_{k+1}a_{k-1}$, i.e., Conjecture 1.5(2) holds.

Our argument uses the theory of Lorentzian polynomials [BH20]. We strengthen Theorem 1.6 by proving that a generating function for the independent sets of D is Lorentzian (Theorem 3.14), which implies the desired log-concavity statement. We deduce that this generating function is Lorentzian from the fact that the Potts model partition function of an enveloping matroid is Lorentzian [BH20, Theorem 4.10].

When D is the delta-matroid arising from the independent sets of a matroid, Conjecture 1.5(3) follows from the ultra log-concavity of the number of independent sets of that matroid [ALGV, BH20]. When D is the delta-matroid arising from the bases of a matroid M on [n], which has an enveloping matroid by [EFLS, Proposition 6.10], Theorem 1.6 gives a new log-concavity result. If we set

$$a_k = |\{T \subset S \subset [n] : T \text{ independent in } M \text{ and } S \text{ spanning in } M, |S \setminus T| = n - k\}|,$$

then Theorem 1.6 gives that $a_k^2 \ge \frac{2n-k+1}{2n-k} \frac{k+1}{k} a_{k+1} a_{k-1}$ for $k \in \{1, \ldots, n-1\}$. Acknowledgements: We thank Nima Anari, Christopher Eur, Satoru Fujishige, Steven Noble, and Hunter Spink for enlightening conversations, and we thank Christopher Eur, Steven Noble, and Shiyue Li for helpful comments on a previous version of this paper. The author is supported by an NDSEG fellowship.

2. Rank functions of delta-matroids

The proof of Theorem 1.2 goes by way of a polytopal description of normalized bisubmodular functions, which we now recall. To a function $f: \operatorname{AdS}_n \to \mathbb{R}$ with $f(\emptyset) = 0$, we associate the polytope

$$P(f) = \{x : \langle e_S, x \rangle \le f(S) \text{ for all non-empty } S \in AdS_n\}.$$

By [BC95, Theorem 4.5] (or [ACEP20, Theorem 5.2]), P(f) has all edges parallel to e_i or $e_i \pm e_j$ if and only if f is bisubmodular. In this case, P(f) is a lattice polytope if and only if f is integer-valued. For a normalized (i.e., $f(\emptyset) = 0$) bisubmodular function f, we can recover f from P(f) via the formula

$$f(S) = \max_{x \in P(f)} \langle e_S, x \rangle.$$

Under this dictionary, the bisubmodular function corresponding to the dilate kP(f) is kf, and the bisubmodular function corresponding to the Minkowski sum P(f) + P(g) is f + g.

Proof of Theorem 1.2. By the polyhedral description of normalized bisubmodular functions, for each deltamatroid D there is a unique normalized bisubmodular function g such that P(D) = P(q). We show that the conditions on a normalized bisubmodular function g for P(g) to have all vertices in $\{-1,1\}^n$ are exactly those given in Theorem 1.2, namely that $|g(S)| \leq 1$ when |S| = 1 and $g(S) \equiv |S| \pmod{2}$.

The polytope P(g) has all vertices in $\{\pm 1\}^n$ if and only if $\frac{1}{2}(P(g) + (1, \ldots, 1))$ is a lattice polytope which is contained in $[0,1]^n$. The normalized bisubmodular function h corresponding to the point $(1,\ldots,1)$ takes value $h(S) = |S^+| - |S^-|$ on an admissible set of the form $S = S^+ \cup \overline{S^-}$, with $S^+, S^- \subset [n]$. The polytope $\frac{1}{2}(P(g) + (1, \dots, 1))$ is P(f), where f is the normalized bisubmodular function defined by $f := \frac{1}{2}(g+h)$. We note that P(f) is a lattice polytope which is contained in $[0, 1]^n$ if and only if

(1) $f(i) \in \{0, 1\}$ and $f(\overline{i}) \in \{-1, 0\}$, and

(2) f is integer-valued.

A normalized bisubmodular function f satisfies these conditions if and only if g satisfies the conditions of Theorem 1.2, giving the characterization of rank functions of delta-matroids.

By [ACEP20, Example 5.2.3], the polytope $P(g_D) = P(D)$ has all edges parallel to $e_i \pm e_j$ if and only if g_D satisfies the condition

$$g_D(S) = \frac{g_D(S \cup i) + g_D(S \cup \overline{i})}{2} \text{ whenever } |S| = n - 1 \text{ and } \{i, \overline{i}\} \cap S = \emptyset.$$

This gives the characterization of even delta-matroids.

2.1. Compatibility with delta-matroid operations. In this section, we consider several operations on delta-matroids, and we show that the rank function behaves in a simple way under these operations. First we consider minor operations on delta-matroids — contraction, deletion, and projection.

Definition 2.1. Let *D* be a delta-matroid on $[n, \overline{n}]$ with feasible sets \mathcal{F} , and let $i \in [n]$. We say that *i* is a *loop* of *D* if no feasible set contains *i*, and we say that *i* is a *coloop* if every feasible set contains *i*.

- (1) If i is not a loop of D, then the contraction D/i is the delta-matroid with feasible sets $B \setminus i$, for $B \in \mathcal{F}$ containing i.
- (2) If i is not a coloop of D, then the deletion $D \setminus i$ is the delta-matroid with feasible sets $B \setminus \overline{i}$, for $B \in \mathcal{F}$ containing \overline{i} .
- (3) The projection D(i) is the delta-matroid with feasible sets $B \setminus \{i, \overline{i}\}$ for $B \in \mathcal{F}$.
- (4) If i is a loop or coloop, then set $D/i = D \setminus i = D(i)$.

For $A \subset [n]$, we define $D/A, D \setminus A$, and D(A) to be the delta-matroids on $[n, \bar{n}] \setminus (A \cup \bar{A})$ obtained by successively contracting, deleting, or projecting away from all elements of A. Contractions, deletions, and projections at disjoint sets commute with each other, so this is well defined. If A and B are disjoint subsets of [n], then $D/A \setminus B$ is the delta-matroid obtained by contracting A and then deleting B, which is the same as first deleting B and then contracting A.

First we describe the rank function of projections. The formula is analogous to the formula for the rank function of a matroid deletion.

Proposition 2.2. Let D be a delta-matroid on $[n,\overline{n}]$, and let $A \subset [n]$. For each $S \in AdS_n$ disjoint from $A \cup \overline{A}$, $g_{D(A)}(S) = g_D(S)$.

Proof. As S is disjoint from $A \cup \overline{A}$, $|B \cap S| - |B \cap \overline{S}|$ depends only on $B \setminus (A \cup \overline{A})$. The feasible sets of D(A) are given by $B \setminus (A \cup \overline{A})$ for B a feasible set of D.

The rank functions of the contractions and deletions are described by the following result. The formula is analogous to the formula for the rank function of a matroid contraction.

Proposition 2.3. Let D be a delta-matroid on $[n,\overline{n}]$. Let $A, B \subset [n]$ be disjoint subsets, and let $S \in AdS_n$ be disjoint from $A \cup B \cup \overline{A} \cup \overline{B}$. Then $g_{D/A \setminus B}(S) = g_D(S \cup A \cup \overline{B}) - g_D(A \cup \overline{B})$.

Before proving this, we will need the following property of delta-matroids. It follows, for instance, from the greedy algorithm description of delta-matroids in [BC95].

Proposition 2.4. Let D be a delta-matroid on $[n, \overline{n}]$, and let $S \subset T \in AdS_n$. Let \mathcal{F}_S be the collection of feasible sets B of D that maximize $|S \cap B|$, i.e., have $|S \cap B| = \max_{B' \in \mathcal{F}} |S \cap B'|$. Then

$$\max_{B\in\mathcal{F}_S}|T\cap B| = \max_{B\in\mathcal{F}}|T\cap B|$$

First we consider the case when we delete or contract a single element.

Lemma 2.5. Let D be a delta-matroid on $[n, \overline{n}]$, and let $i \in [n]$. Then

- (1) If i is not a loop, then $g_{D/i}(S) = g_D(S \cup i) 1$,
- (2) If i is not a coloop, then $g_{D\setminus i}(S) = g_D(S \cup \overline{i}) 1$, and

Proof. We do the case of contraction; the case of deletion is identical. Assume that i is not a loop, and let \mathcal{F}_i denote the set of feasible sets of D which contain i. Note that \mathcal{F}_i is non-empty, so it is the collection of feasible sets B of D which maximize $|\{i\} \cap B|$. For any $S \in \operatorname{AdS}_n$ with $S \cap \{i, \overline{i}\} = \emptyset$, by Proposition 2.4 we have that

$$\max_{B \in \mathcal{F}} |(S \cup i) \cap B| = \max_{B \in \mathcal{F}_i} |(S \cup i) \cap B|$$

For any B, $|(S \cup i) \cap B| - |\overline{(S \cup i)} \cap B| = 2|(S \cup i) \cap B| - |S \cup i|$, so we see that

$$\max_{B\in\mathcal{F}}(|(S\cup i)\cap B|-|\overline{(S\cup i)}\cap B|) = \max_{B\in\mathcal{F}_i}(|(S\cup i)\cap B|-|\overline{(S\cup i)}\cap B|).$$

The left-hand side is equal to $g_D(S \cup i)$, and the right-hand side is equal to $g_{D/i}(S) + 1$.

Proof of Proposition 2.3. First note that $g_D(i) = 1$ if *i* is not a loop and is -1 if *i* is a loop, and similarly $g_D(\overline{i}) = 1$ if *i* is not a coloop and is -1 is *i* is a coloop. So Lemma 2.5 implies the result holds when |S| = 1.

We induct on the size of $A \cup B$. We consider the case of adding an element $i \in [n]$ to A; the case of adding it to B is identical. We compute:

$$g_{D/(A\cup i)\setminus B}(S) = g_{D/A\setminus B}(S\cup i) - g_{D/A\setminus B}(i)$$

= $g_D(S\cup A\cup \overline{B}\cup i) - g_D(A\cup \overline{B}) - (g_D(A\cup \overline{B}\cup i) - g_D(A\cup \overline{B}))$
= $g_D(S\cup (A\cup i)\cup \overline{B}) - g_D((A\cup i)\cup \overline{B}).$

For two non-negative integers n_1, n_2 , identify the disjoint union of $[n_1]$ and $[n_2]$ with $[n_1 + n_2]$. Given two delta-matroids D_1, D_2 on $[n_1]$ and $[n_2]$, let $D_1 \times D_2$ be the delta-matroid on $[n_1 + n_2]$ whose feasible sets are $B_1 \cup B_2$, for B_j a feasible set of D_j . Then we have the following description of the rank function of $D_1 \times D_2$.

Proposition 2.6. Let D_1, D_2 be delta-matroids on $[n_1]$ and $[n_2]$, and let $S = S_1 \cup S_2$ be an admissible subset of $[n_1 + n_2, \overline{n_1 + n_2}]$, with $S_1 \subset [n_1, \overline{n_1}]$ and $S_2 \subset [n_2, \overline{n_2}]$. Then $g_{D_1 \times D_2}(S) = g_{D_1}(S_1) + g_{D_2}(S_2)$.

Proof. Let B_1 be a feasible set of D_1 with $g_{D_1}(S_1) = |S_1 \cap B_1| - |\overline{S_1} \cap B_1|$, and let B_2 be a feasible set of D_2 with $g_{D_2}(S_2) = |S_2 \cap B_2| - |\overline{S_2} \cap B_2|$. Then $B_1 \cup B_2$ maximizes $B \mapsto |S \cap B| - |\overline{S} \cap B|$, and so $g_{D_1 \times D_2}(S) = |S_1 \cap B_1| - |\overline{S_1} \cap B_1| + |S_2 \cap B_2| - |\overline{S_2} \cap B_2| = g_{D_1}(S_1) + g_{D_2}(S_2)$.

We now study how the rank function behaves under the operation of *twisting*. Let W be the *signed* permutation group, the subgroup of the symmetric group on $[n, \overline{n}]$ which preserves AdS_n . In other words, W consists of permutations w such that $w(\overline{i}) = \overline{w(i)}$. As delta-matroids are collections of admissible sets, W acts on the set of delta-matroids on $[n, \overline{n}]$. This action is usually called twisting in the delta-matroid literature.

Proposition 2.7. Let D be a delta-matroid on $[n, \overline{n}]$, and let $w \in W$. Then $g_{w \cdot D}(S) = g_D(w^{-1} \cdot S)$.

Proof. Note that, for B a feasible set of D, $|S \cap (w \cdot B)| - |\overline{S} \cap (w \cdot B)| = |(w^{-1} \cdot S) \cap B| - |\overline{(w^{-1} \cdot S)} \cap B|$, which implies the result.

Let $S \in AdS_n$ be an admissible set of size n. For any delta-matroid D on $[n, \overline{n}]$, let r be the maximal value of $|S \cap B|$. Then $\{S \cap B : B \in \mathcal{F}, |S \cap B| = r\}$ is the set of bases of a matroid on S. When S = [n], this is sometimes called the upper matroid of D. We describe the rank function of this matroid in terms of the rank function of D.

Proposition 2.8. Let $S \in AdS_n$ be an admissible set of size n, and let D be a delta-matroid on $[n, \overline{n}]$ with $r = \max_{B \in \mathcal{F}} |S \cap B|$. The matroid M on S whose bases are $\{S \cap B \colon B \in \mathcal{F}, |S \cap B| = r\}$ has rank function

$$\operatorname{rk}_M(T) = \frac{g_D(T) + |T|}{2}$$

Proof. Let \mathcal{F}_S be the collection of feasible sets B with $|S \cap B| = r$. Then we have that

$$\operatorname{rk}_{M}(T) = \max_{B \in \mathcal{F}_{S}} |T \cap B| \le \max_{B \in \mathcal{F}} |T \cap B| = \frac{g_{D}(T) + |T|}{2}$$

On the other hand, by Proposition 2.4 there is a feasible set B which maximizes $|T \cap B|$ and has $|S \cap B| = r$, so we have equality.

2.2. An alternative normalization. The results of the previous section, particularly Proposition 2.8, suggest that an alternative normalization of the rank function of a delta-matroid has nice properties. Set

$$h_D(S) := \frac{g_D(S) + |S|}{2}.$$

The function $h_D(S)$ is integer-valued and bisubmodular, and the polytope it defines is $P(h_D) = \frac{1}{2}(P(D) + \Box)$, where $\Box = [-1, 1]^n$ is the cube. This is because the bisubmodular function corresponding to \Box is $S \mapsto |S|$. Note that the function h_D is non-negative and increasing, in the sense that if $S \subset T \in AdS_n$, then $h_D(S) \leq h_D(T)$. Theorem 1.2 implies the following characterization of the functions arising as h_D for some deltamatroid D.

Corollary 2.9. A function $h: \operatorname{AdS}_n \to \mathbb{Z}$ is equal to h_D for some delta-matroid D if and only if

- (1) $h(\emptyset) = 0$ (normalization),
- (2) $h(S) \in \{0, 1\}$ if |S| = 1 (boundedness),
- (3) $h(S) + h(T) \ge h(S \cap T) + h(S \sqcup T) + |S \cap \overline{T}|/2.$

Indeed, these are exactly the conditions we need for g(S) := 2h(S) - |S| to satisfy the conditions in Theorem 1.2.

The function h_D was studied by Bouchet in [Bou97, Bou98] in the more general setting of multimatroids. The following characterization of the functions h_D follows from [Bou97, Proposition 4.2]:

Proposition 2.10. A function $h: \operatorname{AdS}_n \to \mathbb{Z}$ is equal to h_D for some delta-matroid D if and only if

- (1) $h(\emptyset) = 0$,
- (2) $h(S) \le h(S \cup a) \le h(S) + 1$ if $S \cup a$ is admissible,
- (3) $h(S) + h(T) \ge h(S \cap T) + h(S \cup T)$ if $S \cup T$ is admissible, and
- (4) $h(S \cup i) + h(S \cup \bar{i}) \ge 2h(S) + 1$ if $S \cap \{i, \bar{i}\} = \emptyset$.

In [Bou98, Theorem 2.16], the following characterization of the functions h_D is stated with a reference to an unpublished paper of Allys.

Proposition 2.11. A function $h: \operatorname{AdS}_n \to \mathbb{Z}$ is equal to h_D for some delta-matroid D if and only if

(1) $h(\emptyset) = 0$,

- (2) $h(S) \leq h(S \cup a) \leq h(S) + 1$ if $S \cup a$ is admissible, and
- (3) $h(S) + h(T) \ge h(S \cap T) + h(S \sqcup T) + |S \cap \overline{T}|.$

It is easy to see directly that a function which satisfies the hypotheses of Corollary 2.9 satisfies the hypotheses of Proposition 2.10 or Proposition 2.11. However, the converse does not seem obvious.

3. The U-polynomial

We now study the U-polynomial of delta-matroids. We prove the following recursion for $U_D(u, v)$, which was the original definition of the U-polynomial in [EFLS, Definition 1.4].

Proposition 3.1. If n = 0, the $U_D(u, v) = 1$. For any $i \in [n]$, the U-polynomial satisfies

$$U_D(u,v) = \begin{cases} U_{D/i}(u,v) + U_{D\setminus i}(u,v) + uU_{D(i)}(u,v), & i \text{ is neither a loop nor a coloop} \\ (u+v+1) \cdot U_{D\setminus i}(u,v), & i \text{ is a loop or a coloop.} \end{cases}$$

First we study the behavior of the U-polynomial under products.

Lemma 3.2. Let D_1, D_2 be delta-matroids on $[n_1, \overline{n}_1]$ and $[n_2, \overline{n}_2]$. Then $U_{D_1 \times D_2}(u, v) = U_{D_1}(u, v)U_{D_2}(u, v)$. *Proof.* We compute:

$$U_{D_{1}}(u,v)U_{D_{2}}(u,v) = \left(\sum_{S_{1}\in \mathrm{AdS}_{n_{1}}} u^{n_{1}-|S_{1}|} v^{\frac{|S_{1}|-g_{D_{1}}(S_{1})}{2}}\right) \left(\sum_{S_{2}\in \mathrm{AdS}_{n_{2}}} u^{n_{2}-|S_{2}|} v^{\frac{|S_{2}|-g_{D_{2}}(S_{2})}{2}}\right)$$
$$= \sum_{(S_{1},S_{2})} u^{n_{1}+n_{2}-|S_{1}|-|S_{2}|} v^{\frac{|S_{1}|+|S_{2}|-g_{D_{1}}(S_{1})-g_{D_{2}}(S_{2})}{2}}$$
$$= \sum_{(S_{1},S_{2})} u^{n_{1}+n_{2}-|S_{1}|-|S_{2}|} v^{\frac{|S_{1}|+|S_{2}|-g_{D_{1}}\times D_{2}}{2}}$$
$$= U_{D_{1}\times D_{2}}(u,v),$$

where the third equality is Proposition 2.6.

Proof of Proposition 3.1. If n = 0, then the only admissible subset of $[n, \overline{n}]$ is the empty set, and $g_D(\emptyset) = 0$, so $U_D(u, v) = 1$. Now choose some $i \in [n]$.

First suppose that *i* is neither a loop nor a coloop. The admissible subsets of $[n, \overline{n}]$ are partitioned into sets containing *i*, sets containing \overline{i} , and sets containing neither *i* nor \overline{i} . If *S* contains *i*, then $u^{n-|S|}v^{\frac{|S|-g_D(S)}{2}} = u^{n-1-|S\setminus i|}v^{\frac{|S\setminus i|-g_D(i)}{2}}$. If *S* contains \overline{i} , then $u^{n-|S|}v^{\frac{|S|-g_D(S)}{2}} = u^{n-1-|S\setminus i|}v^{\frac{|S\setminus i|-g_D(i)(S\setminus i)}{2}}$. If *S* contains neither *i* not \overline{i} , then $u^{n-|S|}v^{\frac{|S|-g_D(S)}{2}} = u \cdot u^{n-1-|S|}v^{\frac{|S|-g_D(i)(S\setminus i)}{2}}$. Adding these up implies the recursion in this case.

If *i* is a loop or a coloop, then *D* is the product of $D \setminus i$ with a delta-matroid on 1 element with 1 feasible set. We observe that *U*-polynomial of a delta-matroid on 1 element with 1 feasible set is u + v + 1, and so Lemma 3.2 implies the recursion in this case.

3.1. The independence complex of a delta-matroid. In this section, we introduce the independence complex of a delta-matroid and use it to study the *U*-polynomial.

Definition 3.3. We say that $S \in AdS_n$ is *independent* in D if $g_D(S) = |S|$, or, equivalently, if S is contained in a feasible subset of D. The *independence complex* of D is the simplicial complex on $[n, \overline{n}]$ whose facets are given by the feasible sets of D.

Let $S \in AdS_n$, and let $T = \{i \in [n] : S \cap \{i, \overline{i}\} = \emptyset\}$. Note S is independent if and only if S is a feasible set of D(T).

The following result is immediate from the definition of $U_D(u, 0)$.

Proposition 3.4. Let $f_i(D)$ be the number of *i*-dimensional faces of the independence complex of *D*. Then $U_D(u,0) = f_{n-1}(D) + f_{n-2}(D)u + \cdots + f_{-1}(D)u^n$.

Note that the f-vector of a pure simplicial complex, like the independence complex of a delta-matroid, is a pure O-sequence. Then [Hib89] gives the following inequalities.

Corollary 3.5. Let $U_D(u,0) = a_n + a_{n-1}u + \cdots + a_0u^n$. Then (a_0,\ldots,a_n) is the *f*-vector of a pure simplicial complex. In particular, $a_i \leq a_{n-i}$ for $i \leq n/2$ and $a_0 \leq a_1 \leq \cdots \leq a_{\lfloor \frac{n+1}{2} \rfloor}$.

Proposition 3.4 is a delta-matroid analogue of the fact that, for a matroid M, the coefficients of $R_M(u,0)$, when written backwards, are the face numbers of the independence complex of M. The independence complex of a matroid is shellable [Bjö92], which is reflected in the fact that $R_M(u-1,0)$ has non-negative coefficients. The independence complex of a delta-matroid is not in general shellable or Cohen-Macaulay, and $U_D(u-1,0)$ can have negative coefficients.

Recall that $\Box = [-1,1]^n$ is the cube. The map $S \mapsto e_S$ induces a bijection between AdS_n and lattice points of \Box . We use this to give a polytopal description of the independent sets of D, which will be useful in the sequel.

Proposition 3.6. The map $S \mapsto e_S$ induces a bijection between independent sets of D and lattice points in $\frac{1}{2}(P(D) + \Box)$.

Proof. If S is independent in D, then there is $T \in AdS_n$ such that $S \cup T \in \mathcal{F}$. Then $e_S = \frac{1}{2}(e_{S \cup T} + e_{S \cup \overline{T}})$, so e_S lies in $\frac{1}{2}(P(D) + \Box)$.

The correspondence between normalized bisubmodular functions and polytopes gives that

$$\frac{1}{2}(P(D) + \Box) = \left\{ x : \langle e_S, x \rangle \le \frac{g_D(S) + |S|}{2} \right\}.$$

If S is not independent, then e_S violates the inequality $\langle e_S, e_S \rangle \leq \frac{g_D(S) + |S|}{2}$, so e_S does not lie in $\frac{1}{2}(P(D) + \Box)$.

3.2. The activity expansion of the U-polynomial. We now discuss an expansion of $U_D(u, v - 1)$ in terms of a statistic associated to each independent set of a delta-matroid D, similar to the expansion of the Tutte polynomial of a matroid in terms of basis activities. We rely heavily on the work of Morse [Mor19], who gave such an expansion for the interlace polynomial $U_D(0, v - 1)$. Throughout we fix the ordering $1 < 2 < \cdots < n$ on [n]. For $S \in AdS_n$, let $\underline{S} \subset [n]$ denote the unsigned version of S, i.e., the image of S under the quotient of $[n, \overline{n}]$ by the involution.

Definition 3.7. Let *B* be a feasible set in a delta-matroid *D*. We say that $i \in [n]$ is *B*-orientable if the symmetric difference $B\Delta\{i, \overline{i}\}$ is not a feasible set of *D*. We say that *i* is *B*-active if *i* is *B*-orientable and there is no j < i with $B\Delta\{i, j, \overline{i}, \overline{j}\}$ a feasible set of *D*. For an independent set *I* of *D*, we say that $i \in \underline{I}$ is *I*-active if *i* is *I*-active in the projection $D([n] \setminus \underline{I})$. Let a(I) denote the number of $i \in \underline{I}$ which are *I*-active.

Theorem 3.8. Let D be a delta-matroid on $[n, \bar{n}]$. Then

$$U_D(u, v-1) = \sum_{I \text{ independent in } D} u^{n-|I|} v^{a(I)}.$$

Proof. By [Mor19, Corollary 5.3], this holds after we evaluate at u = 0 for any delta-matroid D. By [EFLS, Proposition 5.2], we have that

$$U_D(u, v - 1) = \sum_{S \subset [n]} u^{n - |S|} U_{D([n] \setminus S)}(0, v - 1).$$

The result follows because each independent set I is a feasible set of exactly one projection of D. \Box

Theorem 3.8 implies that the coefficient of u^{n-i} in $U_D(u, -1)$ counts the number of independent sets of size *i* with a(I) = 0. This is analogous to how the coefficient of u^{r-i} in $R_M(u, -1)$ counts the number of independent sets of external activity zero in a matroid M, which form the faces of dimension i - 1 in the broken circuit complex of M [Bac]. This interpretation in terms of a simplicial complex generalizes to delta-matroids.

Proposition 3.9. The independent sets I of D with a(I) = 0 form a simplicial complex on $[n, \bar{n}]$.

Proof. It suffices to check that if i is not B-active for some feasible set B of D and $S \subset [n] \setminus i$, then i is not active for $B \setminus (S \cup \overline{S})$. Because i is not B-active, either $B\Delta\{i, \overline{i}\}$ is feasible (which remains true after we project away from S), or there is j < i such that $B\Delta\{i, j, \overline{i}, \overline{j}\}$ is feasible. If $j \notin S$, then this remains true after we project away from S. If $j \in S$, then i is not $B \setminus (S \cup \overline{S})$ -orientable. \Box

This complex can be complicated; for instance, its dimension is not easy to predict. The following example shows that the complex defined above need not be pure, so we cannot use it to deduce that $U_D(u, -1)$ is pure O-sequence as in Corollary 3.5.

Example 3.10. Let *D* be the delta-matroid on $[3, \overline{3}]$ with feasible sets $\{1, \overline{2}, \overline{3}\}, \{\overline{1}, 2, \overline{3}\}, \text{and } \{\overline{1}, \overline{2}, 3\}$. Every element of $[3, \overline{3}]$ has no active elements, $\{\overline{1}, 2\}, \{\overline{1}, \overline{2}\}, \{\overline{2}, 3\}, \{\overline{2}, \overline{3}\}, \{\overline{1}, 3\}, \text{ and } \{\overline{1}, \overline{3}\}$ are the independent sets of size 2 with no active elements, and every feasible set has an active element. The complex defined in Proposition 3.9 has *f*-vector (1, 6, 6), so $U_D(u, -1) = 6u + 6u^2 + u^3$. This complex is not pure because 1 is not contained in any facet.

3.3. Enveloping matroids. We now recall the definition of an enveloping matroid of a delta-matroid, which was introduced for algebro-geometric reasons in [EFLS, Section 6]. A closely related notion was considered in [Bou97].

For $S \subseteq [n, \bar{n}]$, let u_S denote the corresponding indicator vector in $\mathbb{R}^{[n,\bar{n}]}$. For a matroid M on $[n, \bar{n}]$, let $P(M) = \operatorname{Conv}\{u_B : B \text{ basis of } M\}$, and let $IP(M) = \operatorname{Conv}\{u_S : S \text{ independent in } M\}$.

Definition 3.11. Let env: $\mathbb{R}^{[n,\overline{n}]} \to \mathbb{R}^n$ be the map given by $(x_1, \ldots, x_n, x_{\overline{1}}, \ldots, x_{\overline{n}}) \mapsto (x_1 - x_{\overline{1}}, \ldots, x_n - x_{\overline{n}})$. Let D be a delta-matroid on $[n,\overline{n}]$, and let M be a matroid on $[n,\overline{n}]$. We say that M is an *enveloping matroid* for D if env(P(M)) = P(D).

Note that enveloping matroids necessarily have rank n. In [EFLS, Section 6.3], it is shown that many different types of delta-matroids have enveloping matroids, such as realizable delta-matroids, delta-matroids arising from the independent sets or bases of a matroid, and delta-matroids associated to graphs or embedded graphs. We will need the following property of enveloping matroids.

Proposition 3.12. Let M be an enveloping matroid for a delta-matroid D on $[n,\overline{n}]$. Let $S \in AdS_n$ be an admissible set. Then S is independent in M if and only if it is independent in D.

Proof. If $S \in AdS_n$, then $env(u_S) = e_S$, and S is the only admissible set with this property. Furthermore, if $S \in AdS_n$ has size n, then u_S is the only indicator vector of a subset of $[n, \bar{n}]$ of size n which is a preimage of e_S under env. Because env(P(M)) = P(D), we see that if B is a feasible set of D, then B is a basis for M. This implies that the independent sets in D are independent in M.

By [EFLS, Lemma 7.6], $env(IP(M)) = \frac{1}{2}(P(D) + \Box)$. If S is admissible and independent in M, then $env(u_S) = e_S \in \frac{1}{2}(P(D) + \Box)$, so by Proposition 3.6, S is independent in D.

3.4. Lorentzian polynomials. For a multi-index $\mathbf{m} = (m_0, m_1, ...)$, let $w^{\mathbf{m}} = w_0^{m_0} w_1^{m_1} \cdots$. A homogeneous polynomial $f(w_0, w_1, ...)$ of degree d with real coefficients is said to be *strictly Lorentzian* if all its coefficients are positive, and the quadratic form obtained by taking d-2 partial derivatives is nondegenerate with exactly one positive eigenvalue. We say that f is *Lorentzian* if it is a coefficient-wise limit of

strictly Lorentzian polynomials. Lorentzian polynomials enjoy strong log-concavity properties, and the class of Lorentzian polynomials is preserved under many natural operations.

The following lemma is a special case of [RSW, Proposition 3.3]. Alternatively, it can be deduced from the proof of [BH20, Corollary 3.5]. We thank Nima Anari for discussing this lemma with us.

Lemma 3.13. For a polynomial $f(w_0, w_1, \dots) = \sum_{m} c_m w^m$, let

$$\overline{f}(w_0, w_1, \dots) = \sum_{\boldsymbol{m}: m_i \leq 1 \text{ for } i \neq 0} c_{\boldsymbol{m}} w^{\boldsymbol{m}}$$

If f is Lorentzian, then \overline{f} is Lorentzian.

For $S \in AdS_n$, recall that $\underline{S} \subset [n]$ denotes the unsigned version of S. For a set T, let $w^T = \prod_{a \in T} w_a$. We now state a strengthening of Theorem 1.6.

Theorem 3.14. Let D be a delta-matroid on $[n, \overline{n}]$ which has an enveloping matroid. Then the polynomial

$$\sum_{S \text{ independent in } D} w_0^{2n-|S|} w^{\underline{S}} \in \mathbb{R}[w_0, w_1, \dots, w_n]$$

is Lorentzian.

Remark 3.15. In [EFLS, Theorem 8.1], it is proven that if D has an enveloping matroid, then the polynomial

$$\sum_{\substack{S \text{ independent in } D}} \frac{w_0^{|S|}}{|S|!} w^{[n]\setminus \underline{S}} \in \mathbb{R}[w_0, w_1, \dots, w_n]$$

is Lorentzian.

Proof of Theorem 1.6. By [BH20, Theorem 2.10], the specialization

$$\sum_{S \text{ independent in } D} w_0^{2n-|S|} y^{|S|} = \sum_{i=0}^n f_{i-1}(D) w_0^{2n-i} y^i$$

is Lorentzian. By [BH20, Example 2.26], the coefficients of a Lorentzian polynomial in two variables of degree 2n are log-concave after dividing the coefficient of $w_0^{2n-i}y^i$ by $\binom{2n}{i}$, which implies the result. \Box

Proof of Theorem 3.14. Let M be an enveloping matroid of D. By [BH20, Proof of Theorem 4.14], the polynomial

$$\sum_{S \text{ independent in } M} w_0^{2n-|S|} w^S \in \mathbb{R}[w_0, w_1, \dots, w_n, w_{\overline{1}}, \dots, w_{\overline{n}}]$$

is Lorentzian. Setting $w_{\overline{i}} = w_i$, by [BH20, Theorem 2.10] the polynomial

$$\sum_{\substack{S \text{ independent in } M}} w_0^{2n-|S|} w^{S \cap [n]} w^{\overline{S \cap [n]}} \in \mathbb{R}[w_0, w_1, \dots, w_n]$$

is Lorentzian. A term $w_0^{2n-|S|}w^{S\cap[n]}w^{\overline{S\cap[n]}}$ has degree at most 1 in each of the variables w_1, \ldots, w_n if and only if S is admissible, in which case it is equal to $w^{\underline{S}}$. Therefore, by Lemma 3.13, the polynomial

$$\sum_{S \in AdS_n \text{ independent in } M} w_0^{2n-|S|} w^{\underline{S}} \in \mathbb{R}[w_0, w_1, \dots, w_n]$$

is Lorentzian. By Proposition 3.12, this polynomial is equal to the polynomial in Theorem 3.14.

Remark 3.16. Let (U, Ω, r) be a multimatroid [Bou97], i.e., U is a finite set, Ω is a partition of U, and r is a function on partial transversals of Ω satisfying certain conditions. An *independent set* is a partial transversal S of Ω with r(S) = |S|. A multimatroid is called *shelterable* if r can be extended to the rank function of a matroid on U. Then the argument used to prove Theorem 1.6 shows that, if a_k is the number of independent sets of a shelterable multimatroid of size k, then

$$a_k^2 \ge \frac{|U| - k + 1}{|U| - k} \frac{k + 1}{k} a_{k+1} a_{k-1}.$$

References

- [ALGV] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant, Log-concave polynomials III: Mason's ultra-log-concavity conjecture for independent sets of matroids. arXiv:1807.00929v2.
- [ACEP20] Federico Ardila, Federico Castillo, Christopher Eur, and Alexander Postnikov, Coxeter submodular functions and deformations of Coxeter permutahedra, Adv. Math. 365 (2020), 107039. MR4064768
- [ABS04] Richard Arratia, Béla Bollobás, and Gregory B. Sorkin, The interlace polynomial of a graph, J. Combin. Theory Ser. B 92 (2004), no. 2, 199–233. MR2099142
 - [Bac] Spencer Backman, Tutte polynomial activities. arXiv:1906.02781v2.
- [Bjö92] Anders Björner, The homology and shellability of matroids and geometric lattices, Matroid applications, 1992, pp. 226–283. MR1165544
- [BR01] Béla Bollobás and Oliver Riordan, A polynomial invariant of graphs on orientable surfaces, Proc. London Math. Soc. (3) 83 (2001), no. 3, 513–531. MR1851080
- [BGW03] Alexandre V. Borovik, Israel Gelfand, and Neil White, Coxeter matroids, Progress in Mathematics, vol. 216, Birkhäuser Boston, Inc., Boston, MA, 2003. MR1989953
- [Bou87] André Bouchet, Greedy algorithm and symmetric matroids, Math. Programming **38** (1987), no. 2, 147–159. MR904585
- [Bou88] _____, Representability of \triangle -matroids, Combinatorics (Eger, 1987), 1988, pp. 167–182. MR1221555
- [Bou97] _____, Multimatroids. I. Coverings by independent sets, SIAM J. Discrete Math. 10 (1997), no. 4, 626–646. MR1477659
- [Bou98] _____, Multimatroids. II. Orthogonality, minors and connectivity, Electron. J. Combin. 5 (1998), Research Paper 8, 25. MR1491784
- [BC95] André Bouchet and William H. Cunningham, Delta-matroids, jump systems, and bisubmodular polyhedra, SIAM J. Discrete Math. 8 (1995), no. 1, 17–32. MR1315956
- [BH20] Petter Brändén and June Huh, Lorentzian polynomials, Ann. of Math. (2) 192 (2020), no. 3, 821–891. MR4172622
- [BH14] Robert Brijder and Hendrik Jan Hoogeboom, Interlace polynomials for multimatroids and delta-matroids, European J. Combin. 40 (2014), 142–167. MR3191496
- [CK88] R. Chandrasekaran and Santosh N. Kabadi, Pseudomatroids, Discrete Math. 71 (1988), no. 3, 205–217. MR959006
- [CMNR19a] Carolyn Chun, Iain Moffatt, Steven D. Noble, and Ralf Rueckriemen, Matroids, delta-matroids and embedded graphs, J. Combin. Theory Ser. A 167 (2019), 7–59. MR3938888
- [CMNR19b] _____, On the interplay between embedded graphs and delta-matroids, Proc. Lond. Math. Soc. (3) 118 (2019), no. 3, 675–700. MR3932785
 - [DH86] Andreas Dress and Timothy F. Havel, Some combinatorial properties of discriminants in metric vector spaces, Adv. in Math. 62 (1986), no. 3, 285–312. MR866162
 - [Duc92] Alain Duchamp, Delta matroids whose fundamental graphs are bipartite, Linear Algebra Appl. 160 (1992), 99– 112. MR1137846
 - [DW73] F. D. J. Dunstan and Dominic Welsh, A greedy algorithm for solving a certain class of linear programmes, Math. Programming 5 (1973), 338–353. MR335311
- [EMGM⁺22] Joanna A. Ellis-Monaghan, Andrew J. Goodall, Iain Moffatt, Steven D. Noble, and Lluís Vena, Irreducibility of the Tutte polynomial of an embedded graph, Algebr. Comb. 5 (2022), no. 6, 1337–1351. MR4529927
 - [EFLS] Christopher Eur, Alex Fink, Matt Larson, and Hunter Spink, Signed permutohedra, delta-matroids, and beyond. arXiv:2209.06752v2.
 - [Fuj14] Satoru Fujishige, Bisubmodular polyhedra, simplicial divisions, and discrete convexity, Discrete Optim. 12 (2014), 115–120. MR3189029
 - [Fuj17] _____, Parametric bisubmodular function minimization and its associated signed ring family, Discrete Appl. Math. 227 (2017), 142–148. MR3661422

- [FI05] Satoru Fujishige and Satoru Iwata, Bisubmodular function minimization, SIAM J. Discrete Math. 19 (2005), no. 4, 1065–1073. MR2206380
- [FP94] Satoru Fujishige and Sachin Patkar, The box convolution and the Dilworth truncation of bisubmodular functions, 1994. Report No. 94823, Research Institute for Discrete Mathematics, University of Bonn.
- [Hib89] Takayuki Hibi, What can be said about pure O-sequences?, J. Combin. Theory Ser. A 50 (1989), no. 2, 319–322. MR989204
- [KMT18] Thomas Krajewski, Iain Moffatt, and Adrian Tanasa, Hopf algebras and Tutte polynomials, Adv. in Appl. Math. 95 (2018), 271–330. MR3759218
- [Mas72] John H. Mason, Matroids: unimodal conjectures and Motzkin's theorem, Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), 1972, pp. 207–220. MR0349445
- [Mor17] Ada Morse, The interlace polynomial, Graph polynomials, 2017, pp. 1–23. MR3790909
- [Mor19] _____, Interlacement and activities in delta-matroids, European J. Combin. 78 (2019), 13–27. MR3906851
- [RSW] Julius Ross, Hendrik Süss, and Thomas Wannerer, Dually Lorentzian polynomials. arXiv:2304.08399.
- [Wen93] Walter Wenzel, Δ -matroids with the strong exchange conditions, Appl. Math. Lett. **6** (1993), no. 5, 67–70. MR1349667

Stanford U. Department of Mathematics, 450 Jane Stanford Way, Stanford, CA 94305 $Email \ address: {\tt mwlarson@stanford.edu}$