RANK FUNCTIONS AND INVARIANTS OF DELTA-MATROIDS

MATT LARSON

Abstract. In this note, we give a rank function axiomatization for delta-matroids and study the corresponding rank generating function. We relate an evaluation of the rank generating function to the number of independent sets of the delta-matroid, and we prove a log-concavity result for that evaluation using the theory of Lorentzian polynomials.

1. INTRODUCTION

Let $[n,\overline{n}]$ denote the set $\{1,\ldots,n,\overline{1},\ldots,\overline{n}\}$, equipped with the obvious involution $\overline{(\cdot)}$. Let AdS_n be the set of *admissible subsets* of $[n, \overline{n}]$, i.e., subsets S that contain at most one of i and \overline{i} for each $i \in [n]$. Set $e_{\overline{i}} := -e_i \in \mathbb{R}^n$, and for each $S \in AdS_n$, set $e_S = \sum_{a \in S} e_a$.

Definition 1.1. A delta-matroid D is a collection $\mathcal{F} \subset AdS_n$ of admissible sets of size n, called the *feasible* sets of D, such that the polytope

$$
P(D) := \text{Conv}\{e_B : B \in \mathcal{F}\}
$$

has all edges parallel to e_i or $e_i \pm e_j$, for some i, j. We say that D is even if all edges of $P(D)$ are parallel to $e_i \pm e_j$.

Delta-matroids were introduced in [\[Bou87\]](#page-11-0) by replacing the usual basis exchange axiom for matroids with one involving symmetric difference. They were defined independently in [\[CK88,](#page-11-1) [DH86\]](#page-11-2). For the equivalence of the definition of delta-matroids in those works with the one given above, and for general properties of delta-matroids, see [\[BGW03,](#page-11-3) Chapter 4].

A delta-matroid is even if and only if all sets in $\{B \cap [n] : B \in \mathcal{F}\}\$ have the same parity. Even deltamatroids enjoy nicer properties than arbitrary delta-matroids. For instance, they satisfy a version of the symmetric exchange axiom [\[Wen93\]](#page-12-0).

There are many constructions of delta-matroids in the literature. Two of the most fundamental come from matroids: given a matroid M on [n], we can construct a delta-matroid on $[n,\overline{n}]$ whose feasible sets are the sets of the form $B \cup \overline{B^c}$, for B a basis of M. We can also construct a delta-matroid whose feasible sets are the sets of the form $I \cup \overline{I^c}$, for I independent in M. Additionally, there are delta-matroids corresponding to graphs [\[Duc92\]](#page-11-4), graphs embedded in surfaces [\[CMNR19,](#page-11-5) [CMNR19b\]](#page-11-6), and points of a maximal orthogonal or symplectic Grassmannian. Delta-matroids arising from points of a maximal orthogonal or symplectic Grassmannian are called realizable. See [\[EFLS,](#page-11-7) Section 6.2] for a discussion of delta-matroids associated to points of a maximal orthogonal Grassmannian.

Given $S, T \in AdS_n$, we define $S \sqcup T = \{a \in S \cup T : \overline{a} \notin S \cup T\}$. A function g: $AdS_n \to \mathbb{R}$ is called bisubmodular if, for all $S, T \in AdS_n$,

$$
f(S) + f(T) \ge f(S \cap T) + f(S \sqcup T).
$$

There is a large literature on bisubmodular functions, beginning with [\[DW73\]](#page-11-8). They have been studied both from an optimization perspective [\[FI05,](#page-12-1)[Fuj17\]](#page-11-9) and from a polytopal perspective [\[FP94,](#page-12-2)[Fuj14\]](#page-11-10). Additionally, bisubmodular functions are closely related to jump systems [\[BC95\]](#page-11-11).

Date: June 14, 2023.

For a delta-matroid D, define a function $q_D: \text{AdS}_n \to \mathbb{Z}$ by

$$
g_D(S) = \max_{B \in \mathcal{F}} (|S \cap B| - |\overline{S} \cap B|).
$$

We call g_D the *rank function* of D. Note that g_D may take negative values. The collection of feasible subsets of D is exactly $\{S : g_D(S) = n\}$, so D can be recovered from g_D .

Theorem 1.2. A function g: $AdS_n \to \mathbb{Z}$ is the rank function of a delta-matroid if and only if

(1) $g(\emptyset) = 0$ (normalization),

(2) $|g(S)| \leq 1$ if $|S| = 1$ (boundedness),

(3) $g(S) + g(T) \ge g(S \cap T) + g(S \sqcup T)$ (bisubmodularity), and

(4) $g(S) \equiv |S| \pmod{2}$ (parity).

Furthermore, D is even if and only if

$$
g_D(S) = \frac{g_D(S \cup i) + g_D(S \cup \overline{i})}{2} \text{ whenever } |S| = n - 1 \text{ and } \{i, \overline{i}\} \cap S = \emptyset.
$$

The function g_D , as well as the observation that it is bisubmodular, has appeared before in the literature [\[Bou88,](#page-11-12) [CK88\]](#page-11-1). For example, in [\[Bou88,](#page-11-12) Theorem 4.1] it is shown that, if D is represented by a point of the maximal symplectic Grassmannian, then g_D can be computed in terms of the rank of a certain matrix. It was known that delta-matroids admit a description in terms of certain bisubmodular functions. However, the precise characterization in Theorem [1.2](#page-1-0) does not appear to have been known before. Indeed, Theorem [1.2](#page-1-0) answers a special case of [\[ACEP20,](#page-11-13) Question 9.4].

In [\[Bou97,](#page-11-14) [Bou98\]](#page-11-15), Bouchet gave a rank-function axiomatization of delta-matroids in the more general setting of multimatroids. His rank function differs from ours $-$ in Section [2.2,](#page-6-0) we discuss the relationship between his results and Theorem [1.2.](#page-1-0)

Basic operations operations on delta-matroids — like products, deletion, contraction, and projection can be simply expressed in terms of rank functions. See Section [2.1.](#page-4-0)

One of the most important invariants of a matroid M of rank r on $[n]$ is its Whitney rank generating function. If rk_M is the rank function of M, then the rank generating function is defined as

$$
R_M(u,v) := \sum_{A \subset [n]} u^{r-\mathrm{rk}_M(A)} v^{|A|-\mathrm{rk}_M(A)}.
$$

The more commonly used normalization is the Tutte polynomial, which is $R_M(u-1, v-1)$. The characterization of delta-matroids in terms of rank functions allows us to consider an analogously-defined invariant.

Definition 1.3. Let D be a delta-matroid on $[n, \overline{n}]$. Then we define

$$
U_D(u,v) = \sum_{S \in \text{AdS}_n} u^{n-|S|} v^{\frac{|S|-g_D(S)}{2}}.
$$

Note that the bisubmodularity of g_D implies that the restriction of g_D to the subsets of any fixed $S \in AdS_n$ is submodular. The boundedness of g_D then implies that $|g_D(S)| \leq |S|$. Because of the parity requirement, $|S| - g_D(S)$ is divisible by 2. Therefore $U_D(u, v)$ is indeed a polynomial. The normalization $U_D(u-1, v-1)$ is more analogous to the Tutte polynomial, but it can have negative coefficients. However, the polynomial $U_D(u, v-1)$ has non-negative coefficients (as follows, e.g., from Theorem [3.8\)](#page-8-0).

The U-polynomial of a delta-matroid was introduced by Eur, Fink, Spink, and the author in [\[EFLS,](#page-11-7) Definition 1.4] in terms of a Tutte polynomial-like recursion; see Proposition [3.1](#page-7-0) for a proof that Definition [1.3](#page-1-1) agrees with the recursive definition considered there. The specialization $U_D(0, v)$ is the *interlace polynomial* of D, which was introduced in [\[ABS04\]](#page-11-16) for graphs and in [\[BH14\]](#page-11-17) for general delta-matroids. See [\[Mor17\]](#page-12-3) for a survey on the properties of the interlace polynomial.

Various Tutte polynomial-like invariants of delta-matroids have been considered in the literature, such as the Bollobás–Riordan polynomial and its specializations [\[BR01\]](#page-11-18). In [\[KMT18\]](#page-12-4), a detailed analysis of delta-matroid polynomials which satisfy a deletion-contraction formula is carried out. Set $\sigma_D(A) = \frac{|A|}{2} + \frac{|\sigma_D(A)|}{2}$ $\frac{g_D(A)+g_D(\overline{A})}{4}$ for $A \subset [n]$. Then in [\[KMT18\]](#page-12-4), the polynomial

$$
\sum_{A \subset [n]} (x-1)^{\sigma_D([n]) - \sigma_D(A)} (y-1)^{|A| - \sigma_D(A)}
$$

is shown to be, in an appropriate sense, the universal invariant of delta-matroids which satisfies a deletioncontraction formula. This polynomial is a specialization of the Bollobás–Riordan polynomial. In $[EMGM+22]$, it is shown that this polynomial has several nice combinatorial properties.

Example 1.4. [\[EFLS,](#page-11-7) Example 5.5 and 5.6] Let M be a matroid of rank r on [n], and let $S = S^+ \cup \overline{S^-} \in AdS_n$ be an admissible set with $S^+, S^- \subset [n]$. Set $V = \{i \in [n] : S \cap \{i, \overline{i}\} = \emptyset\}$. Above, we gave two examples of delta-matroids constructed from M.

(1) Let D be the delta-matroid arising from the independent sets of M. Then $g_D(S) = |S| + 2\mathrm{rk}_M(S^+) 2|S^+|$, and

$$
U_D(u, v) = (u + 1)^{n-r} R_M\left(u + 3, \frac{2u + v + 2}{u + 1}\right).
$$

(2) Let D be the delta-matroid arising from the bases of M. Then $g_D(S) = |S| - 2r + 2 \text{ rk}_M(S^+ \cup V)$ – $2|S^+| + 2\text{rk}_M(S^+),$ and

$$
U_D(u,v) = \sum_{T \subset S \subset [n]} u^{|S \setminus T|} v^{r-\operatorname{rk}_M(S) + |T| - \operatorname{rk}_M(T)}.
$$

We study the U-polynomial as a delta-matroid analogue of the rank generating function of a matroid. For a matroid M, the evaluation $R_M(u, 0)$ is essentially the f-vector of the independence complex of the matroid, i.e., it counts the number of independent sets of M of a given size. The coefficients of the Tutte polynomial $R_M(u-1, v-1)$ can be interpreted as counting bases of M according to their internal and external activities, certain statistics that depend on an ordering of the ground set. See [\[Bac\]](#page-11-20). This shows that $R_M(u, -1)$, the (unsigned) characteristic polynomial of M , is essentially the f-vector of the broken circuit complex of M .

A set $S \in \text{AdS}_n$ is independent if it is contained in a feasible set of a delta-matroid D. In [\[Bou97\]](#page-11-14). Bouchet gave an axiomatization of delta-matroids in terms of their independent sets. The independent sets form a simplicial complex, called the *independence complex* of D. We relate $U_D(u, 0)$ to the f-vector of the independence complex of D (Proposition [3.4\)](#page-7-1), which gives linear inequalities between the coefficients of $U_D(u, 0)$. We give a combinatorial interpretation of the coefficients of $U_D(u, v - 1)$ as counting the number of independent sets of D of a given size according to a delta-matroid version of activity (Theorem [3.8\)](#page-8-0). This shows that $U_D(u, -1)$ is essentially the f-vector of a certain simplicial complex associated to D.

Following a tradition in matroid theory (see, e.g., [\[Mas72\]](#page-12-5)), and inspired by the ultra log-concavity of $R_M(u, 0)$ [\[ALGV,](#page-11-21) [BH20\]](#page-11-22), we make three log-concavity conjectures for $U_D(u, 0)$. These conjectures state the sequence of the number of independent sets of a delta-matroid of a given size satisfies log-concavity properties.

Conjecture 1.5. Let D be a delta-matroid on $[n, \overline{n}]$, and let $U_D(u, 0) = a_n + a_{n-1}u + \cdots + a_0u^n$. Then, for $any \; k \in \{1, \ldots, n-1\},\$

(1)
$$
a_k^2 \ge \frac{n-k+1}{n-k} a_{k+1} a_{k-1},
$$

\n(2) $a_k^2 \ge \frac{2n-k+1}{2n-k} \frac{k+1}{k} a_{k+1} a_{k-1},$ and
\n(3) $a_k^2 \ge \frac{n-k+1}{n-k} \frac{k+1}{k} a_{k+1} a_{k-1}.$

Conjecture [1.5\(](#page-2-0)1) follows from [\[EFLS,](#page-11-7) Conjecture 1.5], and it is proven in [\[EFLS,](#page-11-7) Theorem B] when D has an enveloping matroid (see Definition [3.11\)](#page-9-0). This is a technical condition which is satisfied by many commonly occurring delta-matroids, including all realizable delta-matroids and delta-matroids arising from matroids (although not all delta-matroids, see [\[Bou97,](#page-11-14) Section 4] and [\[EFLS,](#page-11-7) Example 6.11]). The proof uses algebro-geometric methods. Here we prove a special case of Conjecture [1.5\(](#page-2-0)2).

Theorem 1.6. Let D be a delta-matroid on $[n,\overline{n}]$ which has an enveloping matroid. Let $U_D(u, 0) = a_n +$ $a_{n-1}u + \cdots + a_0u^n$. Then, for any $k \in \{1, \ldots, n-1\}$, $a_k^2 \ge \frac{2n-k+1}{2n-k} \frac{k+1}{k} a_{k+1} a_{k-1}$, i.e., Conjecture [1.5\(](#page-2-0)2) holds.

Our argument uses the theory of Lorentzian polynomials [\[BH20\]](#page-11-22). We strengthen Theorem [1.6](#page-3-0) by proving that a generating function for the independent sets of D is Lorentzian (Theorem [3.14\)](#page-10-0), which implies the desired log-concavity statement. We deduce that this generating function is Lorentzian from the fact that the Potts model partition function of an enveloping matroid is Lorentzian [\[BH20,](#page-11-22) Theorem 4.10].

When D is the delta-matroid arising from the independent sets of a matroid, Conjecture [1.5\(](#page-2-0)3) follows from the ultra log-concavity of the number of independent sets of that matroid [\[ALGV,](#page-11-21) [BH20\]](#page-11-22). When D is the delta-matroid arising from the bases of a matroid M on $[n]$, which has an enveloping matroid by [\[EFLS,](#page-11-7) Proposition 6.10], Theorem [1.6](#page-3-0) gives a new log-concavity result. If we set

$$
a_k = |\{T \subset S \subset [n] : T \text{ independent in } M \text{ and } S \text{ spanning in } M, |S \setminus T| = n - k\}|,
$$

then Theorem [1.6](#page-3-0) gives that $a_k^2 \ge \frac{2n-k+1}{2n-k} \frac{k+1}{k} a_{k+1} a_{k-1}$ for $k \in \{1, ..., n-1\}$.

Acknowledgements: We thank Nima Anari, Christopher Eur, Satoru Fujishige, Steven Noble, and Hunter Spink for enlightening conversations, and we thank Christopher Eur, Steven Noble, and Shiyue Li for helpful comments on a previous version of this paper. The author is supported by an NDSEG fellowship.

2. Rank functions of delta-matroids

The proof of Theorem [1.2](#page-1-0) goes by way of a polytopal description of normalized bisubmodular functions, which we now recall. To a function $f: \text{AdS}_n \to \mathbb{R}$ with $f(\emptyset) = 0$, we associate the polytope

$$
P(f) = \{x : \langle e_S, x \rangle \le f(S) \text{ for all non-empty } S \in AdS_n\}.
$$

By [\[BC95,](#page-11-11) Theorem 4.5] (or [\[ACEP20,](#page-11-13) Theorem 5.2]), $P(f)$ has all edges parallel to e_i or $e_i \pm e_j$ if and only if f is bisubmodular. In this case, $P(f)$ is a lattice polytope if and only if f is integer-valued. For a normalized (i.e., $f(\emptyset) = 0$) bisubmodular function f, we can recover f from $P(f)$ via the formula

$$
f(S) = \max_{x \in P(f)} \langle e_S, x \rangle.
$$

Under this dictionary, the bisubmodular function corresponding to the dilate $kP(f)$ is kf , and the bisubmodular function corresponding to the Minkowski sum $P(f) + P(g)$ is $f + g$.

Proof of Theorem [1.2.](#page-1-0) By the polyhedral description of normalized bisubmodular functions, for each deltamatroid D there is a unique normalized bisubmodular function q such that $P(D) = P(q)$. We show that the conditions on a normalized bisubmodular function g for $P(g)$ to have all vertices in $\{-1,1\}^n$ are exactly those given in Theorem [1.2,](#page-1-0) namely that $|g(S)| \leq 1$ when $|S| = 1$ and $g(S) \equiv |S| \pmod{2}$.

The polytope $P(g)$ has all vertices in $\{\pm 1\}^n$ if and only if $\frac{1}{2}(P(g) + (1, \ldots, 1))$ is a lattice polytope which is contained in $[0,1]^n$. The normalized bisubmodular function h corresponding to the point $(1,\ldots,1)$ takes value $h(S) = |S^+| - |S^-|$ on an admissible set of the form $S = S^+ \cup \overline{S^-}$, with $S^+, S^- \subset [n]$. The polytope $\frac{1}{2}(P(g) + (1, \ldots, 1))$ is $P(f)$, where f is the normalized bisubmodular function defined by $f := \frac{1}{2}(g+h)$. We note that $P(f)$ is a lattice polytope which is contained in $[0, 1]$ ⁿ if and only if

(1) $f(i) \in \{0,1\}$ and $f(\overline{i}) \in \{-1,0\}$, and

 (2) f is integer-valued.

A normalized bisubmodular function f satisfies these conditions if and only if g satisfies the conditions of Theorem [1.2,](#page-1-0) giving the characterization of rank functions of delta-matroids.

By [\[ACEP20,](#page-11-13) Example 5.2.3], the polytope $P(g_D) = P(D)$ has all edges parallel to $e_i \pm e_j$ if and only if g_D satisfies the condition

$$
g_D(S) = \frac{g_D(S \cup i) + g_D(S \cup \overline{i})}{2}
$$
 whenever $|S| = n - 1$ and $\{i, \overline{i}\} \cap S = \emptyset$.

This gives the characterization of even delta-matroids.

2.1. Compatibility with delta-matroid operations. In this section, we consider several operations on delta-matroids, and we show that the rank function behaves in a simple way under these operations. First we consider minor operations on delta-matroids — contraction, deletion, and projection.

Definition 2.1. Let D be a delta-matroid on $[n,\overline{n}]$ with feasible sets F, and let $i \in [n]$. We say that i is a loop of D if no feasible set contains i, and we say that i is a coloop if every feasible set contains i.

- (1) If i is not a loop of D, then the *contraction D/i* is the delta-matroid with feasible sets $B \setminus i$, for $B \in \mathcal{F}$ containing *i*.
- (2) If i is not a coloop of D, then the deletion $D \setminus i$ is the delta-matroid with feasible sets $B \setminus i$, for $B \in \mathcal{F}$ containing \overline{i} .
- (3) The projection $D(i)$ is the delta-matroid with feasible sets $B \setminus \{i, \overline{i}\}$ for $B \in \mathcal{F}$.
- (4) If i is a loop or coloop, then set $D/i = D \setminus i = D(i)$.

For $A \subset [n]$, we define D/A , $D \setminus A$, and $D(A)$ to be the delta-matroids on $[n, \bar{n}] \setminus (A \cup \bar{A})$ obtained by successively contracting, deleting, or projecting away from all elements of A. Contractions, deletions, and projections at disjoint sets commute with each other, so this is well defined. If A and B are disjoint subsets of [n], then $D/A \ B$ is the delta-matroid obtained by contracting A and then deleting B, which is the same as first deleting B and then contracting A.

First we describe the rank function of projections. The formula is analogous to the formula for the rank function of a matroid deletion.

Proposition 2.2. Let D be a delta-matroid on $[n, \overline{n}]$, and let $A \subset [n]$. For each $S \in AdS_n$ disjoint from $A \cup \overline{A}$, $g_{D(A)}(S) = g_D(S)$.

Proof. As S is disjoint from $A \cup \overline{A}$, $|B \cap S| - |B \cap \overline{S}|$ depends only on $B \setminus (A \cup \overline{A})$. The feasible sets of $D(A)$ are given by $B \setminus (A \cup \overline{A})$ for B a feasible set of D.

The rank functions of the contractions and deletions are described by the following result. The formula is analogous to the formula for the rank function of a matroid contraction.

Proposition 2.3. Let D be a delta-matroid on $[n, \overline{n}]$. Let $A, B \subset [n]$ be disjoint subsets, and let $S \in AdS_n$ be disjoint from $A \cup B \cup \overline{A} \cup \overline{B}$. Then $g_{D/A \setminus B}(S) = g_D(S \cup A \cup \overline{B}) - g_D(A \cup \overline{B})$.

Before proving this, we will need the following property of delta-matroids. It follows, for instance, from the greedy algorithm description of delta-matroids in [\[BC95\]](#page-11-11).

Proposition 2.4. Let D be a delta-matroid on $[n, \overline{n}]$, and let $S \subset T \in AdS_n$. Let \mathcal{F}_S be the collection of feasible sets B of D that maximize $|S \cap B|$, i.e., have $|S \cap B| = \max_{B' \in \mathcal{F}} |S \cap B'|$. Then

$$
\max_{B \in \mathcal{F}_S} |T \cap B| = \max_{B \in \mathcal{F}} |T \cap B|.
$$

First we consider the case when we delete or contract a single element.

Lemma 2.5. Let D be a delta-matroid on $[n, \overline{n}]$, and let $i \in [n]$. Then

- (1) If i is not a loop, then $g_{D/i}(S) = g_D(S \cup i) 1$,
- (2) If i is not a coloop, then $q_{D\setminus i}(S) = q_D(S \cup \overline{i}) 1$, and

Proof. We do the case of contraction; the case of deletion is identical. Assume that i is not a loop, and let \mathcal{F}_i denote the set of feasible sets of D which contain i. Note that \mathcal{F}_i is non-empty, so it is the collection of feasible sets B of D which maximize $|\{i\} \cap B|$. For any $S \in AdS_n$ with $S \cap \{i,\overline{i}\} = \emptyset$, by Proposition [2.4](#page-4-1) we have that

$$
\max_{B \in \mathcal{F}} |(S \cup i) \cap B| = \max_{B \in \mathcal{F}_i} |(S \cup i) \cap B|.
$$

For any $B, |(S \cup i) \cap B| - |\overline{(S \cup i)} \cap B| = 2|(S \cup i) \cap B| - |S \cup i|$, so we see that

$$
\max_{B \in \mathcal{F}}(|(S \cup i) \cap B| - |\overline{(S \cup i)} \cap B|) = \max_{B \in \mathcal{F}_i}(|(S \cup i) \cap B| - |\overline{(S \cup i)} \cap B|).
$$

The left-hand side is equal to $g_D(S \cup i)$, and the right-hand side is equal to $g_{D/i}(S) + 1$.

Proof of Proposition [2.3.](#page-4-2) First note that $g_D(i) = 1$ if i is not a loop and is -1 if i is a loop, and similarly $g_D(\vec{i}) = 1$ if i is not a coloop and is -1 is i is a coloop. So Lemma [2.5](#page-4-3) implies the result holds when $|S| = 1$.

We induct on the size of $A\cup B$. We consider the case of adding an element $i\in [n]$ to A; the case of adding it to B is identical. We compute:

$$
g_{D/(A\cup i)\setminus B}(S) = g_{D/A\setminus B}(S\cup i) - g_{D/A\setminus B}(i)
$$

= $g_D(S\cup A\cup \overline{B}\cup i) - g_D(A\cup \overline{B}) - (g_D(A\cup \overline{B}\cup i) - g_D(A\cup \overline{B}))$
= $g_D(S\cup (A\cup i)\cup \overline{B}) - g_D((A\cup i)\cup \overline{B}).$

For two non-negative integers n_1, n_2 , identify the disjoint union of $[n_1]$ and $[n_2]$ with $[n_1 + n_2]$. Given two delta-matroids D_1, D_2 on $[n_1]$ and $[n_2]$, let $D_1 \times D_2$ be the delta-matroid on $[n_1 + n_2]$ whose feasible sets are $B_1 \cup B_2$, for B_j a feasible set of D_j . Then we have the following description of the rank function of $D_1 \times D_2$.

Proposition 2.6. Let D_1, D_2 be delta-matroids on $[n_1]$ and $[n_2]$, and let $S = S_1 \cup S_2$ be an admissible subset of $[n_1 + n_2, \overline{n_1 + n_2}]$, with $S_1 \subset [n_1, \overline{n_1}]$ and $S_2 \subset [n_2, \overline{n_2}]$. Then $g_{D_1 \times D_2}(S) = g_{D_1}(S_1) + g_{D_2}(S_2)$.

Proof. Let B_1 be a feasible set of D_1 with $g_{D_1}(S_1) = |S_1 \cap B_1| - |S_1 \cap B_1|$, and let B_2 be a feasible set of D_2 with $g_{D_2}(S_2) = |S_2 \cap B_2| - |S_2 \cap B_2|$. Then $B_1 \cup B_2$ maximizes $B \mapsto |S \cap B| - |S \cap B|$, and so $g_{D_1\times D_2}(S)=|S_1\cap B_1|-|\overline{S_1}\cap B_1|+|S_2\cap B_2|-|\overline{S_2}\cap B_2|=g_{D_1}(S_1)+g_{D_2}(S_2).$

We now study how the rank function behaves under the operation of *twisting*. Let W be the *signed* permutation group, the subgroup of the symmetric group on $[n,\overline{n}]$ which preserves AdS_n . In other words, W consists of permutations w such that $w(i) = \overline{w(i)}$. As delta-matroids are collections of admissible sets, W acts on the set of delta-matroids on $[n, \bar{n}]$. This action is usually called twisting in the delta-matroid literature.

Proposition 2.7. Let D be a delta-matroid on $[n,\overline{n}]$, and let $w \in W$. Then $g_{w \cdot D}(S) = g_D(w^{-1} \cdot S)$.

Proof. Note that, for B a feasible set of D, $|S \cap (w \cdot B)| - |\overline{S} \cap (w \cdot B)| = |(w^{-1} \cdot S) \cap B| - |\overline{(w^{-1} \cdot S)} \cap B|$, which implies the result.

Let $S \in AdS_n$ be an admissible set of size n. For any delta-matroid D on $[n, \overline{n}]$, let r be the maximal value of $|S \cap B|$. Then $\{S \cap B : B \in \mathcal{F}, |S \cap B| = r\}$ is the set of bases of a matroid on S. When $S = [n]$, this is sometimes called the upper matroid of D. We describe the rank function of this matroid in terms of the rank function of D.

Proposition 2.8. Let $S \in AdS_n$ be an admissible set of size n, and let D be a delta-matroid on $[n,\overline{n}]$ with $r = \max_{B \in \mathcal{F}} |S \cap B|$. The matroid M on S whose bases are $\{S \cap B : B \in \mathcal{F}, |S \cap B| = r\}$ has rank function

$$
\mathrm{rk}_M(T) = \frac{g_D(T) + |T|}{2}.
$$

Proof. Let \mathcal{F}_S be the collection of feasible sets B with $|S \cap B| = r$. Then we have that

$$
\mathrm{rk}_M(T) = \max_{B \in \mathcal{F}_S} |T \cap B| \le \max_{B \in \mathcal{F}} |T \cap B| = \frac{g_D(T) + |T|}{2}.
$$

On the other hand, by Proposition [2.4](#page-4-1) there is a feasible set B which maximizes $|T \cap B|$ and has $|S \cap B| = r$, so we have equality. \Box

2.2. An alternative normalization. The results of the previous section, particularly Proposition [2.8,](#page-5-0) suggest that an alternative normalization of the rank function of a delta-matroid has nice properties. Set

$$
h_D(S) := \frac{g_D(S) + |S|}{2}.
$$

The function $h_D(S)$ is integer-valued and bisubmodular, and the polytope it defines is $P(h_D) = \frac{1}{2}(P(D) + \Box)$, where $\square = [-1, 1]^n$ is the cube. This is because the bisubmodular function corresponding to \square is $S \mapsto |S|$. Note that the function h_D is non-negative and increasing, in the sense that if $S \subset T \in AdS_n$, then $h_D(S) \leq$ $h_D(T)$. Theorem [1.2](#page-1-0) implies the following characterization of the functions arising as h_D for some deltamatroid D.

Corollary 2.9. A function h: $AdS_n \to \mathbb{Z}$ is equal to h_D for some delta-matroid D if and only if

- (1) $h(\emptyset) = 0$ (normalization),
- (2) $h(S) \in \{0,1\}$ if $|S| = 1$ (boundedness),
- (3) $h(S) + h(T) \ge h(S \cap T) + h(S \sqcup T) + |S \cap \overline{T}|/2.$

Indeed, these are exactly the conditions we need for $g(S) := 2h(S) - |S|$ to satisfy the conditions in Theorem [1.2.](#page-1-0)

The function h_D was studied by Bouchet in $[Bou97, Bou98]$ $[Bou97, Bou98]$ in the more general setting of multimatroids. The following characterization of the functions h_D follows from [\[Bou97,](#page-11-14) Proposition 4.2]:

Proposition 2.10. A function h: $AdS_n \rightarrow \mathbb{Z}$ is equal to h_D for some delta-matroid D if and only if

- (1) $h(\emptyset) = 0$,
- (2) $h(S) \leq h(S \cup a) \leq h(S) + 1$ if $S \cup a$ is admissible,
- (3) $h(S) + h(T) \geq h(S \cap T) + h(S \cup T)$ if $S \cup T$ is admissible, and
- (4) $h(S \cup i) + h(S \cup \overline{i}) \geq 2h(S) + 1$ if $S \cap \{i, \overline{i}\} = \emptyset$.

In [\[Bou98,](#page-11-15) Theorem 2.16], the following characterization of the functions h_D is stated with a reference to an unpublished paper of Allys.

Proposition 2.11. A function h: $AdS_n \rightarrow \mathbb{Z}$ is equal to h_D for some delta-matroid D if and only if

(1) $h(\emptyset) = 0$,

- (2) $h(S) \leq h(S \cup a) \leq h(S) + 1$ if $S \cup a$ is admissible, and
- (3) $h(S) + h(T) \geq h(S \cap T) + h(S \sqcup T) + |S \cap \overline{T}|.$

It is easy to see directly that a function which satisfies the hypotheses of Corollary [2.9](#page-6-1) satisfies the hypotheses of Proposition [2.10](#page-6-2) or Proposition [2.11.](#page-6-3) However, the converse does not seem obvious.

3. The U-polynomial

We now study the U-polynomial of delta-matroids. We prove the following recursion for $U_D(u, v)$, which was the original definition of the U-polynomial in [\[EFLS,](#page-11-7) Definition 1.4].

Proposition 3.1. If $n = 0$, the $U_D(u, v) = 1$. For any $i \in [n]$, the U-polynomial satisfies

$$
U_D(u,v) = \begin{cases} U_{D/i}(u,v) + U_{D\setminus i}(u,v) + uU_{D(i)}(u,v), & i \text{ is neither a loop nor a coloop} \\ (u+v+1) \cdot U_{D\setminus i}(u,v), & i \text{ is a loop or a coloop.} \end{cases}
$$

First we study the behavior of the U-polynomial under products.

Lemma 3.2. Let D_1, D_2 be delta-matroids on $[n_1, \overline{n}_1]$ and $[n_2, \overline{n}_2]$. Then $U_{D_1 \times D_2}(u, v) = U_{D_1}(u, v)U_{D_2}(u, v)$. Proof. We compute:

$$
U_{D_1}(u,v)U_{D_2}(u,v) = \left(\sum_{S_1 \in \text{AdS}_{n_1}} u^{n_1 - |S_1|} v^{\frac{|S_1| - g_{D_1}(S_1)}{2}}\right) \left(\sum_{S_2 \in \text{AdS}_{n_2}} u^{n_2 - |S_2|} v^{\frac{|S_2| - g_{D_2}(S_2)}{2}}\right)
$$

=
$$
\sum_{(S_1, S_2)} u^{n_1 + n_2 - |S_1| - |S_2|} v^{\frac{|S_1| + |S_2| - g_{D_1}(S_1) - g_{D_2}(S_2)}{2}}
$$

=
$$
\sum_{(S_1, S_2)} u^{n_1 + n_2 - |S_1| - |S_2|} v^{\frac{|S_1| + |S_2| - g_{D_1} \times D_2(S_1 \cup S_2)}{2}}
$$

=
$$
U_{D_1 \times D_2}(u, v),
$$

where the third equality is Proposition [2.6.](#page-5-1) \Box

Proof of Proposition [3.1.](#page-7-0) If $n = 0$, then the only admissible subset of $[n, \overline{n}]$ is the empty set, and $g_D(\emptyset) = 0$, so $U_D(u, v) = 1$. Now choose some $i \in [n]$.

First suppose that i is neither a loop nor a coloop. The admissible subsets of $[n, \overline{n}]$ are partitioned into sets containing i, sets containing \overline{i} , and sets containing neither i nor \overline{i} . If S contains i, then $u^{n-|S|}v^{\frac{|S|-g_D(S)}{2}} =$ $u^{n-1-|S\setminus i|}v^{\frac{|S\setminus i|-g_{D/i}(S\setminus i)}{2}}$. If S contains i, then $u^{n-|S|}v^{\frac{|S|-g_D(S)}{2}} = u^{n-1-|S\setminus i|}v^{\frac{|S\setminus i|-g_{D\setminus i}(S\setminus i)}{2}}$. If S contains neither *i* not \overline{i} , then $u^{n-|S|}v^{\frac{|S|-g_D(S)}{2}} = u \cdot u^{n-1-|S|}v^{\frac{|S|-g_{D(i)}(S)}{2}}$. Adding these up implies the recursion in this case.

If i is a loop or a coloop, then D is the product of $D \setminus i$ with a delta-matroid on 1 element with 1 feasible set. We observe that U-polynomial of a delta-matroid on 1 element with 1 feasible set is $u + v + 1$, and so Lemma [3.2](#page-7-2) implies the recursion in this case. \Box

3.1. The independence complex of a delta-matroid. In this section, we introduce the independence complex of a delta-matroid and use it to study the U-polynomial.

Definition 3.3. We say that $S \in AdS_n$ is *independent* in D if $g_D(S) = |S|$, or, equivalently, if S is contained in a feasible subset of D. The *independence complex* of D is the simplicial complex on $[n, \overline{n}]$ whose facets are given by the feasible sets of D.

Let $S \in AdS_n$, and let $T = \{i \in [n] : S \cap \{i, \overline{i}\} = \emptyset\}$. Note S is independent if and only if S is a feasible set of $D(T)$.

The following result is immediate from the definition of $U_D(u, 0)$.

Proposition 3.4. Let $f_i(D)$ be the number of *i*-dimensional faces of the independence complex of D. Then $U_D(u, 0) = f_{n-1}(D) + f_{n-2}(D)u + \cdots + f_{-1}(D)u^n.$

Note that the f-vector of a pure simplicial complex, like the independence complex of a delta-matroid, is a pure O-sequence. Then [\[Hib89\]](#page-12-6) gives the following inequalities.

Corollary 3.5. Let $U_D(u, 0) = a_n + a_{n-1}u + \cdots + a_0u^n$. Then (a_0, \ldots, a_n) is the f-vector of a pure simplicial complex. In particular, $a_i \le a_{n-i}$ for $i \le n/2$ and $a_0 \le a_1 \le \cdots \le a_{\lfloor \frac{n+1}{2} \rfloor}$.

Proposition [3.4](#page-7-1) is a delta-matroid analogue of the fact that, for a matroid M, the coefficients of $R_M(u, 0)$, when written backwards, are the face numbers of the independence complex of M . The independence complex of a matroid is shellable [Bjö92], which is reflected in the fact that $R_M(u - 1, 0)$ has non-negative coefficients. The independence complex of a delta-matroid is not in general shellable or Cohen–Macaulay, and $U_D(u-1,0)$ can have negative coefficients.

Recall that $\square = [-1, 1]^n$ is the cube. The map $S \mapsto e_S$ induces a bijection between AdS_n and lattice points of \Box . We use this to give a polytopal description of the independent sets of D, which will be useful in the sequel.

Proposition 3.6. The map $S \mapsto e_S$ induces a bijection between independent sets of D and lattice points in $\frac{1}{2}(P(D) + \Box).$

Proof. If S is independent in D, then there is $T \in AdS_n$ such that $S \cup T \in \mathcal{F}$. Then $e_S = \frac{1}{2}(e_{S \cup T} + e_{S \cup \overline{T}})$, so e_S lies in $\frac{1}{2}(P(D) + \Box)$.

The correspondence between normalized bisubmodular functions and polytopes gives that

$$
\frac{1}{2}(P(D) + \square) = \left\{ x : \langle e_S, x \rangle \le \frac{g_D(S) + |S|}{2} \right\}.
$$

If S is not independent, then e_S violates the inequality $\langle e_S, e_S \rangle \leq \frac{g_D(S) + |S|}{2}$, so e_S does not lie in $\frac{1}{2}(P(D) +$ \Box).

3.2. The activity expansion of the U-polynomial. We now discuss an expansion of $U_D(u, v-1)$ in terms of a statistic associated to each independent set of a delta-matroid D, similar to the expansion of the Tutte polynomial of a matroid in terms of basis activities. We rely heavily on the work of Morse [\[Mor19\]](#page-12-7), who gave such an expansion for the interlace polynomial $U_D(0, v - 1)$. Throughout we fix the ordering $1 < 2 < \cdots < n$ on [n]. For $S \in AdS_n$, let $\underline{S} \subset [n]$ denote the unsigned version of S, i.e., the image of S under the quotient of $[n, \overline{n}]$ by the involution.

Definition 3.7. Let B be a feasible set in a delta-matroid D. We say that $i \in [n]$ is B-orientable if the symmetric difference $B\Delta\{i,i\}$ is not a feasible set of D. We say that i is B-active if i is B-orientable and there is no $j < i$ with $B\Delta{i}$, $j, \overline{i}, \overline{j}$ a feasible set of D. For an independent set I of D, we say that $i \in \underline{I}$ is *I*-active if i is *I*-active in the projection $D([n] \setminus \underline{I})$. Let $a(I)$ denote the number of $i \in \underline{I}$ which are *I*-active.

Theorem 3.8. Let D be a delta-matroid on $[n, \bar{n}]$. Then

$$
U_D(u, v-1) = \sum_{I \ independent \ in \ D} u^{n-|I|} v^{a(I)}.
$$

Proof. By [\[Mor19,](#page-12-7) Corollary 5.3], this holds after we evaluate at $u = 0$ for any delta-matroid D. By [\[EFLS,](#page-11-7) Proposition 5.2], we have that

$$
U_D(u, v-1) = \sum_{S \subset [n]} u^{n-|S|} U_{D([n] \setminus S)}(0, v-1).
$$

The result follows because each independent set I is a feasible set of exactly one projection of D .

Theorem [3.8](#page-8-0) implies that the coefficient of u^{n-i} in $U_D(u, -1)$ counts the number of independent sets of size i with $a(I) = 0$. This is analogous to how the coefficient of u^{r-i} in $R_M(u, -1)$ counts the number of independent sets of external activity zero in a matroid M, which form the faces of dimension $i - 1$ in the broken circuit complex of M [\[Bac\]](#page-11-20). This interpretation in terms of a simplicial complex generalizes to delta-matroids.

Proposition 3.9. The independent sets I of D with $a(I) = 0$ form a simplicial complex on $[n, \bar{n}]$.

Proof. It suffices to check that if i is not B-active for some feasible set B of D and $S \subset [n] \setminus i$, then i is not active for $B \setminus (S \cup S)$. Because i is not B-active, either $B\Delta\{i,i\}$ is feasible (which remains true after we project away from S), or there is $j < i$ such that $B\Delta\{i, j, \overline{i}, \overline{j}\}$ is feasible. If $j \notin S$, then this remains true after we project away from S. If $j \in S$, then i is not $B \setminus (S \cup \overline{S})$ -orientable.

This complex can be complicated; for instance, its dimension is not easy to predict. The following example shows that the complex defined above need not be pure, so we cannot use it to deduce that $U_D(u, -1)$ is pure O-sequence as in Corollary [3.5.](#page-8-1)

Example 3.10. Let D be the delta-matroid on [3, $\overline{3}$] with feasible sets $\{1, \overline{2}, \overline{3}\}, \{\overline{1}, 2, \overline{3}\},$ and $\{\overline{1}, \overline{2}, 3\}$. Every element of [3, $\bar{3}$] has no active elements, $\{\bar{1}, 2\}, \{\bar{1}, \bar{2}\}, \{\bar{2}, 3\}, \{\bar{2}, 3\}, \{\bar{1}, 3\}, \text{and } \{\bar{1}, \bar{3}\}$ are the independent sets of size 2 with no active elements, and every feasible set has an active element. The complex defined in Proposition [3.9](#page-9-1) has f-vector $(1,6,6)$, so $U_D(u,-1) = 6u + 6u^2 + u^3$. This complex is not pure because 1 is not contained in any facet.

3.3. Enveloping matroids. We now recall the definition of an enveloping matroid of a delta-matroid, which was introduced for algebro-geometric reasons in [\[EFLS,](#page-11-7) Section 6]. A closely related notion was considered in [\[Bou97\]](#page-11-14).

For $S \subseteq [n,\bar{n}]$, let u_S denote the corresponding indicator vector in $\mathbb{R}^{[n,\bar{n}]}$. For a matroid M on $[n,\bar{n}]$, let $P(M) = \text{Conv}\{u_B : B \text{ basis of } M\}$, and let $IP(M) = \text{Conv}\{u_S : S \text{ independent in } M\}$.

Definition 3.11. Let env: $\mathbb{R}^{[n,\overline{n}]} \to \mathbb{R}^n$ be the map given by $(x_1,\ldots,x_n,x_{\overline{1}},\ldots,x_{\overline{n}}) \mapsto (x_1-x_{\overline{1}},\ldots,x_n-x_{\overline{n}})$. Let D be a delta-matroid on $[n, \overline{n}]$, and let M be a matroid on $[n, \overline{n}]$. We say that M is an enveloping matroid for D if $env(P(M)) = P(D)$.

Note that enveloping matroids necessarily have rank n. In [\[EFLS,](#page-11-7) Section 6.3], it is shown that many different types of delta-matroids have enveloping matroids, such as realizable delta-matroids, delta-matroids arising from the independent sets or bases of a matroid, and delta-matroids associated to graphs or embedded graphs. We will need the following property of enveloping matroids.

Proposition 3.12. Let M be an enveloping matroid for a delta-matroid D on $[n, \overline{n}]$. Let $S \in AdS_n$ be an admissible set. Then S is independent in M if and only if it is independent in D .

Proof. If $S \in AdS_n$, then $env(u_S) = e_S$, and S is the only admissible set with this property. Furthermore, if $S \in AdS_n$ has size n, then u_S is the only indicator vector of a subset of $[n, \bar{n}]$ of size n which is a preimage of e_S under env. Because $env(P(M)) = P(D)$, we see that if B is a feasible set of D, then B is a basis for M . This implies that the independent sets in D are independent in M .

By [\[EFLS,](#page-11-7) Lemma 7.6], $env(IP(M)) = \frac{1}{2}(P(D) + \Box)$. If S is admissible and independent in M, then $env(u_S) = e_S \in \frac{1}{2}(P(D) + \square)$, so by Proposition [3.6,](#page-8-2) S is independent in D.

3.4. Lorentzian polynomials. For a multi-index $\mathbf{m} = (m_0, m_1, \dots)$, let $w^{\mathbf{m}} = w_0^{m_0} w_1^{m_1} \cdots$. A homogeneous polynomial $f(w_0, w_1, \dots)$ of degree d with real coefficients is said to be *strictly Lorentzian* if all its coefficients are positive, and the quadratic form obtained by taking $d-2$ partial derivatives is nondegenerate with exactly one positive eigenvalue. We say that f is *Lorentzian* if it is a coefficient-wise limit of

strictly Lorentzian polynomials. Lorentzian polynomials enjoy strong log-concavity properties, and the class of Lorentzian polynomials is preserved under many natural operations.

The following lemma is a special case of [\[RSW,](#page-12-8) Proposition 3.3]. Alternatively, it can be deduced from the proof of [\[BH20,](#page-11-22) Corollary 3.5]. We thank Nima Anari for discussing this lemma with us.

Lemma 3.13. For a polynomial $f(w_0, w_1, ...) = \sum_m c_m w^m$, let

$$
\overline{f}(w_0, w_1, \dots) = \sum_{m:m_i \leq 1 \text{ for } i \neq 0} c_m w^m.
$$

If f is Lorentzian, then \overline{f} is Lorentzian.

For $S \in AdS_n$, recall that $\underline{S} \subset [n]$ denotes the unsigned version of S. For a set T, let $w^T = \prod_{a \in T} w_a$. We now state a strengthening of Theorem [1.6.](#page-3-0)

Theorem 3.14. Let D be a delta-matroid on $[n, \overline{n}]$ which has an enveloping matroid. Then the polynomial

$$
\sum_{S \ independent \ in \ D} w_0^{2n-|S|} w^S \in \mathbb{R}[w_0, w_1, \dots, w_n]
$$

is Lorentzian.

Remark 3.15. In [\[EFLS,](#page-11-7) Theorem 8.1], it is proven that if D has an enveloping matroid, then the polynomial

$$
\sum_{S \text{ independent in } D} \frac{w_0^{|S|}}{|S|!} w^{[n] \setminus S} \in \mathbb{R}[w_0, w_1, \dots, w_n]
$$

is Lorentzian.

Proof of Theorem [1.6.](#page-3-0) By [\[BH20,](#page-11-22) Theorem 2.10], the specialization

$$
\sum_{S \text{ independent in } D} w_0^{2n-|S|} y^{|S|} = \sum_{i=0}^n f_{i-1}(D) w_0^{2n-i} y^i
$$

is Lorentzian. By [\[BH20,](#page-11-22) Example 2.26], the coefficients of a Lorentzian polynomial in two variables of degree 2n are log-concave after dividing the coefficient of $w_0^{2n-i}y^i$ by $\binom{2n}{i}$, which implies the result. \Box

Proof of Theorem [3.14.](#page-10-0) Let M be an enveloping matroid of D . By [\[BH20,](#page-11-22) Proof of Theorem 4.14], the polynomial

$$
\sum_{S \text{ independent in } M} w_0^{2n-|S|} w^S \in \mathbb{R}[w_0, w_1, \dots, w_n, w_{\overline{1}}, \dots, w_{\overline{n}}]
$$

is Lorentzian. Setting $w_i = w_i$, by [\[BH20,](#page-11-22) Theorem 2.10] the polynomial

$$
\sum_{S \text{ independent in } M} w_0^{2n-|S|} w^{S \cap [n]} w^{\overline{S} \cap [\overline{n}]} \in \mathbb{R}[w_0, w_1, \dots, w_n]
$$

is Lorentzian. A term $w_0^{2n-|S|}w^{S\cap[n]}w^{\overline{S\cap[n]}}$ has degree at most 1 in each of the variables w_1,\ldots,w_n if and only if S is admissible, in which case it is equal to w^S . Therefore, by Lemma [3.13,](#page-10-1) the polynomial

$$
\sum_{S \in \text{AdS}_n \text{ independent in } M} w_0^{2n-|S|} w^S \in \mathbb{R}[w_0, w_1, \dots, w_n]
$$

is Lorentzian. By Proposition [3.12,](#page-9-2) this polynomial is equal to the polynomial in Theorem [3.14.](#page-10-0)

Remark 3.16. Let (U, Ω, r) be a multimatroid [\[Bou97\]](#page-11-14), i.e., U is a finite set, Ω is a partition of U, and r is a function on partial transversals of Ω satisfying certain conditions. An *independent set* is a partial transversal S of Ω with $r(S) = |S|$. A multimatroid is called *shelterable* if r can be extended to the rank function of a matroid on U. Then the argument used to prove Theorem [1.6](#page-3-0) shows that, if a_k is the number of independent sets of a shelterable multimatroid of size k , then

$$
a_k^2 \ge \frac{|U| - k + 1}{|U| - k} \frac{k + 1}{k} a_{k+1} a_{k-1}.
$$

REFERENCES

- [ALGV] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant, *Log-concave polynomials III: Mason's ultra-log-concavity conjecture for independent sets of matroids*. arXiv:1807.00929v2.
- [ACEP20] Federico Ardila, Federico Castillo, Christopher Eur, and Alexander Postnikov, *Coxeter submodular functions and deformations of Coxeter permutahedra*, Adv. Math. 365 (2020), 107039. MR4064768
	- [ABS04] Richard Arratia, B´ela Bollob´as, and Gregory B. Sorkin, *The interlace polynomial of a graph*, J. Combin. Theory Ser. B 92 (2004), no. 2, 199–233. MR2099142
	- [Bac] Spencer Backman, *Tutte polynomial activities*. arXiv:1906.02781v2.
	- [Bjö92] Anders Björner, *The homology and shellability of matroids and geometric lattices*, Matroid applications, 1992, pp. 226–283. MR1165544
	- [BR01] B´ela Bollob´as and Oliver Riordan, *A polynomial invariant of graphs on orientable surfaces*, Proc. London Math. Soc. (3) 83 (2001), no. 3, 513–531. MR1851080
- [BGW03] Alexandre V. Borovik, Israel Gelfand, and Neil White, *Coxeter matroids*, Progress in Mathematics, vol. 216, Birkhäuser Boston, Inc., Boston, MA, 2003. MR1989953
- [Bou87] Andr´e Bouchet, *Greedy algorithm and symmetric matroids*, Math. Programming 38 (1987), no. 2, 147–159. MR904585
- [Bou88] , *Representability of* △*-matroids*, Combinatorics (Eger, 1987), 1988, pp. 167–182. MR1221555
- [Bou97] , *Multimatroids. I. Coverings by independent sets*, SIAM J. Discrete Math. 10 (1997), no. 4, 626–646. MR1477659
- [Bou98] , *Multimatroids. II. Orthogonality, minors and connectivity*, Electron. J. Combin. 5 (1998), Research Paper 8, 25. MR1491784
- [BC95] André Bouchet and William H. Cunningham, *Delta-matroids, jump systems, and bisubmodular polyhedra*, SIAM J. Discrete Math. 8 (1995), no. 1, 17–32. MR1315956
- [BH20] Petter Brändén and June Huh, *Lorentzian polynomials*, Ann. of Math. (2) 192 (2020), no. 3, 821–891. MR4172622
- [BH14] Robert Brijder and Hendrik Jan Hoogeboom, *Interlace polynomials for multimatroids and delta-matroids*, European J. Combin. 40 (2014), 142–167. MR3191496
- [CK88] R. Chandrasekaran and Santosh N. Kabadi, *Pseudomatroids*, Discrete Math. 71 (1988), no. 3, 205–217. MR959006
- [CMNR19a] Carolyn Chun, Iain Moffatt, Steven D. Noble, and Ralf Rueckriemen, *Matroids, delta-matroids and embedded graphs*, J. Combin. Theory Ser. A 167 (2019), 7–59. MR3938888
- [CMNR19b] , *On the interplay between embedded graphs and delta-matroids*, Proc. Lond. Math. Soc. (3) 118 (2019), no. 3, 675–700. MR3932785
	- [DH86] Andreas Dress and Timothy F. Havel, *Some combinatorial properties of discriminants in metric vector spaces*, Adv. in Math. 62 (1986), no. 3, 285–312. MR866162
	- [Duc92] Alain Duchamp, *Delta matroids whose fundamental graphs are bipartite*, Linear Algebra Appl. 160 (1992), 99– 112. MR1137846
	- [DW73] F. D. J. Dunstan and Dominic Welsh, *A greedy algorithm for solving a certain class of linear programmes*, Math. Programming 5 (1973), 338–353. MR335311
- [EMGM+22] Joanna A. Ellis-Monaghan, Andrew J. Goodall, Iain Moffatt, Steven D. Noble, and Llu´ıs Vena, *Irreducibility of the Tutte polynomial of an embedded graph*, Algebr. Comb. 5 (2022), no. 6, 1337–1351. MR4529927
	- [EFLS] Christopher Eur, Alex Fink, Matt Larson, and Hunter Spink, *Signed permutohedra, delta-matroids, and beyond*. arXiv:2209.06752v2.
	- [Fuj14] Satoru Fujishige, *Bisubmodular polyhedra, simplicial divisions, and discrete convexity*, Discrete Optim. 12 (2014), 115–120. MR3189029
	- [Fuj17] , *Parametric bisubmodular function minimization and its associated signed ring family*, Discrete Appl. Math. 227 (2017), 142–148. MR3661422
- [FI05] Satoru Fujishige and Satoru Iwata, *Bisubmodular function minimization*, SIAM J. Discrete Math. 19 (2005), no. 4, 1065–1073. MR2206380
- [FP94] Satoru Fujishige and Sachin Patkar, *The box convolution and the Dilworth truncation of bisubmodular functions*, 1994. Report No. 94823, Research Institute for Discrete Mathematics, University of Bonn.
- [Hib89] Takayuki Hibi, *What can be said about pure* O*-sequences?*, J. Combin. Theory Ser. A 50 (1989), no. 2, 319–322. MR989204
- [KMT18] Thomas Krajewski, Iain Moffatt, and Adrian Tanasa, *Hopf algebras and Tutte polynomials*, Adv. in Appl. Math. 95 (2018), 271–330. MR3759218
- [Mas72] John H. Mason, *Matroids: unimodal conjectures and Motzkin's theorem*, Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), 1972, pp. 207–220. MR0349445
- [Mor17] Ada Morse, *The interlace polynomial*, Graph polynomials, 2017, pp. 1–23. MR3790909
- [Mor19] , *Interlacement and activities in delta-matroids*, European J. Combin. 78 (2019), 13–27. MR3906851
- [RSW] Julius Ross, Hendrik Süss, and Thomas Wannerer, *Dually Lorentzian polynomials*. arXiv:2304.08399.
- [Wen93] Walter Wenzel, ∆*-matroids with the strong exchange conditions*, Appl. Math. Lett. 6 (1993), no. 5, 67–70. MR1349667

Stanford U. Department of Mathematics, 450 Jane Stanford Way, Stanford, CA 94305 *Email address*: mwlarson@stanford.edu