
#A58 INTEGERS 19 (2019)

POWER MAPS IN FINITE GROUPS

Matt Larson
Department of Mathematics, Yale University, New Haven, Connecticut

matthew.larson@yale.edu

Received: 5/22/18, Revised: 3/21/19, Accepted: 10/6/19, Published: 11/4/19

Abstract

In recent work, Pomerance and Shparlinski have obtained results on the number of
cycles in the functional graph of the map x !→ xa in F∗

p. We prove similar results
for other families of finite groups. In particular, we obtain estimates for the number
of cycles for cyclic groups, symmetric groups, dihedral groups and SL2(Fq). We
also show that the cyclic group of order n minimizes the number of cycles among
all nilpotent groups of order n for a fixed exponent a. Finally, we pose several
problems.

1. Introduction

Let H be a finite group, and let a ≥ 2 be an integer. The iterations of the map
x !→ xa form a sort of dynamical system in a finite group. As such, it is natural
to study the structure of the periodic points of this map. Define the undirected
multigraph G(a,H) with vertex set H and x ∼y if xa = y, with an additional edge
if ya = x. Note that G(a,H) may have loops (for example at the identity) or cycles
of length 2. The orbit structure of the map x !→ xa in G is encoded in G(a,H).
This graph has been extensively studied in the case of H = (Z/nZ)∗ in connection
with algorithmic number theory and cryptography (see, e.g., [6], [13] and [17]).
In particular, the properties of the well-known Blum-Blum-Shub psuedorandom
number generator [4] are determined by the properties of G(2, (Z/pqZ)∗).

Note that G(a,H) is a refinement of the power graph of H (see [1] and references
therein). In particular, the power graph of H is the graph with vertex set H and
x ∼y if x ∈ ⟨y⟩ or y ∈ ⟨x⟩. One can build the power graph of H out of G(a,H) by
taking the union of the edges of G(a,H) for 1 ≤ a ≤ |H | and deleting any loops or
multiple edges.

Let N(a,H) denote the number of connected components in G(a,H). Since each
connected component contains a unique cycle, N(a,H) is also the number of cycles
in G(a,H). In recent work, Pomerance and Shparlinski gave results on the average
order, normal order, and extremal order of N(a,F∗

p) for p prime.
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Figure 1: G(2,Z/10Z)

Theorem 1 ([15, Theorems 1.1 and 1.2]). For any a ≥2:

• There exist infinitely many primes p such that N(a,F∗
p) > p5/12+o(1).

• For almost all primes p, N(a,F∗
p) < p1/2+o(1).

• 1
π(x)

∑

p≤ x

N(a,F∗
p) ≫ x0.293.

Under the assumption of the Elliot-Halberstam conjecture and a strong Linnik’s
constant, we can improve this to

1

π(x)

∑

p≤ x

N(a,F∗
p) ≥x1+o(1).

Pomerance and Shparlinski asked for an extension of these results to other groups.
We consider the question of the size of N(a,G) for various families of groups. Using
results from number theory, group theory, and probability theory, we obtain results
on the size of N(a,G) for cyclic groups, dihedral groups, symmetric groups and the
special linear group of degree 2 over a finite field.

Next, we conjecture that, for any a, the cyclic groups have the fewest connected
components over any groups of a given order. More precisely, we have the following
conjecture.
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Conjecture 1. Let G be a group of order n. Then

N(a,G) ≥N(a, Cn).

We have verified this conjecture using Sage [16] for all groups of order at most
1000, except for groups of order 768, if a ∈ {2, 3, . . . , 20}. We prove the following
partial result.

Theorem 2. Let G be a nilpotent group of order n. Then

N(a,G) ≥N(a, Cn).

In Section 2, we introduce results used to estimate N(a,G). In Section 3, we
estimate the normal order, average order, and extremal order of N(a,G) for several
families of groups. In Section 4, we prove Theorem 2. In Section 5, we discuss
further directions and ask several questions.

1.1. Notation

Throughout this paper, p denotes a prime number, q denotes a prime power, and a
denotes a positive integer at least 2. All groups are finite, and group multiplication
is always written multiplicatively.

For a set A, we denote the characteristic function of A by 1A(x). For g ∈ G, a
group, let |g| denote the order of g. Let ordn(a) denote the multiplicative order of
a in Z/nZ. For a group G, let wG(d) denote the number of elements of order d. We
will often write w(d) for wG(d) if the group is obvious. Let Cn denote the cyclic
group of order n, Dn denote the dihedral group of order 2n, SLn(Fq) denote the
special linear group of degree n over the finite field of q elements and let Sn denote
the symmetric group of order n!. Let λ denote the Carmichael lambda function,
i.e., λ(n) is the exponent of (Z/nZ)∗. Let ϕ denote the Euler ϕ-function.

We use standard Vinogradov notation and Landau notation. Recall that the
statements U = O(V ), U ≪ V and V ≫ U all mean |U | ≤ cV for some c > 0. We
also use the notation o(1) to denote a quantity that tends to 0 as some parameter
goes to infinity. The dependency of the constant on a parameter will be denoted
as a subscript. We say almost all elements of a set S ⊆N have a property P if the
proportion of the elements of S that have P and are at most n is 1 + o(1).

2. General Tools

Our main tool for estimating N(a,G) is the following lemma.

Lemma 1. Let ρ denote the largest factor of |G| relatively prime to a. Then

N(a,G) =
∑

d|ρ

w(d)

ordd(a)
.
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Proof. We generalize an argument of Chou and Shparlinski in [6]. Consider the
map x !→ xa. Let t ≥0, c > 0 be minimal such that xat

= xat+c
for all x, which

exist since the map x !→ xa is preperiodic. Let d denote the order of x. Then
d|at(ac −1), so t = 0 if and only if gcd(a, d) = 1. If t = 0, then x lies in a cycle
of length ordd(a), and there are w(d) elements that lie in such cycles, showing the
result.

We will often use this result in the form

N(a,G) =
∑

g∈G
gcd(|g|,a)=1

1

ord|g|(a)
,

which follows from Lemma 1 by grouping terms by order. We observe that if a
group G has many elements of large order, then N(a,G) is likely to be small. This
gives some justification to Conjecture 1. We will also make use of the following
lemma.

Lemma 2. Let H1, . . . , Hn ≤ G, and suppose Hi ∩Hj = {e} for i ̸= j, where e is
the identity of G. Then

N(a,G) ≥
n∑

i=1

N(a,Hi)−n+ 1.

Proof. Note that the subgraph in G(a,G) induced by Hi is isomorphic to G(a,Hi).
These induced subgraphs overlap only at the identity, and, in these induced sub-
graphs, each connected component contains a unique cycle. In G(a,G), these in-
duced subgraphs cannot be connected to each other, except for the connected com-
ponent containing the identity.

Before proving the last general result, we state a lemma.

Lemma 3. If dd′

gcd(d,d′) = n, then ordd(a) ordd′(a) ≥ordn(a).

Proof. As d | aordd (a) −1 and d′ | aordd′(a) −1, n | aordd (a) ordd′ (a) −1.

Theorem 3. Let G,H be finite groups. Then

N(a,G×H) ≥N(a,G)N(a,H).

Proof. Let ρ1 and ρ2 be the largest divisors coprime to a of |G| and |H | respectively.
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Then
⎛

⎝
∑

d|ρ1

wG(d)

ordd(a)

⎞

⎠

⎛

⎝
∑

d′|ρ2

wH(d′)

ordd′(a)

⎞

⎠=
∑

d|ρ1,d′|ρ2

wG(d)wH(d′)

ordd(a) ordd′(a)

=
∑

k|ρ1ρ2

∑

d|ρ1,d
′|ρ2,

dd′/ gcd(d,d′)=k

wG(d)wH(d′)

ordd(a) ordd′(a)

≤
∑

k|ρ1ρ2

∑

d|ρ1,d
′|ρ2,

dd′/ gcd(d,d′)=k

wG(d)wH(d′)

ordk(a)

=
∑

k|ρ1ρ2

wG× H(k)

ordk(a)

= N(a,G×H),

where in the inequality we use Lemma 3.

3. Size of N(a,G)

3.1. Cyclic Groups

We show results on the average order, normal order, and extremal order ofN(a, Cn).

Theorem 4. Let δ = 0.2961. Then

1

x

∑

n≤ x

N(a, Cn) ≥x1− δ+o(1).

Theorem 5. For any fixed a, there exist infinitely many n such that

N(a, Cn) ≥n1+o(1).

Theorem 6. For almost all n, we have that

N(a, Cn) ≤ n1/2+o(1).

Remark 1. Under the Elliott-Halberstam conjecture, we can remove δ from The-
orem 4, i.e., we can show that 1

x

∑
n≤ xN(a, Cn) ≥x1+o(1). Under the generalized

Riemann hypothesis, we can remove the 1/2 from Theorem 6 and show that for
almost all n, N(a, Cn) ≤ no(1).

In conjunction with the following lemma, the above theorems immediately give
results on dihedral groups.
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Lemma 4. If a is even, then N(a,Dn) = N(a, Cn). If a is odd, then N(a,Dn) =
n+N(a, Cn).

Proof. Recall that Dn consists of a cyclic subgroup of order n and n elements of
order 2 lying outside this cyclic subgroup. If a is even, then each element of order
2 is connected to the component that contains the identity. If a is odd, then each
element of order 2 lies in a component that consists of a single vertex with a loop.

Proof of Theorem 4. We use the strategy of Pomerance and Shparlinski in [15].
First we recall a result of Baker and Harman.

Lemma 5 ([3], Theorem 1). There is an absolute constant κ with the following
property: Let x sufficiently large, and let

v =
log x

log log x
, w = v1/0.2961.

Let

Q = {p ∈
[

w

(logw)κ
, w

]
: p−1 | Mv},

where Mv is the least common multiple of the integers in [1, v]. Then

|Q| ≥ w

(logw)κ
.

Now we prove the result. Let Q be the set of primes given by Lemma 5. Let

k =

⌊
log x

logw

⌋
.

Let S denote the set of products of k distinct elements of Q. We see that

|S| =
(
|Q|
k

)
=

(w
k

)k
xo(1),

using that (n/k)k ≤
(
n
k

)
≤ (ne/k)k. We compute that kk = x0.2961+o(1) and

wk = x1+o(1), so
|S| = x1− 0.2961+o(1).

We also note that, for any m ∈ S,

x ≥wk ≥m ≥(w/(logw)κ)k = x1+o(1).

By Lemma 3, we have that for any m ∈ S, ordm(a) | Mv. By the prime number
theorem, this implies that

ordm(a) ≤ Mv = exp(v(1 + o(1))) = xo(1).
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Therefore, for each m ∈ S, we have

N(a, Cm) ≥ ϕ(m)

ordm(a)
= x1+o(1),

since ϕ(m) = m1+o(1) = x1+o(1) [11, Theorem 328]. Therefore we have found
x1− 0.2961+o(1) positive integers m less than or equal to x such that N(a, Cm) =
x1+o(1), which implies the result.

Remark 2. One can obtain the same result by using the work of Ambrose; it
follows from the specialization to Q of [2, Theorem 1]. As we can remove δ from
the result of Ambrose under the Elliott-Halberstam conjecture, we can show that
the average value of N(a, Cn) is x1+o(1) under the Elliott-Halberstam conjecture.

Proof of Theorem 5. Let k be a large integer, and set n = ak −1. Then, using [11,
Theorem 328],

N(a, Cn) ≥
ϕ(ak −1)

k
≫ n

logn log logn
.

Before proving Theorem 6, we recall some properties of the Carmichael lambda
function.

Lemma 6 ([9, Lemma 2]). If d|n, then

ϕ(d)/λ(d)|ϕ(n)/λ(n).

Theorem 7 ([8, Theorem 2]). For almost all n,

λ(n) = n1+o(1).

Lemma 7 ([13, Lemma 5]). We have

ordn(a) ≥
λ(n)

n

∏

p|n

ordp(a).

Let B denote the set of primes p such that ordp(a) <
√
p/ log p.

Lemma 8 ([7]). With B defined as above, |B ∩ {1, . . . , N}| = O(N/(logN)3).

Remark 3. Using the results in [12], we can show that the set of primes p, with
p ≤ n and ordp(a) ≤ p1+o(1), has size O(n/(log n)3) under the generalized Riemann
hypothesis, which would lead to a corresponding improvement in Theorem 6 to
N(a, Cn) ≤ no(1) for almost all n.

For an integer n, let nB denote the largest divisor of n that is a product of primes
from B.



INTEGERS: 19 (2019) 8

Lemma 9. For almost all n ≤ N , nB < logn.

Proof. By the density estimate in Lemma 8, we see that

∑

n=nB

1

n
=

∏

p∈B

(
1−1

p

)− 1

= O(1).

Therefore, for any ε > 0, there is C = C(ε) such that

∑

n=nB ,
n>C

1

n
< ε.

Thus for all but εN integers n ≤ N , we have that nB < C. As ε was arbitrary and
eventually logn > C, this proves the claim.

Lemma 10 ([13, Lemma 7]). Let A denote the set of positive integers n such that
there is a positive integer s such that s2 | n and s2 ≥logn. Then |A∩{1, . . . , N}| =
O(N/ logN).

Proof of Theorem 6. By Lemma 7, Lemma 9, and Lemma 10 there is a set S of
density 1 such that nB < logn, s2 < logn for every s such that s2 divides n, and
λ(n) = n1+o(1) for all n ∈ S. By Lemma 7, we have that

N(a, Cn) ≤
∑

d|n

dϕ(d)

λ(d)
∏

p|d ordp(a)
.

Using the bound that ϕ(n) < n and Lemma 6, in form of ϕ(d)/λ(d) ≤ ϕ(n)/λ(n)
for d|n, we have that, for almost all n,

N(a, Cn) ≤
∑

d|n

dϕ(d)

λ(d)
∏

p|d ordp(a)

≤
∑

d|n

dϕ(n)

λ(n)
∏

p|d ordp(a)

=
∑

d|n

dno(1)

∏
p|d ordp(a)

≤ n1/2+o(1),

where in the last inequality we are using that the square part of n is at most logn
and the product of the primes in B dividing n is at most log n.
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3.2. Symmetric Groups

As Lemma 2 implies that the sequence {N(a, Sn)}n∈N is non-decreasing, since Sn− 1

embeds into Sn, it makes less sense to discuss the average order, normal order, and
extremal order of N(a, Sn). We instead prove bounds on the size of N(a, Sn).

Theorem 8. We have

N(a, Sn) ≥
n!

exp
(

ϕ(a)
2a log2 n(1 + o(1))

) .

Let Tn = Tn(a) denote the set of permutations in Sn with order coprime to a,
and let S(n) denote the set of positive integers coprime to a that are at most n.
We will use concentration bounds to show that almost all elements of Tn have large
order, and then we use the trivial bound that ordd(a) ≤ d to bound N(a, Sn).

Theorem 9 ([14, Theorem 1]). There exist constants C = C(a) and δ = δ(a) such
that

|Tn| = C(n−1)!nϕ(a)/a +O((n−1)!nϕ(a)/a− δ).

Lemma 11 ([18, Theorem 1]). For some permutation σ, let M(σ) denote the order
of the permutation. Choose a random permutation τn from Tn. Then

P

⎛

⎝logM(τn)−
∑

i∈S(n)(log i)/i√∑
i∈S(n)(log i)

2/i
≤ x

⎞

⎠d−→ Φ(x),

where Φ(x) is the standard normal distribution and
d−→ denotes convergence in dis-

tribution.

We use Lemma 11 to bound the order of most elements of Tn and then use the
trivial upper bound on ordd(a). First we obtain an asymptotic for

∑
i∈S(n)(log i)

2/i.

Lemma 12. We have
∑

i∈S(n)

log i

i
=

ϕ(a)

2a
log2 n+ o(log2 n).

Proof. Observe that, using partial summation,

∑

i∈S(n)

log i

i
= log n

n∑

i=1

1S(n)(i)

i
+

n− 1∑

m=1

(logm−log(m+ 1))
m∑

i=1

1S(n)(i)

i

and
n∑

i=1

1S(n)(i)

i
=

n− 1∑

m=1

(
1

m
− 1

m+ 1

)
m
ϕ(a)

a
+O(1)

=
ϕ(a)

a
logn+O(1).
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Using partial summation again, we have that

n∑

i=1

log i

i
= log2 n+

n− 1∑

m=1

(logm−logm+ 1) logm+O(log n).

On the other hand,

n∑

i=1

log i

i
=

∫ n

1

log x

x
dx + o(logn) =

log2 n

2
+ o(logn).

Hence
n− 1∑

m=1

(logm−logm+ 1) logm =
log2 n

2
+ o(log n),

showing that
∑

i∈S(n)

log i

i
=

ϕ(a)

2a
log2 n+ o(log2 n).

Proof of Theorem 8. We have the trivial bound

∑

i∈S(n)

(log i)2

i
= O(log3 n).

For all but oa(|Tn|) permutations τn in Tn, we have that

logM(τn) ≤
∑

i∈S(n)

log i

i
+O(log logn(logn)3/2).

Hence, for almost all permutations in Tn, we have that

M(τn) ≤ exp

(
ϕ(a)

2a
log2 n(1 + o(1))

)
.

In order to turn this into a lower bound for N(a, Sn), we need an upper bound
on ordd(a) for d coprime to a. Using the trivial bound that ordd(a) ≤ d ≤
exp

(
ϕ(a)
2a log2 n(1 + o(1))

)
for almost all permutations τn ∈ Tn, we have that

N(a, Sn) ≫a
(n−1)!nϕ(a)/a

exp
(

ϕ(a)
2a log2 n(1 + o(1))

) =
n!

exp
(

ϕ(a)
2a log2 n(1 + o(1))

) .
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We conjecture that this lower bound is of the correct order, as the trivial bound
ordd(a) ≤ d is usually fairly sharp for most d. Without finer control over the orders
of permutations than is known, it seems difficult to prove a sharp upper bound.
However, we can show that

N(a, Sn) = oa((n−1)!nϕ(a)/a).

Indeed, by Lemma 11, we have that for all but oa(|Tn|) elements of Tn,

M(τn) ≥exp

(
ϕ(a)

2a
log2 n(1 + o(1))

)
.

Hence

N(a, Sn) ≤ oa(|Tn|) +
(n−1)!nϕ(a)/a

exp
(

ϕ(a)
2a log2 n(1 + o(1))

) = oa((n−1)!nϕ(a)/a).

3.3. Special Linear Groups Over Finite Fields

Because of highly explicit knowledge of the conjugacy class structure of SL2(Fq),
we are able to compute N(a, SL2(Fq)).

Theorem 10. Let q = pc be an odd prime power. If gcd(a, q) = 1, then

N(a, SL2(Fq)) =
q2 −q

2
N(a, Cq+1) +

q2 + q

2
N(a, Cq− 1)

+(q2 −1)(1 + 12!a)(
1

ordp(a)
−1),

where 12!a is 1 if a is odd and 0 otherwise. If gcd(a, q) > 1, then the last term does
not appear.

Before we begin the proof, we recall some facts about conjugacy classes in
SL2(Fq) for q odd. We break the conjugacy classes into 4 types (see, e.g., [10]).

• Type 1: The (q−3)/2 conjugacy classes of elements which are diagonalizable

of Fq; they are parametrized by matrices of the form

(
α 0
0 α− 1

)
for α ∈

F∗
q \ {1,−1}. Each conjugacy class has q(q + 1) elements.

• Type 2: The (q−1)/2 conjugacy classes of elements which are diagonalizable

of Fq2 but not Fq; they are parametrized by matrices of the form

(
α 0
0 α− 1

)

for α ∈ F∗
q2 \ {1,−1} and satisfying α · Fr(α) = αq+1 = 1, where Fr denotes

the Frobenius endomorphism. Each conjugacy class has q(q −1) elements.

• Type 3: The central conjugacy classes {I} and {−I}.
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• Type 4: The 4 conjugacy classes that are not semi-simple. These conju-

gacy classes are parametrized by

(
1 1
0 1

)
,

(
−1 1
0 −1

)
,

(
1 b
0 1

)
,

(
−1 b
0 −1

)
,

where b is a non-square in Fq. There are (q2−1)/2 elements in each conjugacy
class.

Proof. Note that the order of an element in a type 1 conjugacy classes is just the
order of the eigenvalue, and the eigenvalues lie in the cyclic group F∗

q . Therefore,
because each type 1 conjugacy class has eigenvalues α and α− 1, there are ϕ(d)/2
type 1 conjugacy classes of order d for each divisor d of q −1, d ̸= 1, 2. Hence

∑

a∈C, C type 1

1

ordd(a)
=

q2 + q

2
(N(a, Cq− 1)−1−12!a).

Similarly for type 2, we note that the elements of Fq2 satisfying xq+1 = 1 form a
cyclic subgroup of the multiplicative group. Therefore

∑

a∈C, C type 2

1

ordd(a)
=

q2 −q

2
(N(a, Cq− 1)−1−12!a).

For type 3, the contribution is 1 + 12!a.
For type 4, each element with eigenvalue 1 has order p, and each element with

eigenvalue −1 has order 2p. Hence,

∑

a∈C, C type 4

1

ordd(a)
=

q2 −1

ordp(a)
+ 12!a

q2 −1

ord2p(a)
=

q2 −1

ordp(a)
(1 + 12!a),

since ord2p(a) = ordp(a) for a odd. Summing over the 4 types of conjugacy classes
gives the result.

Theorem 1 allows us to bound the normal and extremal order of N(a, SL2(Fp)),
using the fact that N(a, SL2(Fp)) ≫ p2N(a,F∗

p).

Corollary 1. There exist infinitely many primes p such that

N(a, SL2(Fp)) ≥p29/12+o(1).

We also have
1

π(x)

∑

p≤ x

N(a, SL2(Fp)) ≫ x2.293.

4. On the Minimal Size of N(a,G) Among Groups of a Fixed Order

We now prove Theorem 2. Our strategy is to show that, for a group G of order
n, the sum

∑
g∈G, gcd(|g|,a)=1

1
ord|g|(a)

majorizes
∑

g∈Cn, gcd(|g|,a)=1
1

ord|g|(a)
for any
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nilpotent group G. Then, Lemma 1 immediately implies Theorem 2. Before proving
Theorem 2, we prove a lemma. For a group G, let BG(n) denote the number of
elements of order at least n in G.

Lemma 13. Let G be a group of order pk. Then for all n, BG(n) ≤ BCpk
(n).

Proof. First observe that the number of elements of order n in any finite group is a
multiple of ϕ(n). Suppose G is a counterexample to the lemma, then choose ℓ such
that BG(pℓ) > BCpk

(pℓ). Since BG(1) = BCpk
(1), there must be fewer than ϕ(pb)

elements of order pb for some b < ℓ. Hence there are no elements of order pb for
some b. But if a group has an element of order pc, then it also has an element of
order pb for every b < c.

Proof of Theorem 2. We first prove Theorem 2 for p-groups. Note that ordpb(a) ≤
ordpc(a) if b ≤ c. But then Lemma 13 and Lemma 1 immediately imply that
N(a,G) ≥N(a, C|G|) for any p-group G.

Recall that a group is nilpotent if and only if it is a direct product of p-groups. Let
G = P1 × · · ·× Pk be a nilpotent group, and let P1, . . . , Pk be p-groups with orders
peii for distinct primes p1, . . . , pk. Let n = |G|. We may assume that gcd(a, n) = 1,
as factors of p-group with g not relatively prime a do not affect the result. We need
to show that ∑

d|n

w(d)

ordd(a)
≥

∑

d|n

ϕ(d)

ordd(a)
.

Observe that, for a nilpotent group G, wG is a multiplicative function, i.e.,

wG(p
j1
1 pj22 · · · pjkk ) = wG(p

j1
1 )wG(p

j2
2 ) · · ·wG(p

jk
k ).

We claim that for any set of ℓ primes, pi1 , . . . , piℓ , we have that

∑

d|n
d=p

b1
i1

···pbℓ
iℓ

w(d)

ordd(a)
≥

∑

d|n
d=p

b1
i1

···pbℓ
iℓ

ϕ(d)

ordd(a)
.

This would clearly imply the result by summing over all subsets of the primes
dividing n. We prove the claim by induction on ℓ. The base case is the case of
p-groups. Fix b1, . . . , bℓ− 1 such that pb1i1 · · · p

bℓ− 1
iℓ−1

| n. Then
jiℓ∑

k=0

w(pb1i1 · · · pbℓ− 1
iℓ−1

pkiℓ)

ord
p
b1
i1

···pbℓ−1
iℓ−1

pk
iℓ

(a)
= w(pb1i1 · · · p

bℓ− 1
iℓ−1

)

jiℓ∑

k=0

w(pkiℓ)

ord
p
b1
i1

···pbℓ−1
iℓ−1

pk
iℓ

(a)

≥
w(pb1i1 · · · p

bℓ− 1
iℓ−1

)

ord
p
b1
i1

···pbℓ−1
iℓ−1

(a)

jiℓ∑

k=0

w(pkiℓ)

ordpk
iℓ
(a)

,

where we use Lemma 3 in the inequality. The result follows from summing over all
choices of b1, . . . , bℓ− 1 and the inductive hypothesis.
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5. Discussion

In addition to proving a better upper bound on N(a, Sn) and proving Conjecture
1, we pose several open problems.

Since the map x !→ xa is eventually periodic, the orbit x, xa, xa2
, . . . consists of

a tail which does not repeat followed by a cycle. If x has no tail, then we say that
x is purely periodic. Thus in G(a,H), every purely periodic element has a rooted
tree of tails leading into it. In [6, Theorem 1], Chou and Shparlinski showed that
if H is cyclic, then all of the tails coming off the purely periodic elements in H
are isomorphic. In particular, every purely periodic element has tails of the same
size. This enabled Chou and Shparlinski to give a simple expression for the average
length of the period over all elements of Cn. Let C(a,G) denote the average period
of an element in G. Then

Theorem 11 ([6, Theorem 1]). If ρ is the largest divisor of n coprime to a, then

C(a, Cn) =
1

ρ

∑

d|ρ

ϕ(d) ordd(a).

For general groups, the tails coming off a purely periodic vertex are not the same
size. It would be interesting to compute or bound C(a,G) for various families of
groups.

By analogy with the power graph, it would be interesting to determine what set
of invariants is determined by G(a,H) for some fixed a or for all a. Groups H of
prime exponent and the same order clearly have the same G(a,H) for every a. Using
the example of Cameron and Ghosh in [5], we see that, if H = ⟨x, y | x3 = y3 =
[x, y]3 = 1⟩, the smallest non-abelian group of exponent 3, then G(a, C3×C3×C3) ∼=
G(a,H) for every a. This raises the following question.

Question 1. Are there groups H and K such that the power graph of H is isomor-
phic to the power graph of K, but G(a,H) is not isomorphic to G(a,K) for some
a?

It would be interesting to compute the asymptotics of N(a, SLn(Fq)) as n grows,
in analogy with the symmetric group. As in the case of N(a, Sn), Lemma 2 implies
that the sequence {N(a, SLn(Fq))}n∈N is non-decreasing since SLn− 1(Fq) embeds
into SLn(Fq).

One could also allow a to vary. Let exp(G) denote the exponent of G. Then
clearly N(a,G) = N(a+ exp(G), G). Then the following question is natural.

Question 2. What a ∈ {2, 3, . . . , exp(G)−1} maximizes N(a, Sn)?
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