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Abstract

Wonderful varieties are certain smooth projective varieties constructed from linear

subspaces of a coordinated vector space. We establish a positivity property for

Grothendieck rings of vector bundles of wonderful varieties. The Grothendieck ring

of vector bundles of a wonderful variety depends only on the matroid represented by

the linear subspace. We define a combinatorial analogue of the Grothendieck ring of

vector bundles for any matroid, and we show that it has properties resembling the

Grothendieck ring of a smooth projective variety. We prove the positivity property

for any, not necessarily realizable, matroid.
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Chapter 1

Introduction

1.1 Wonderful compactifications

Let E = {1, . . . , n}. Let k be a field, and let L ⊆ kE be a linear subspace of dimension

r which is not contained in any coordinate hyperplane. The coordinate hyperplanes

then give a hyperplane arrangement in L. For S ⊆ E, let LS = L ∩ kE\S, and let

LS = L/LS. For each non-empty subset S of E, we have a rational map PL 99K PLS.

We define the wonderful compactification or wonderful variety WL of L to be the

closure of the image of the rational map

PL 99K
∏

∅≠S⊆E

PLS.

This construction was introduced in [DCP95], where it is shown that WL can be

alternatively described as an iterated blow-up of PL. We first blow up the points

{PLS : ∅ ≠ S ⊆ E, dimLS = 1}. We then blow up the strict transform of the locus

{PLS : ∅ ̸= S ⊆ E, dimLS = 2}. We continue in this way, blowing up the strict

transforms of the PLS in increasing order of dimension. From this description, we

see that WL is a smooth projective variety of dimension r − 1 which compactifies

PL \ ∪iPL{i}.

From this description, one can also compute the cohomology ring of WL, as there

is a description of how the cohomology ring of a space changes when we blow up a

1



CHAPTER 1. INTRODUCTION 2

smooth center. As the blow up procedure only depends on the incidences between

the various LS, the cohomology ring only depends on these incidences [DCP95]. A

subset F of E is called a flat if, for each i such that LF ⊆ L{i}, we have that i ∈ F .

That is, F is the maximal element of the set {S : S ⊆ E,LS = LF}. The flats form

a lattice, and the cohomology of WL has a presentation which only depends on the

lattice of flats (Proposition 2.2.2).

At least if k is a subfield of C, the fact that WL is a smooth projective variety

endows the singular cohomology H•(WL;Z) with powerful positivity properties. For

example, the first Chern class of any ample line bundle L onWL satisfies the Hard Lef-

schetz theorem: the multiplication map c1(L)k : Hr−1−k(WL;Q) → Hr−1+k(WL;Q) is

an isomorphism. We also have the Hodge–Riemann relations: the pairing (a, b) 7→
ir−1−k degWL

(c1(L)k · a · b) is positive definite on the kernel of the multiplication map

c1(L)k+1 : Hr−1−k(WL;Q) → Hr+1+k(WL;Q). In [HK12], Huh and Katz used these

positivity properties to prove remarkable combinatorial inequalities on the lattice of

flats of L. This is essentially the only proof of these inequalities.

Matroids are combinatorial abstractions of hyperplane arrangements. Each hy-

perplane arrangement L ⊆ kE gives rise to a matroid, which records the lattice of

flats of the hyperplane arrangement. Matroids have a rich and extensively developed

combinatorial theory.

Definition 1.1.1. A matroid M on a finite ground set E a collection of subsets of

E, the flats of M, such that

1. E is a flat.

2. If F and G are flats, then F ∩G is a flat.

3. If F is a flat, then each element of E \ F is contained in exactly one flat which

covers F .

For example, the flats of a hyperplane arrangement L ⊆ kE form a matroid.

Each subset S of E is contained in a unique minimal flat, the closure of S, which is

denoted clM(S). The flats of any matroid form a lattice, and every maximal chain

in an interval [F,G] has the same length. We say that the rank of a flat F , denoted
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rkM(F ), is the length of any maximal chain in the interval [clM(∅), F ]. The rank of

M is rkM(E).

A matroid which arises from a hyperplane arrangement L ⊆ kE is called realizable

over k. The rank of a flat F is the codimension of LF . Although many matroids

are not realizable over any field, experience shows that the properties enjoyed by

realizable matroids are often shared by all matroids.

The presentation of H•(WL;Z) obtained from the iterated blow-up description

of WL depends only on the matroid M that L ⊆ kE represents, and it makes sense

for any matroid. This ring is called the Chow ring of M, denoted A•(M), because

it coincides with the Chow ring of cycles modulo rational equivalence on WL. In

[AHK18], it is shown that A•(M) satisfies the properties that one expects of the

cohomology ring of a smooth projective variety, even when M is not realizable. That

is, there is a degree map deg : Ar−1(M) → Z such that the pairing (a, b) 7→ deg(a ·b) is
unimodular (Poincaré duality), and there is a combinatorially defined “ample cone”

in A1(M) such that A•(M) satisfies the conclusions of the Hard Lefschetz theorem

and the Hodge–Riemann relations. This generalizes the combinatorial inequalities

obtained for realizable matroids in [HK12] to all matroids.

We study the Grothendieck ring of vector bundles K(WL). We give a presen-

tation of K(WL) which depends only on the matroid M represented by L ⊆ kE

(Theorem 3.1.2). We show that K(WL) is the Grothendieck ring of vector bundles of

a certain smooth non-compact toric variety XΣM
(Proposition 3.1.1). The definition

of XΣM
makes sense for non-realizable matroids, so we define the K-ring of a matroid

K(M) to be the Grothendieck ring of vector bundles of this variety. From this defini-

tion, one sees that K(M) has the properties that one expects from the Grothendieck

ring of vector bundles of a variety: the Adams operations equip it a collection of com-

muting endomorphisms, K(M) is an augmented lambda ring, and there is a Chern

character isomorphism ch: K(M)⊗Q → A•(M)⊗Q (Section 3.4).

When M is realized by L ⊆ kE, there is a functional χ : K(M) → Z given by taking

the sheaf Euler characteristic. The existence of this functional for non-realizable

matroids is not obvious because XΣM
is not proper. Nevertheless, we construct such

a functional χ : K(M) → Z for all matroids which coincides with the sheaf Euler
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characteristic on K(WL) when L is a realization of M (Definition 3.4.3).

These results show thatK(M) behaves like the Grothendieck ring of vector bundles

of a smooth projective variety. Our next goal is to prove “K-theoretic positivity

results” for K(M). We first sketch two examples of K-theoretic positivity results

from the literature.

1.2 Lattice point counting in polytopes

Let Q be a d-dimensional lattice polytope in Rn, and let kQ denote its kth dilate.

Stanley [Sta80] showed that the h∗-vector (h∗0(Q), . . . , h
∗
d(Q)) defined by

∑
k≥0

|{lattice points in kQ}|tk = h∗0(Q) + h∗1(Q)t+ · · ·+ h∗d(Q)t
d

(1− t)d+1

is non-negative, and it is furthermore a Macaulay vector (Definition 4.1.1) if, for every

k, all lattice points in kQ are sums of lattice points in Q. Via standard results in

toric geometry [Ful93, Chapter 3.5], this result can be formulated geometrically as

“K-theoretic positivity” in the following way.

We identify Zn with the character lattice of Gn
m. Each lattice point in Q gives

a character of Gn
m, so we have a map Gn

m → G|{lattice points in Q}|
m . Let X be the

normalization of the closure of the image in P|{lattice points in Q}|, and let L be the ample

line bundle on X obtained from pulling back O(1). Toric vanishing theorems imply

that χ(X,L⊗k) = dimH0(X,L⊗k) = |{lattice points in kQ}| (for k ≥ 0), and that

the graded ring R•
L :=

⊕
k≥0H

0(X,L⊗k) is Cohen–Macaulay. See Proposition 4.1.2

for a detailed review. Quotienting R•
L by a linear system of parameters, the vector

(h∗0(L), . . . , h∗d(L)) defined by

∑
k≥0

χ(X,L⊗k)tk = Hilbert series of R•
L =

h∗0(L) + h∗1(L)t+ · · ·+ h∗d(L)td

(1− t)d+1

is the Hilbert function of a graded artinian ring. In particular, this implies that the

vector (h∗0(L), . . . , h∗d(L)) is non-negative, and it is furthermore a Macaulay vector if
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R•
L is generated in degree 1. This gives inequalities on the number of lattice points

in dilates of Q. There are also combinatorial proofs of at least the non-negativity of

the h∗i (L), see, e.g., [BS07].

1.3 Degenerations of torus-orbit closures

Let L ⊆ kE be a linear subspace of dimension r. This defines a point [L] in the

Grassmannian Gr(r, n). The torus T = Gn
m acts on Gr(r, n), and we may consider

the torus-orbit closure T · [L] ⊆ Gr(r, n).

For each cocharacter λ : Gm → T , there is a specialization of [L] to limt→0 λ(t) ·
[L] = [L′]. Then T · [L] degenerates to a union of torus-orbit closures that contains

T · [L′]. In [Spe08], Speyer studied the structure of the special fiber of this degen-

eration, and in particular conjectured a bound on the number of torus-orbits in the

special fiber when L is generic. He constructed examples to show that his conjecture,

if true, is tight [Spe08, Theorem 1.2]. This conjecture is equivalent to bounding the

number of faces in a “tropicalized linear space.”

Because T · [L] is a projective toric variety (via the Plücker embedding of the

Grassmannian), there is a moment map T · [L] → Rn. The image of the moment

map is a polytope, which we now describe. Let M be the matroid that L represents.

We say that B ⊆ E is a basis of M if the coordinate projection L ↪→ kE → kB is

an isomorphism. Given S ⊆ E, let eS =
∑

i∈S ei, where ei is the ith standard basis

vector in Rn. Then the image of moment map is

B(M) = the convex hull of {eB : B basis of M}.

This is called the basis polytope of M [GS87]. The dimension of B(M) is n− c, where

c is the dimension of stabilizer in T of [L] ∈ Gr(r, n).

Each strata of the special fiber is the torus-orbit closure of some point in Gr(r, n),

and so the moment polytope of each strata of the special fiber is the basis polytope

of a matroid. The theory of projective toric varieties over discrete valuations rings

implies that there is a subdivision of the polytope B(M) into the basis polytopes
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Figure 1.1: The moment polytope of the torus-orbit closure of a general point in
Gr(2, 4).

of the matroids corresponding to the strata of the special fiber. See, for instance,

[Kat09, Section 4]. In order to bound the number of torus-orbits in the special fiber

of a degeneration, it suffices to bound the number of polytopes appearing in any

subdivision of B(M) into basis polytopes of matroids.

In [Spe09], Speyer proved a special case of his conjecture bounding the number

of torus-orbits in a degeneration of a torus-orbit closure. Speyer constructed an

invariant gM(t) ∈ Z[t] of a matroid M with the following property: whenever there

is a subdivision of a basis polytope B(M) into basis polytopes of matroids such that

B(M1), . . . , B(Mk) are the interior faces of the subdivision, we have

gM(t) = gM1(t) + · · ·+ gMk
(t).

If one can understand the coefficients of gM(t), and in particular show that they are

non-negative for every matroid, then this gives a bound on the possible subdivisions

of B(M) into basis polytopes of matroids. Speyer computed gM(t) when M is the

matroid represented by a generic linear subspace [Spe09, Proposition 3.1], and he

showed that the non-negativity of gM(t) would prove his conjecture.

We give a definition of Speyer’s invariant gM(t) when M is realized by L ⊆ kE.

If L is contained in a coordinate hyperplane, then gM(t) is defined to be 0. Let XE

be the wonderful variety of the Boolean arrangement kE ⊆ kE; we have an inclusion

WL ↪→ XE. Let QL denote the normal bundle of this inclusion, and let CL be the

projectivization of Q∨
L over WL; this is a variety of dimension n− 2 equipped with a

line bundle O(1).

One can show that the line bundle O(1) is globally generated. Let H1, . . . , Hn−2

be the vanishing loci of general sections of O(1). Then the constant term of gM(t) is



CHAPTER 1. INTRODUCTION 7

0, and the ti coefficient of gM(t) is (−1)dimB(M)−n+iχ(H1 ∩ · · · ∩ Hn−1−i,O(−1)) for

i ∈ {1, . . . , n− 1}.
In [Spe09, Proposition 3.3], Speyer showed that, if M is realizable over a field

of characteristic 0, then the coefficients of gM(t) are non-negative. He does this by

reducing to the case when dimB(M) = n−1 and then showing that O(1) is a nef and

big line bundle, and this remains true when O(1) is restricted to H1∩· · ·∩Hn−1−i for

each i. Then the Kawamata–Viehweg vanishing theorem implies that Hj(H1 ∩ · · · ∩
Hn−1−i,O(−1)) = 0 for j < i− 1, and so (−1)i−1χ(H1 ∩ · · · ∩Hn−1−i,O(−1)) ≥ 0.

It has since been realized that, in order to prove that the coefficients of gM(t) are

non-negative for all matroids, it suffices to prove that the tr coefficient of gM(t) is non-

negative for all matroid of rank r which have dimB(M) = n−1, see Proposition 4.5.1.

Note that

χ(H1 ∩ · · · ∩Hn−1−i,O(−1)) = χ(CL, [O(−1)] · (1− [O(−1)])n−1−i)

=
n−1−i∑
k=0

(−1)k
(
n− 1− i

k

)
χ(CL,O(−k − 1)).

Let π : CL → WL be the projective bundle morphism. Note that Rπ∗O(−k) = 0 for

1 ≤ k ≤ n− r− 1, and so χ(CL,O(−k)) = 0. In particular, the tk coefficient of gM(t)

vanishes for k > r, and the coefficient of tr is

(−1)dimB(M)−1χ(CL,O(−n+ r)) = (−1)dimB(M)−1χ(WL, Rπ∗O(−n+ r))

= (−1)dimB(M)−n+rχ(WL, detQ∨
L)

as Riπ∗O(−n + r) = 0 for i < n − r − 1 and Rn−r−1π∗O(−n + r) = detQ∨
L. The

line bundle detQL is a nef and big line bundle on WL when dimB(M) = n − 1, so

if k has characteristic 0, the non-negativity follows from applying the Kawamata–

Viehweg vanishing theorem to WL. See Proposition 4.5.2 for a more general formula.

One can compute all of the coefficients of gM(t) in terms of symmetric powers of QL

by pushing forward to WL.
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The definition of gM(t) can be extended to non-realizable matroids using the fol-

lowing strategy. Consider the sub-Grassmannian

Gre = {[U ] ∈ Gr(r, n) : (1, . . . , 1) ∈ U}.

Kapranov’s space of visible contours [Kap93] of L ⊆ kE is VL := T · [L]∩Gre. When

dimB(M) = n−1, there is a map f : WL → VL which satisfies f∗OWL
= OVL

[Tev07].

The vector bundle QL on WL is f ∗Q, where Q is the restriction of the tautological

quotient bundle on Gr(r, n) to VL. We may compute the Euler characteristics used

in the definition of gM(t) by pushing forward from CL to WL; the resulting class in

K(WL) will be pulled back from VL from f . We may therefore compute the coefficients

of gM(t) as Euler characteristics on VL.

The intersection defining VL is transverse, and so we have [OVL
] = [OT ·L] · [OGre ]

inside K(Gr(r, n)). By the above discussion, we can express the ti coefficient of gM(t)

as χ(Gr(r, n), ai · [OT ·L] · [OGre ]) for some class ai ∈ K(Gr(r, n)) which is a linear

combination of symmetric powers of Q, and in particular is independent of L.

Therefore, to extend the definition of gM(t) to arbitrary matroids (and prove

that the above definition does not depend on the choice of realization), it suffices

to define a class generalizing [OT ·L] ∈ K(Gr(r, n)) for an arbitrary matroid. This

was done in [FS12], using the following strategy. The torus-orbit closure T · [L] is
isomorphic to the toric variety of the matroid basis polytope XB(M); in particular,

it is normal [Wel76, Chapter 18.6, Theorem 3]. Therefore [OT ·[L]] = ι∗XB(M), where

ι is the inclusion. We can compute this pushforward using equivariant localization:

this gives a combinatorial formula for the class [OT ·[L]] inside the T -equivariant K-

theory of the Grassmannian which is described solely in terms of the combinatorics of

B(M). This formula, given in [FS12, Proposition 3.2], makes sense for any matroid.

This generalizes the class [OT ·[L]]. See [ELS] for a detailed discussion. For a slightly

different description of the g-polynomial, see [FS12, Section 6].
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1.4 K-theoretic positivity for matroids

For each line bundle L on the non-compact toric variety XΣM
, the function k 7→

χ(M,L⊗k) is a polynomial in k called the Snapper polynomial of L. We define the

h∗-vector (h∗0(M,L), . . . , h∗d(M,L)) of L by

∑
k≥0

χ(M,L⊗k)tk =
h∗(M,L; t)
(1− t)d+1

where h∗(M,L; t) =
d∑

k=0

h∗k(M,L)tk,

and d is the degree of the Snapper polynomial of L.
We conjecture that, for a large class of line bundles, h∗(M,L; t) is a Macaulay

vector (Conjecture 4.3.1). As in Section 1.2, if M is realizable, then this would follow

from a strong cohomology vanishing statement, see, e.g., Example 4.6.3. Note that

h∗d(M,L) = (−1)dχ(M,L−1), so the non-negativity of h∗d(M,L) can in some cases be

proved using the Kawamata–Viehweg vanishing theorem. Conjecture 4.3.1 implies

the non-negativity of the coefficients of the Speyer’s g-polynomial.

We prove Conjecture 4.3.1 for a class of line bundles (Theorem 4.0.2). This proves

the non-negativity of the coefficients of Speyer’s g-polynomial in new cases (Theo-

rem 4.5.5). Our strategy is to show that we can compute χ(M,−) on a certain highly

reducible subvariety of a product of projective spaces (Theorem 3.6.1). This subvari-

ety is Frobenius split, which gives strong cohomology vanishing statements.

1.5 Organization and overview

Chapter 2 consists of background information about wonderful varieties and related

objects. We introduce Bergman fans, which correspond to certain non-compact toric

varieties that contain wonderful varieties. We also discuss the Chow rings of wonderful

varieties and matroids.

Chapter 3 computes the K-rings of wonderful varieties and defines the K-ring

of a matroid. We show that the K-ring of a matroid has properties resembling the

K-ring of a smooth projective varieties. The most nontrivial part is defining an

analogue of the Euler characteristic, see Definition 3.4.3. This definition is justified
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by Theorem 3.4.1. This content of this chapter is mostly drawn from [LLPP24],

although the proof of Theorem 3.4.1 is new.

Chapter 4 discusses positivity properties of K-rings of matroids. The positivity

properties that we consider are best encoded in an analogue of the h∗-vector of a lattice

polytope, see Definition 4.0.1. Our main result in this direction is Theorem 4.0.2. We

conjecture a strengthening which would imply Speyer’s conjecture. The content of

this chapter is mostly drawn from [EL], although some parts are simplified using the

new proof of Theorem 3.4.1.

Throughout, we will only consider linear subspaces L ⊆ kE which are not con-

tained in any coordinate hyperplane. This is because the wonderful variety WL is not

defined when L is contained in coordinate subspace. Many of the results considered

here have versions for augmented wonderful varieties, which are varieties associated

to any linear subspace L ⊆ kE. In some cases, this is developed in [LLPP24] and

[EL].



Chapter 2

Geometry and combinatorics of

wonderful varieties

Let L ⊆ kE be a linear subspace of dimension r which is not contained in any

coordinate hyperplane. In this chapter, we review some aspects of the geometry of

the wonderful variety WL. We describe three families of divisors on WL which will be

used in the sequel. We also introduce two key tools for understanding the geometry

of wonderful varieties. The first, introduced in Section 2.2, is the toric variety of

the Bergman fan, which is a non-compact toric variety containing WL. The second,

introduced in Section 2.5, is the realization of WL as multiplicity-free subvariety of a

product of projective spaces.

2.1 The geometry of wonderful varieties

We say that a matroid is loopless if the rank of every i ∈ E is 1. Equivalently, a

matroid is loopless if the empty set is a flat. A matroid realized by L ⊆ kE is loopless

if and only if L is not contained in a coordinate hyperplane.

As mentioned in the introduction, WL can be described as an iterated blow-up of

PL. Recall that LS = L ∩ kE\S and that LS = L/LS. If F is the closure of S, i.e.,

the minimal flat containing S, then LS = LF and LS = LF . Then WL is obtained

by blowing up the points {PLF : rk(F ) = r − 1} on PL, the blowing up the strict

11
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transforms of the lines {PLF : rk(F ) = r − 2}, and so on, ending by blowing up the

divisors which are the strict transforms of {PLF : rk(F ) = 1} [DCP95]. In particular,

the dimension of WL is r − 1. Indeed, WL contains PL \ ∪FPLF as a dense open

subset.

There are two distinguished families of divisors on wonderful varieties, one arising

from the iterated blow-up description, and the other arising from the description as

a closure in a product of projective spaces. To each proper non-empty flat F (i.e.,

each flat other than E and the empty set), we have a divisor DF on WL which is the

strict transform of the exceptional divisor obtained when we blow up PLF .

For each non-empty flat, we have a line bundle LF on WL obtained by pulling

back O(1) along the map WL → PLF . This line bundle is trivial if rk(F ) = 1 because

PLF is a point. We also obtain line bundles onWL by pulling back O(1) from PLS for

any non-empty set S. However, if F is the smallest flat containing S, then LS = LF ,

so we don’t obtain any new line bundles in this way. In particular, the map

WL →
∏
F ̸=∅

PLF ,

where the product is taken over all flats (and not all subsets), is an embedding.

Either of these families of divisors generate the Chow ring of WL, which is iso-

morphic to the singular cohomology ring of WL when k is a subfield of C. In the

next section, we will describe the Chow ring of WL. For this, it will be convenient to

introduce another variety.

2.2 Bergman fans

When L = kE, the torus GE
m acts onWL, and the diagonal subtorus acts trivially. The

orbit of the projectivization of the line spanned by (1, . . . , 1) under GE
m/Gm is dense

in WL and is identified with GE
m/Gm. As WL is smooth and in particular normal, this

gives WL the structure of a toric variety. We call this the permutohedral toric variety

XE on E. It has dimension n− 1.

We will write ZE/Z to denote ZE module the subgroup of diagonal elements. This
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is the cocharacter lattice of the torus GE
m/Gm. Set RE/R = (ZE/Z)⊗R. For S ⊆ E,

set eS =
∑

i∈S ei ∈ ZE/Z.
For any L ⊆ kE, the embedding L ↪→ kE induces an embedding of WL into XE.

An important role will be played by a certain open toric subvariety of XE which

contains WL: we will show that the restriction map on Chow and K-groups from this

open subvariety to WL is an isomorphism. These are the toric varieties associated to

Bergman fans, which we introduced in [AK06].

Let M be a loopless matroid on ground set E. Let F = {∅ ⊊ F1 ⊊ · · · ⊊ Fk ⊊ E}
be a flag of proper non-empty flats of M. Let ρF be the cone in RE/R generated by

{eF : F ∈ F}.

Definition 2.2.1. The Bergman fan of a loopless matroid M, denoted ΣM, is the fan

in RE/R whose cones are {ρF : F flag of flats of M}.

Let Un,n be the Boolean matroid, i.e., the matroid realized by kE ⊆ kE. Then

ΣUn,n is the fan of the permutohedral toric variety, and we denote it ΣE. Each ΣM is

a subfan of ΣE. The toric variety of ΣM, denoted XΣM
, is therefore open inside XE.

Because XE is smooth, we see that XΣM
is smooth. We may therefore talk about

their Chow rings of cycles modulo rational equivalence on XΣM
. The following result

motivates the definition of the Bergman fan.

Proposition 2.2.2. Let L ⊆ kE be a realization of a loopless matroid M. Then the

inclusion WL ↪→ XE factors through XΣM
, and the pullback map A•(XΣM

) → A•(WL)

is an isomorphism.

Proposition 2.2.2 appears in [BHM+22, Remark 2.13] and can be deduced from

[DCP95, FY04].

If M is loopless, we define the Chow ring of a matroid M, denoted A•(M), to be

the Chow ring A•(XΣM
). We have the following fundamental result on Chow rings of

matroids.

Proposition 2.2.3. [AHK18, Theorem 6.19] Let M be a loopless matroid of rank r.

Then there is an isomorphism degM : Ar−1(M) → Z such that the pairing Ak(M) ×
Ar−1−k(M) → Z given by (a, b) 7→ degM(ab) is unimodular.
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In particular, Proposition 2.2.3 asserts that A•(M) is a free abelian group of

finite rank. The above results is a version of Poincaré duality. We call the pairing

(a, b) 7→ degM(ab) the Poincaré pairing.

When M is realized by L ⊆ kE, under the identification in Proposition 2.2.2, the

degree map coincides with the degree map deg : Ar−1(WL) → Z given by pushing

forward to a point. At least if k is a subfield of C, Proposition 2.2.3 is a consequence

of Poincaré duality in this case.

The Chow ring of a matroid, being the Chow ring of a smooth toric variety,

is generated by the classes of torus-invariant irreducible divisors. This leads to a

presentation of the Chow ring of a matroid, which we call the toric presentation.

Torus-invariant irreducible divisors on a toric variety are in bijection with rays of the

fan, so the torus-invariant divisors on XΣM
are labeled by proper non-empty flats of

M. We call the class of a divisor labeled by a proper non-empty flat F xF . Two flats

of M are incomparable if neither contains the other.

Proposition 2.2.4. [FY04, Theorem 3] [AHK18, Section 5.3] Let M be a loopless

matroid on E. Then the Chow ring of M has the presentation

A•(M) =
Z[xF ]F proper non-empty flat

(
∑

F∋i xF −
∑

G∋j xG : i, j ∈ E) + (xF1xF2 : F1, F2 incomparable)
.

When M is realized by L ⊆ kE, the isomorphism A•(M) → A•(WL) sends xF

to the class of the divisor DF , the strict transform of the exceptional divisor arising

when we blow up PLF .

2.3 Line bundles on the permutohedral toric vari-

ety

There is a description of globally generated line bundles on a proper toric variety in

terms of polytopes, see [Ful93, Section 3.4]. Each integral polytope whose normal

fan coarsens the fan of the toric variety gives rise to a globally generated line bundle

on that toric variety. In the case of XE, we will give a more explicit description in
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terms of polymatroids, which are combinatorial objects introduced in [Edm70] which

generalize matroids.

Definition 2.3.1. For vectors u, v ∈ RE, we say u ≥ v if u− v ∈ RE
≥0. A polymatroid

on E is a non-empty lattice polytope P in the non-negative orthant RE
≥0 satisfying

the following two properties:

1. If v ∈ RE
≥0 such that u ≥ v for some u ∈ P, then v ∈ P.

2. For any v ∈ RE
≥0, every maximal u ∈ P such that u ≤ v has the same coordinate

sum ⟨u, eE⟩.

Example 2.3.2. For S ⊆ E, the simplex that is the convex hull

∆S = Conv({ei : i ∈ S} ∪ {0})

is a polymatroid.

Example 2.3.3. Let M be a matroid on E. Then the independence polytope

I(M) = Conv({eI : rkM(I) = |I|})

is a polymatroid.

An independent set of a polymatroid is a lattice point in the polymatroid. In

particular, the independent sets of I(M) are the sets I ⊆ E such that rkM(I) = |I|.
We will need the following equivalent description of polymatroids. A function

rk: 2E → Z with rk(∅) = 0 is said to be non-decreasing and submodular if

(non-decreasing) rk(S) ≤ rk(S ′) whenever S ⊆ S ′ ⊆ E, and

(submodular) rk(S ∪ S ′) + rk(S ∩ S ′) ≤ rk(S) + rk(S ′) for all S, S ′ ⊆ E.

Theorem 2.3.4. [Edm70, (8)] There is a bijection between polymatroids on E and

non-decreasing and submodular functions rk : 2E → Z with rk(∅) = 0. The bijection
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is given by

a polytope P 7→ rk : 2E → Z where rk(S) = max{⟨u, eS⟩ | u ∈ P}

a function rk : 2E → Z 7→ P = {u ∈ RE
≥0 | ⟨eS, u⟩ ≤ rk(S) for all S ⊆ E}.

Under this correspondence, the independence polytope I(M) of a matroid corre-

sponds to the rank function of the matroid. In particular, the rank function of a

matroid is submodular. Several matroid-theoretic concepts immediately generalize to

polymatroids.

The rank of the polymatroid associated to a submodular function rk is rk(E).

Equivalently, the rank of P is max{⟨u, eE⟩ | u ∈ P}. A basis of P is a lattice point

u ∈ P which has ⟨u, eE⟩ equal to the rank of P. The set of bases of P is denoted

B(P). The bases of a polymatroid determine the polymatroid via the formula

P = RE
≥0 ∩ (Conv(B(P)) + Rn

≤0),

where the sum is Minkowski sum.

Later, we will use a construction of polymatroids in terms of subspace arrange-

ments. Let L be a finite-dimensional vector space over k, and let L1, . . . , Lm be

subspaces of k. Then we have an injective map

L/ ∩i Li →
m⊕
i=1

L/Li.

If ∩iLi = 0, then the subspace arrangement is determined by the inclusion L ↪→⊕
i L/Li: every subspace of a finite-dimensional vector space equipped with a direct

sum decomposition L ⊆
⊕

i Vi determines a subspace arrangement, where we set

Li = L ∩ ⊕j ̸=iVj. In general, set LS = L ∩ ⊕j ̸∈SVj. Then we obtain a polymatroid P

whose rank function is given by

rkP(S) = codimension of LS in L.

Note that, in the case when each Li has codimension at most 1, this specializes to
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the definition of a matroid associated to a hyperplane arrangement. Replacing L by

L/ ∩i Li does not change the polymatroid.

We can describe the bases of P in terms of L, as follows. Choose a generic basis

xi,1, . . . , xi,ai for (L/Li)
∗ for all i. Then a vector b = (b1, . . . , bm) is a basis for P if

and only if the composition

L ↪→
⊕

L/Li → kb1 ⊕ · · · ⊕ kbm

is an isomorphism, where the second map is induced by the maps L/Li → kbi using

the functionals xi,1, . . . , xi,bi . A polymatroid arising in the above fashion is called

realizable.

It will be useful to define a combinatorially natural class in A1(M). Define the class

x∅ = −
∑

S ̸∋i xS ∈ A1(XE) for some i ∈ E. The defining relations in Proposition 2.2.4

imply that x∅ is well-defined, i.e., independent of the choice of i. This class is often

denoted −β in the literature. By restriction, this also defines a class in A1(M) for

each loopless matroid M.

Proposition 2.3.5. [BEST23, Section 2.7] Each polymatroid on E determines a

globally generated line bundle on XE via the formula

(polymatroid P defined by rk : 2E → Z) 7→
∑

∅⊆S⊊E

rk(E \ S)xS ∈ A1(XE).

Every globally generated line bundle on XE arises in this way.

Given a polymatroid P, the associated line bundle on XE is denoted LP. By

restriction, this defines a line bundle on XΣM
for all loopless matroid M on E, which

we also denote LP. One can show that, if P1,P2 are polymatroids, then LP1

∼→ LP2

on XE if and only if B(P1) is a translate of B(P2) [EHL23, Appendix A].

The complete linear system of the line bundle L∆S
on XE induces the map XE →

P(kS). Therefore, the restriction of L∆S
to WL induces the map WL → PLS. In

particular, the line bundle L∆S
on WL is the pullback of O(1) from PLS.
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2.4 Simplicial presentations of Chow rings of ma-

troids

There is a second presentation of the Chow ring of a matroid, arising from the ge-

ometry of the embedding WL ↪→
∏

F ̸=∅ PLF , which will play an important role in the

sequel. This presentation was introduced in [Yuz02] and extensively studied in [BES].

For each non-empty flat, we set hF to be the first Chern class of the line bundle L∆F

on XΣM
. When M is realized by L ⊆ kE, this is the pullback of the hyperplane class

from PLF . The classes {hF : F non-empty flat} generate A1(WL) = A1(M). We will

see this by working out the formula for hF in terms of the toric generators.

Under the inclusion WL ↪→ XE, the line bundle L∆F
is the restriction of the line

bundle on XE corresponding to the simplex ∆F . We set

xE = −
∑

S∋i,S ̸=∅,E

xS = −c1(L∆E
) ∈ A1(XE). (2.1)

The class xE is usually denoted −α in the literature. Note that

xE + x∅ = −
∑

∅⊊S⊊E

xS.

Therefore, using Proposition 2.3.5, we have that

c1(L∆S
) = x∅ +

∑
S ̸⊆T⊊E

xT = −
∑
T⊇S

xT . (2.2)

The divisor class xS ∈ A1(XE) restricts to 0 in A
1(M) if S is not a flat of M. Therefore,

restricting this to A•(M), we have

hF = −
∑
G⊇F

xG, (2.3)

where xE is the restriction of xE from A1(XE). From this, we see that the restriction

of hS ∈ A1(XE) to A
1(M) is hclM(S).
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Because this change of coordinates is upper-triangular, we see that the hF generate

A1(M) and therefore generate A•(M) as a ring. We have the following presentation of

A•(M) using the hF as generators, which we call the simplicial presentation of A•(M).

Proposition 2.4.1. [LLPP24, Appendix A] Let M be a loopless matroid. We have

the presentation

A•(M) =
Z[hF ]F non-empty flat

((hF − hF∨G)(hG − hF∨G) : F,G non-empty flats) + (hi : i ∈ E)
.

Here ∨ denotes the join in the lattice of flats, i.e., F ∨ G is the smaller flat

containing both F and G.

2.5 Multiplicity-free subvarieties

In this section, we consider certain subvarieties of products of projective spaces. An

(integral) subvariety X ⊆
∏m

i=1 Pai is said to be multiplicity-free if, when we express

[X] ∈ A•

(
m∏
i=1

Pai

)
=

m⊗
i=1

Z[ti]/(tai+1)

in terms of the basis given by the monomials in the hyperplane classes, the coefficients

are all 0 or 1. Equivalently, X is multiplicity-free if the degree of any monomial in

the first Chern classes of the O(1)’s from the factors is either 0 or 1.

Let πj :
∏m

i=1 Pai → Paj be the projection. The multidegree of X is the function

from Zm
≥0 to Z which records the numbers

deg∏m
i=1 Pai (c1(π

∗
1O(1))k1 · · · c1(π∗

mO(1))km ∩ [X])

for all possible choices of k1, . . . , km. The multidegree is the coefficients used in

the expression of [X] in terms of the monomials in the hyperplane classes, so X is

multiplicity-free if and only if its multidegree only takes the values 0 and 1. Being an

intersection number, the multidegree is locally constant in flat families.

A result of Brion [Bri03] shows that multiplicity-free subvarieties of a product of
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projective spaces have remarkable properties. To state this, we set up some notation.

Let G =
∏m

i=1 PGLai+1, and consider the Borel subgroup of lower triangular matrices.

Note that G acts transitively on
∏m

i=1 Pai . A Schubert variety in
∏m

i=1 Pai is a Borel-

fixed (integral) subvariety. Concretely, a Schubert variety is a product of linear spaces

of the form {[∗ : · · · : ∗ : 0 : · · · : 0]}. Note that the class of a Schubert variety in

A•(
∏m

i=1 Pai) is a monomial in the hyperplane classes, and there is a unique Schubert

variety representing each monomial. Therefore, given any subset B of the degree d

monomials in the hyperplane classes, there is a unique reduced union of Schubert

varieties YB whose multidegree is 1 on B and is 0 otherwise. In other words, we have

deg∏m
i=1 Pai (c1(π

∗
1O(1))b1 · · · c1(π∗

mO(1))bm ∩ [YB]) =

1 (b1, . . . , bm) ∈ B

0 otherwise.

Theorem 2.5.1. [Bri03] Let X be a multiplicity-free subvariety of
∏m

i=1 Pai with the

same multidegree as YB. Then X is normal and Cohen–Macaulay, and X has a flat

degeneration inside of
∏m

i=1 Pai to YB.

The degeneration is constructed by considering the Borel-action on the Hilbert

scheme of
∏m

i=1 Pai . The Borel-orbit closure of the class of X in the Hilbert scheme is

a projective variety with a Borel-action, and so it has a Borel-fixed point by the Borel

fixed point theorem. The corresponds to a Borel-fixed subscheme of
∏m

i=1 Pai with the

same multidegree of X. Brion uses properties of multiplicity-free subvarieties to show

that this Borel-fixed subscheme is Cohen–Macaulay and so has no embedded points.

The only Borel-fixed subscheme with no embedded points with the right multidegree

is YB. From this, he produces a degeneration from X to YB.

The possible multidegrees of multiplicity-free (integral) subvarieties of a product

of projective spaces are highly constrained by the following result. The support of

the multidegree of a variety is the set of monomials in the hyperplane classes whose

intersection with X is non-zero.

Proposition 2.5.2. [BH20, Corollary 4.7] Let X be a subvariety of
∏m

i=1 Pai. Then

the support of the multidegree of X is the set of bases of a polymatroid.
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In particular, any variety YB that occurs as a degeneration of a multiplicity-free

subvariety must have B = B(P) for some polymatroid P. For a polymatroid P on

[m], a cage is a sequence (a1, . . . , am) such that ai ≥ rkP(i) for all i. For each cage,

we may consider the reduced union of Schubert varieties in Pa1 × · · · × Pam whose

multidegree is given by B(P). Observe that this scheme, and restrictions of the O(1)

from the factors, is independent of the choice of cage. We define YP to be this scheme.

Note that YP is defined over SpecZ, but we will often consider it over a chosen field

k. The following result is a useful property of YP.

Proposition 2.5.3. Let P be a polymatroid. Then the variety YP is Cohen–Macaulay.

Proof. See [CCRC23, Proof of Theorem 5.6], which was obtained by using properties

of “polymatroid ideals” in [HH11, Chapter 12.6].

In particular, this implies the Cohen–Macaulayness of multiplicity-free subvari-

eties, as the locus of Cohen–Macaulay fibers is open in flat families [SP, 045U].

However, Brion’s construction of the degeneration requires one to first prove that

multiplicity-free subvarieties are Cohen–Macaulay, so this does not give a new proof.

The Cohen–Macaulayness of YB does not hold for arbitrary B.

Example 2.5.4. Let B = {(2, 0), (0, 2)}. Inside of P2 × P2, YB is the surface P2 ×
[1, 0, 0] ∪ [1, 0, 0]× P2. Then YB is not S2 and therefore not Cohen–Macaulay.

Finally, we will need the following result, which gives a formula for [OYP
] ∈ K(Pa1×

· · · × Pam). This formula originates in the work of Knutson, who studied the more

general problem of calculating the K-class of a reduced union of Schubert varieties

inside a homogeneous space. He showed that one can compute the K-class in terms

of Möbius inversion on the poset of Schubert varieties. The special case of products

of projective spaces was also proven in [CCRMMn, Theorem 7.12]. For each tuple

b = (b1, . . . , bm) with bi ≤ ai, let Yb be a Pb1 × · · · × Pbm embedded linearly into

Pa1 × · · · ×Pam ; the class [OYb
] does not depend on the choice of an embedding. The

classes {[OYb
]} form a basis for K(Pa1 × · · · × Pam).



CHAPTER 2. WONDERFUL VARIETIES 22

Proposition 2.5.5. [Knu] Let P be a polymatroid with cage (a1, . . . , am). Write

[OYP
] =

∑
b cb[OYb

] ∈ K(
∏m

i=1 Pai). If
∑m

i=1 bi > rk(P), then cb = 0. If
∑m

i=1 bi =

rk(P), then

cb =

1 if b ∈ B(P)

0 otherwise.

If
∑m

i=1 bi < rk(P), then cb = 1−
∑

b′>b cb′.

Note that the function b 7→ cb is zero unless b is an independent set of P.

Because of Proposition 2.5.1, Proposition 2.5.5 also computes the K-class of the

structure sheaf of any multiplicity-free subvariety in a product of projective spaces.

Indeed, the class in K(
∏m

i=1 Pai) of the structure sheaf of a subvariety X of
∏m

i=1 Pai

is determined by χ(X,O(k1, . . . , km)) for all (k1, . . . , km). As Euler characteristics are

locally constant in proper flat families, the class of the structure sheaf of a fiber in

K(
∏m

i=1 Pai) is locally constant for a flat family of closed subschemes of
∏m

i=1 Pai .

2.6 Examples of multiplicity-free subvarieties

In this section, we record several examples of multiplicity-free subvarieties of products

of projective spaces. The most important examples will be certain varieties arising

from subspace arrangements which generalize wonderful varieties.

Proposition 2.6.1. Let L1, . . . , Lm be a subspace arrangement in L, and assume that

Li ̸= L for all i. Then the closure of the image of

PL 99K
m∏
i=1

P(L/Li)

is a multiplicity-free subvariety.

We allow the Li to contain each other. When {Li} = {LF : F non-empty flat}
are the non-empty flats of a hyperplane arrangement, this implies that the wonderful

variety is a multiplicity-free subvariety.
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Proof of Proposition 2.6.1. By replacing L by L/∩Li, we may assume that ∩Li = 0.

Let X denote the closure of the image, and let U be the image of PL \ ∪iPLi. Note

that U is open and dense in X.

Let Li be the pullback of O(1) from P(L/Li). The pullback of H0(P(L/Li),O(1))

is a linear system which globally generates H0(X,Li). We need to show that∫
X

c1(L1)
k1 · · · c1(Ln)

km ∈ {0, 1}

for each k1, . . . , km with k1+ · · ·+km = dimX. By extending scalars, we may assume

that k is infinite. Choose ki generic elements of the linear system H0(P(L/Li),O(1))

for each i. Let their respective vanishing loci be V1, . . . , VdimX . By Bertini’s theorem,

we can assume that V1 ∩ · · · ∩ VdimX ⊂ U and that the intersection is 0-dimensional.

Note that, for each j, Vj∩U ⊂ PL is a hyperplane. These hyperplanes either intersect

transversely in 0 or 1 points in U .

The polymatroid corresponding to the subvariety in Proposition 2.6.1 is somewhat

complicated to describe; a special case (which can be used to understand the general

one, see [EL24]) is given in Proposition 2.7.4. One case, however, is simple.

Proposition 2.6.2. Let L1, . . . , Lm ⊆ L be a subspace arrangement, and consider

the subspace arrangement L̃i = Li ⊕ 0 ⊆ L ⊕ k. Then the multidegree of the closure

of the image of

P(L⊕ k) 99K
m∏
i=1

P((L⊕ k)/L̃i) =
m∏
i=1

P(L/Li ⊕ k)

is the polymatroid corresponding to the subspace arrangement.

Proof. We may replace L by L/ ∩i Li. Let X denote the closure of the image, and

let P be the polymatroid corresponding to the multidegree of X. Note X contains a

dense open subset which is identified with L, the image of {(v, 1) : v ∈ L} ⊆ P(L⊕k).

Similarly, L/Li is naturally identified with a dense open subset of P(L/Li⊕k). Choose

a generic basis for xi,1, . . . , xi,dimL/Li
for each each (L/Li)

∗. Then b = (b1, . . . , bm) is
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a basis for P if and only if the rational map

X ↪→
m∏
i=1

P((L⊕ k)/L̃i) =
m∏
i=1

P(L/Li ⊕ k) 99K
m∏
i=1

Abi

is dominant, where the right rational map is induced by the map L/Li → kbi given

by the functions xi,1, . . . , xi,bi for each i. If this map is dominant, then the fact that

X is multiplicity-free implies that its degree is 1, and so the map is birational and in

particular is generically étale. Note that this map is generically étale if and only if

the pullback map on differentials at the generic point is an isomorphism.

Consider the module of differentials ΩK(X)/k of the function field K(X). Because

L is a dense open subset of X, this is identified with ΩK(L)/k, which can be canonically

identified with L∗ ⊗k K(L), via the map which sends a linear function ℓ to dℓ ⊗ 1.

Each xi,j defines a function on L, so we may consider its differential dxi,j ∈ ΩK(X)/k =

L∗ ⊗k K(L). For each i, the subspace {v ∈ L ⊗k K(L) : dxij(v) = 0 for all j} is

Li⊗kK(L). The description of the polymatroid associated to a subspace arrangement

in Section 2.3 then implies the result.

Example 2.6.3. Let X ⊆ kmn be the locus of m× n matrices of rank at most r. If

r = 1 or r = m− 1, then the closure of X in (P1)mn is a multiplicity-free subvariety.

Example 2.6.4. The closure of the locus of 4×4 matrices of rank at most 2 in (P1)16

is not multiplicity-free. Indeed, if one fills in the off-diagonal entries of a 4× 4 matrix

with generic elements of k, there are exactly two ways to fill in the diagonal so that

the resulting matrix has rank at most 2.

Example 2.6.5. Let X = M0,n be the Deligne–Mumford–Knudsen moduli space of

genus 0 stable curves with n marked points. For each S ⊆ {1, . . . , n} of size at least 3,

there is a forgetful map fS : M0,n →M0,S, whereM0,S is the moduli space with points

marked by S. For i ∈ {1, . . . , n}, let Li be the line bundle whose fiber at a point of

M0,n is the ith cotangent line of the corresponding curve. Then each Li is base-point-

free, and its complete linear system induces a birational map M0,n → Pn−3 [Kap93].

For each subset S of {1, . . . , n} which contains n, we have a map M0,n → P|S|−3 by



CHAPTER 2. WONDERFUL VARIETIES 25

composing fS with the map M0,S → P|S|−3 given by Ln. We therefore obtain a map

M0,n →
∏

S⊆{1,...,n}, n∈S, |S|≥3

P|S|−3.

This map is a closed embedding, and its image is a multiplicity-free subvariety. See

[DCP95, BELL].

We now show that, for a given characteristic p ≥ 0, there is a multiplicity-free

subvariety X ⊆ Pa1 × · · · × Pam whose multidegree is the bases of a polymatroid P if

and only if P is realizable over a field of characteristic p. By Proposition 2.6.2, this

implies that there is a wonderful variety WL ⊆
∏

F ̸=∅ PLF whose projection to the

some of the factors has the same multidegree.

Proposition 2.6.6. Let X ⊆ Pa1 × · · · × Pam be a multiplicity-free subvariety whose

multidegree is given by a polymatroid P. Then there is a realization of P over the field

K(X).

Proof. For each i, we have a subspace of ΩK(X)/k obtained by pulling back the differ-

entials of rational functions on the ith factor. The sum of these subspaces is ΩK(X)/k,

so, dualizing, we obtain an embedding Ω∗
K(X)/k ⊆

⊕
i Vi, where Vi is a K(X) vector

space of dimension ai. As in the proof of Proposition 2.6.2, the bases of the poly-

matroid that this subspace arrangement represents record whether the restriction of

the rational map Pa1 × · · · × Pam 99K Pb1 × · · · × Pbm , given by projecting away

from a generic linear space in each factor, to X is generically étale. Because X is

multiplicity-free, such a projection is birational if and only if it is dominant, and so

asking whether a projection is generically étale is the same as asking whether it is

dominant.

In particular, there is a subvariety of (P1)n whose multidegree is given by the bases

of a matroid M over a field of characteristic p ≥ 0 if and only if M is realizable over

a field of that characteristic.
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2.7 Multidegree of wonderful varieties

In this section, we state a formula for the multidegree of the defining embedding

of a wonderful variety into a product of projective spaces and its generalization to

arbitrary matroids. This formula was proven in [BES]. See [Lar] for an elementary

proof. With the exception of Section 3.5, we will only need that the support of the

multidegree is the bases of a polymatroid. When the matroid is realizable, this is

an immediate consequence of Proposition 2.5.2. In general, it can be deduced from

[AHK18, Theorem 8.9]. First we make a combinatorial definition.

Definition 2.7.1. We say that a sequence (S1, . . . , Sm) of non-empty subsets of E

satisfies the dragon-Hall–Rado condition (with respect to M) if

rkM

(⋃
i∈I

Si

)
≥ 1 + |I| for every ∅ ≠ I ⊆ [m].

Moreover, we say that t = (t1, . . . , tm) ∈ Zm
≥0 satisfies the dragon-Hall–Rado condition

if the sequence (St1
1 , . . . , S

tm
m ), where Sti

i denotes Si repeated ti times, satisfies the

dragon-Hall–Rado condition, or, equivalently if

rkM

(⋃
i∈I

Si

)
≥ 1 +

∑
i∈I

ti for every ∅ ≠ I ⊆ [m].

We will later need the following combinatorial result, which implies that the mul-

tisets of maximal cardinality which satisfy the dragon-Hall–Rado condition are the

bases of a polymatroid.

Proposition 2.7.2. The vectors t = (t1, . . . , tm) ∈ Zm
≥0 such that (St1

1 , . . . , S
tm
m )

satisfies the dragon-Hall–Rado condition form the independent sets of a polymatroid

on [m].

To prove Proposition 2.7.2, we will need the following result of Edmonds.

Proposition 2.7.3. [Edm70, (8)] Let f : 2E → Z be a submodular and increasing
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function. Then the multisets I whose elements are contained in E which satisfy

|I ′| ≤ f(I ′) for all ∅ ≠ I ′ ⊆ I

are the independent sets of a polymatroid on E.

Here we are extending f to a function on multisets whose elements all belong to

E by ignoring repetitions, i.e., the value of f on a multiset S is the value of f on

subset of E which consists of elements in S.

Proof of Proposition 2.7.2. Let f : 2[m] → Z be the function

f(S) = rkM

(⋃
i∈S

Si

)
− 1.

Clearly f is increasing; it is submodular because the rank function of M is. Applying

Proposition 2.7.3 gives a polymatroid whose independent sets are the multisets which

satisfy the dragon-Hall–Rado condition.

The relevance of the dragon-Hall–Rado condition for us comes from the following

result.

Proposition 2.7.4. [BES, Theorem 5.2.4] Let M be a loopless matroid of rank r,

and let F1, . . . , Fm be flats of M. If t ∈ Zm
≥0 has

∑
ti = r − 1, then

degM(h
t1
F1

· · ·htmFm
) =

1 t satisfies dragon-Hall–Rado

0 otherwise.

In particular, this describes the multidegree of the defining embedding of any

wonderful variety and gives a strengthening of Proposition 2.6.1.



Chapter 3

K-theory of wonderful varieties

In this chapter, we study the K-theory of wonderful varieties and Bergman fans. We

will define the K-ring of a matroid, and we will show that it has the structures that

one expects of the K-ring of a smooth projective variety. All the varieties that we

consider are smooth, so the map from the Grothendieck ring of vector bundles to the

Grothendieck group of coherent sheaves is an isomorphism [SP, 0FDJ, 0F8A]. We

may therefore unambiguously talk about the K-ring of a variety.

3.1 K-rings of matroids

We begin by analyzing theK-ring of wonderful varieties and toric varieties of Bergman

fans.

Proposition 3.1.1. Let M be a loopless matroid realized by L ⊆ kE. Then the

restriction map K(XΣM
) → K(WL) is an isomorphism.

Proof. By Proposition 2.2.3, A•(XΣM
) is torsion-free, so it is isomorphic to the as-

sociated graded of K(XΣM
) with respect to the coniveau filtration [Ful93, Example

15.2.16]. Since the associated graded map A•(M) → A•(WL) is an isomorphism by

Proposition 2.2.2, the filtered map K(XΣM
) → K(WL) is also an isomorphism [Wei94,

Theorem 5.2.12].

28
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Motivated by this, if M is loopless, then we define the K-ring of M to be K(XΣM
).

We now compute a presentation of K-ring of a matroid, which we call the toric

presentation of K(M).

Theorem 3.1.2. Let M be a loopless matroid on E. Then the K-ring of M has the

presentation

K(M) =
Z[ξF ]F proper non-empty flat

(
∏

F∋i(1− ξF )−
∏

G∋j(1− ξG) : i, j ∈ E) + (ξF1ξF2 : F1, F2 incomparable)
.

Theorem 3.1.2 should be compared with Proposition 2.2.4. The additive relation

in the presentation of A•(M) is replaced by a multiplicative relation whose lowest

order term is the additive relation. As the proof will show, ξF is the class of the

structure sheaf of the torus-fixed divisor corresponding to F on XΣM
.

Computations of a presentation of the K-ring of a smooth projective toric variety

have appeared in [SU03, San08]. We use a similar strategy: we identify some geo-

metrically obvious relations, and then prove that they generate all relations by using

the connection between K(XΣM
) and A•(XΣM

).

We now prepare for the proof of Theorem 3.1.2. Recalling that A•(M) = A•(XΣM
)

is a free abelian group, the following lemma will be useful.

Lemma 3.1.3. Let X be a smooth variety. If A•(X) is a free abelian group of finite

rank p, then so is K(X), and the Chern character ch: K(X) → A•(X)⊗Q is injective.

Proof. The Chern character becomes an isomorphism after tensoring with Q [Ful98,

Example 15.2.16], so K(X) has rank p. There is a surjective map from A•(X) to the

associated graded of K(X) with respect to the coniveau filtration [Ful98, Example

15.1.5]. Since A•(X) is free of rank p and K(X) also has rank p, this implies that

that K(X) is free. Finally, the Chern character factors as K(X) → K(X) ⊗ Q →
A•(X) ⊗ Q, with the first map being injective by freeness of K(X) and the second

map being an isomorphism, so the Chern character is injective.

Lemma 3.1.4. Let X be a smooth variety, and suppose that A•(X) as a ring by

divisor classes. Let D1, . . . , Dk be divisors on X. If A1(X) is generated as an abelian

group by [D1], . . . , [Dk], then K(X) is generated as a ring by [OD1 ], . . . , [ODk
].



CHAPTER 3. K-THEORY OF WONDERFUL VARIETIES 30

Proof. First we claim that K(X) is generated as a ring by classes of line bundles. Let

Kline be the subring of K(X) generated by classes of line bundles. Note that Kline is

equipped with a filtration, obtained by intersecting the coniveau filtration on K(X)

with Kline. Then the image of grKline in grK(X) is the subring generated by classes

of divisors. As there is a surjective ring homomorphism A•(X) → grK(X) and

A•(X) is generated by classes of divisors, we see that grKline = grK(X). Therefore

Kline = K(X).

LetR be the subring ofK(X) generated by [OD1 ], . . . , [ODk
]. We need to show that

the class of every line bundle is contained in R. Since [D1], . . . , [Dk] generate A
1(X)

as an abelian group, the line bundles O(±D1), . . . ,O(±Dk) generate the Picard group

of X under multiplication, so it suffices to show that [O(±Di)] ∈ R for all i.

For any divisor D, we have an exact sequence

0 → O(−D) → O → OD → 0,

which implies that

[O(−D)] = [O]− [OD] = 1− [OD].

We also have

[O(D)] = [O(−D)]−1 =
1

1− [OD]
= 1 + [OD] + [OD]

2 + · · · .

Since [OD] lives in the first piece of the coniveau filtration on K(X), it is nilpotent,

so the sum terminates. This allows us to conclude that both [O(−Di)] and [O(Di)]

live in the ring R.

Proof of Theorem 3.1.2. By Lemma 3.1.4, Lemma 3.1.3, and Proposition 2.2.4, the

map from Z[ξF ]F proper non-empty flat to K(M) sending ξF to the class of the structure

sheaf of the torus-fixed divisor corresponding to a proper non-empty flat F is surjec-

tive.

Next, we show that the relations described in Theorem 3.1.2 are indeed satisfied

in K(M). For F1, F2 incomparable flats, the corresponding divisors are disjoint, so
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the product of their structure sheaves is 0 in K(M). To prove that

∏
F∋i

(1− ξF )−
∏
G∋j

(1− ξG) (3.1)

for all i, j ∈ E, we apply the Chern character ch, which is injective by Lemma 3.1.3. If

DF is the divisor on XΣM
corresponding to F , then we have that ξF = 1− [O(−DF )].

We see that

ch(ξF ) = 1− ch([O(−DF )]) = 1− exp(−xF ) = xF − x2F/2! + x3F/3!− · · · .

To prove that (3.1) holds is then equivalent to the statement that

exp

(
−
∑
F∋i

xF

)
= exp

(
−
∑
G∋j

xG

)
.

This follows from Proposition 2.2.4.

Let R be the quotient Z[ξF ]F proper non-empty flat by the ideals in Theorem 3.1.2. We

have shown that R surjects on K(M), and we need to prove that the map is injective.

Let p be the rank of the free abelian group A•(M). Consider the decreasing filtration

R = F0 ⊃ F1 ⊃ · · · ,

where Fi is the span of all monomials of total degree ≥ i. Since the leading terms of

the generators of the relations in R are the relations in A•(M), we have a surjection

A•(M) → grR. In particular, this implies that the abelian group grR can be generated

by p elements, and so the same is true of R. Lemma 3.1.3 tells us that K(M) is also

free abelian of rank p, so any surjection from R toK(M) must be an isomorphism.

3.2 Simplicial generators of K(M)

In this section, we construct an isomorphism ζM : K(M) → A•(M), which we call the

exceptional isomorphism. Its exceptional nature is that it unrelated to the Chern
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character ch: K(M) ⊗ Q → A•(M) ⊗ Q. The existence of such an isomorphism was

first observed in [BEST23] in the case of the permutohedral toric variety XE, where

it was constructed using equivariant techniques. We will later use ζM to define the

Euler characteristic map χ(M,−) : K(M) → Z.
For each flat F of M, we have defined a line bundle L∆F

on XΣM
. Define ηF =

1−[L−1
∆F

] ∈ K(M). Note that L∆F
is globally generated, so ηF represents the structure

sheaf of the vanishing locus of a generic section of L∆F
. These classes will play the

role of “K-theoretic simplicial generators.”

As A•(M) is spanned by {hF}F non-empty flat, Lemma 3.1.4 implies that K(M) is

generated by the ηF . We will prove the following theorem.

Theorem 3.2.1. Let M be a loopless matroid. Then there is a ring isomorphism

ζM : K(M) → A•(M) defined by ζM(ηF ) = hF .

In particular, this gives another presentation of K(M): the relations are the same

in Proposition 2.4.1.

To prepare the proof of Theorem 3.2.1, we first obtain a description of the classes

ηF in terms of the toric generators of K(M) so that we can use Theorem 3.1.2. We

set

ξE := 1−
∏
F∋i

(1− ξF )
−1

for any i ∈ E. This is well-defined by Theorem 3.1.2 and the observation that each

ξF is nilpotent (which can be seen, for example, by applying the Chern character).

Proposition 3.2.2. Let F be a non-empty flat of M. Then we have

ηF = 1−
∏
G⊇F

(1− ξG)
−1 = 1−

∏
G⊇F

(1 + ξG + ξ2G + · · · ).

Proof. First we do the case F = E, i.e., we show that

ηE := 1− [L−1
∆E

] = 1− (1− ξE)
−1.
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Using the definition of ξE and ξF , we get

(1− ξE)
−1 =

∏
E ̸=F∋i

(1− ξF ) = [
⊗

E ̸=F∋i

O(−DF )],

where DF is the divisor on XΣM
corresponding to F . Then the claims follows from

(2.1).

The computation for general F is similar: we have 1− ηF = [L−1
∆F

]. By (2.3), this

is equal to [L−1
∆E

⊗
⊗

F⊆G⊊E O(DG)], and then we use that L−1
∆E

= (1− ξE)
−1 by the

special case above and [O(DG)] = (1− ξG)
−1 when G is a proper non-empty flat.

Proof of Theorem 3.2.1. We define a map κM : Z[hF ]F non-empty flat → K(M) by setting

κM(hF ) = ηF . We will show that κM descends to an isomorphism A•(M) → K(M),

and ζM will be the inverse of this map.

We need to check that κM vanishes on the generators of the ideal defining A•(M).

Recall that ξF ξG = 0 if F and G are incomparable. We first check that κM vanishes

on an element of the form (hF − hF∨G)(hG − hF∨G). We have

κM

(
(hF − hF∨G)(hG − hF∨G)

)
=

(∏
H⊇F

(1− ξH)
−1 −

∏
I⊇F∨G

(1− ξI)
−1

)(∏
J⊇G

(1− ξJ)
−1 −

∏
I⊇F∨G

(1− ξI)
−1

)

=
∏

I⊇F∨G

(1− ξI)
−2

( ∏
F⊆H⊊F∨G

(1− ξH)
−1 − 1

)( ∏
G⊆J⊊F∨G

(1− ξJ)
−1 − 1

)
,

which vanishes because H and J are incomparable for any H appearing in the second

product and J appearing in the third product. We next check that κM(hi) = 0 for

each i ∈ E, i.e., we need to check that ηi = 0 in K(M). This holds because L∆i
is

the trivial line bundle on XΣM
. Indeed, L∆i

is trivial on XE by Proposition 2.3.5.

We therefore obtain a map A•(M) → K(M), which is surjective by Lemma 3.1.4. By

Lemma 3.1.3, A•(M) and K(M) are free abelian groups of the same finite rank, so

this map is an isomorphism. We define ζM to be the inverse of this map.

If M is a loopless matroid on E, then ΣM is a subfan of ΣUn,n = ΣE, so there
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is an inclusion i : XΣM
↪→ XE. Therefore, there are pullback maps i∗ : K(XE) →

K(XΣM
) = K(M) and i∗ : A•(XE) → A•(XΣM

) = A•(M). As described in Section 2.4,

we have i∗(hS) = hclM(S), and similarly i∗ηS = ηclM(S). The formula ζM(ηF ) = hF gives

the following compatibility between ζM and ζE := ζUn,n : K(XE) → A•(XE).

Proposition 3.2.3. Let M be a loopless matroid on E = {1, . . . , n}. Then the fol-

lowing diagram commutes:

K(XE) A•(XE)

K(M) A•(M).

ζE

i∗ i∗

ζM

3.3 Euler characteristics on multiplicity-free sub-

varieties

We wish to show that K(M) behaves like the K-ring of a smooth projective variety.

Many properties of K(M) can be easily deduced from the description of K(M) as

the Grothendieck ring of vector bundles on the (non-proper) toric variety of the

Bergman fan (see Section 3.4). The K-ring of a smooth projective variety X has an

Euler characteristic map χ : K(X) → Z, given by pushing forward to a point. The

existence of this map requires X to be proper, and so we cannot easily deduce its

existence using XΣM
. It is this map that is required to formulate the K-theoretic

positivity results mentioned previously.

When M is realized by L ⊆ kE, we will compute the Euler characteristic map

on K(WL). Our strategy is based on the realization of WL as a multiplicity-free

subvariety of a product of projective spaces and Knutson’s formula Proposition 2.5.5.

Our approach works for a large class of multiplicity-free subvarieties.

We begin with the observation that A•(Pa) ∼= Z[t]/(ta+1), where t = c1(O(1)) is

the class of a hyperplane. Also, K(Pa) ∼= Z[t]/(ta+1), where t = [OH ] is the class of

the structure sheaf of a hyperplane. Therefore there is an isomorphism ζ : K(Pa) →
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A•(Pa), given by sending [OH ] to c1(O(1)). We also have isomorphisms

A•

(
m∏
i=0

Pai

)
=

m⊗
i=0

A•(Pai) and K

(
m∏
i=0

Pai

)
=

m⊗
i=0

K(Pai).

In particular, there is an isomorphism ⊗ζ : K(
∏m

i=0 Pai) → A•(
∏m

i=0 Pai).

For each j ∈ {0, 1, . . . ,m}, let πj :
∏m

i=0 Pai → Paj be the projection. We will

study the classes [OYP
] ∈ K(

∏m
i=0 Pai) for certain polymatroids P. By Proposi-

tion 2.5.1, this is the same as the K-class of any multiplicity-free subvariety whose

multidegree is given by P.

Theorem 3.3.1. Let P be a polymatroid with cage (a0, . . . , am) such that rkP(0) =

rk(P). Then

⊗ζ([OYP
]) = [YP] ·

m∏
i=1

(1− c1(π
∗
iO(1))).

Proof. Let r = rk(P). For i ∈ {0, 1, . . . ,m}, let xi = c1(π
∗
iO(1)) ∈ A•(

∏m
i=0 Pai).

Then we have

[YP] ∈ A•

(
m∏
i=0

Pai

)
=
∑

b∈B(P)

xa0−b0
0 xa1−b1

1 · · ·xam−bm
m ,

where b = (b0, . . . , bm). Then the assumption that rkP(0) = rk(P) means that

(r, 0, . . . , 0) ∈ B(P), so xa11 · · ·xamk appears as a monomial in the above expression.

For a vector p = (p0, . . . , pm) ∈ Zm+1
≥0 , set d(p) = (a0 − p0, . . . , am − pm), so the

monomial xp00 · · ·xpmm is equal to [Yd(p)] in A
•(
∏m

i=0 Pai) if pi ≤ ai for each i. Then we

define cb via the formula

[X] ·
m∏
i=1

(1− xi) =
∑
b

(−1)r−|b|cb[Yb].

Observe that cb is the number of subsets S of {1, . . . ,m} such that b + 1S ∈ B(P),

where 1S is the indicator vector of S. In particular, cb is zero unless b is an indepen-

dent set of P.

Recall that Proposition 2.5.5 gives a recursive formula for [OYP
]. In order to prove
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the theorem, we need to show that, for each b′, we have

∑
b≥b′

(−1)r−|b|cb =
∑
b≥b′

(−1)r−|b|
∑

S⊂{1,...m},b+1S∈B(P)

1 = 1.

Each term in the above sum, which is labeled by a pair (b, S), is associated to a basis

b + 1S = d ∈ B(P). Group the terms by their associated basis d = (d0, . . . , dm).

Let T = {i ∈ {1, . . . ,m} : di ̸= 0}. The sum of the terms associated to d is∑
S⊆T (−1)r−|T |. If T is non-empty, this sum vanishes. If T = ∅, which occurs exactly

for the basis d = (r, 0, . . . , 0), this sum is 1.

Let P be a polymatroid with cage (a0, . . . , am) such that rkP(0) = rk(P). We will

relate the Euler characteristics of certain classes in K◦(YP) to the degrees of certain

Chow classes on YP. Set

KP = K

(
m∏
i=0

Pai

)
/ ann([OYP

]) and A
•
P = A•

(
m∏
i=0

Pai

)
/ ann([YP]).

Note that KP and A
•
P are equipped with an Euler characteristic and a degree map,

respectively. Indeed, let ι : YP ↪→
∏m

i=0 Pai be the inclusion. Then we have a map

χ(YP,−) : KP → Z given by

χ(YP, ι
∗E) = χ

(
m∏
i=0

Pai , [OYP
] · E

)
.

This is well-defined by construction. Similarly, we have a map deg : A
•
P → Z. A more

geometric proof of the following result was given in [LLPP24, Section 3].

Corollary 3.3.2. Let P be a polymatroid with cage (a0, . . . , am) such that rkP(0) =

rk(P). Then the isomorphism ⊗ζ : K(
∏m

i=0 Pai) → A•(
∏m

i=0 Pai) descends to an iso-

morphism ζ : KP → A
•
P which satisfies

χ(YP, E) = degYP
(ζ(E) · (1 + c1(π

∗
0O(1)) + c1(π

∗
0O(1))2 + · · · )).

Proof. Theorem 3.3.1 implies that the isomorphism ⊗ζ sends [OYP
] to a unit times
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[YP]. This implies that ⊗ζ maps ann([OYP
]) isomorphically onto ann([YP]).

By direct computation, one sees that the isomorphism ζ : K (Pai) → A• (Pai)

satisfies

χ(Pai , E) = degPai (ζ(E) · (1 + c1(O(1)) + c1(O(1))2 + · · · ))

for all E ∈ K(Pai). Indeed, it suffices to check this on a basis for K(Pai), and it is

evident for the structure sheaf of a linear subspace. We then see that the isomorphism

⊗ζ satisfies

χ

(
m∏
i=0

Pai , E

)
= deg∏m

i=0 Pai

(
ζ(E) ·

m∏
i=0

(1 + c1(π
∗
iO(1)) + c1(π

∗
iO(1))2 + · · · )

)
.

Let ι : YP →
∏m

i=0 Pai be the inclusion. Using the projection formula, we compute

that, for any E ∈ K(
∏m

i=0 Pai), we have

χ(YP, ι
∗E) = χ

(
m∏
i=0

Pai , [OYP
] · E

)

= deg∏m
i=0 Pai

(
ζ([OYP

]) · ζ(E) ·
m∏
i=0

(1 + c1(π
∗
iO(1)) + c1(π

∗
iO(1))2 + · · · )

)
= deg∏m

i=0 Pai

(
[YP] · ζ(E) · (1 + c1(π

∗
0O(1)) + c1(π

∗
0O(1))2 + · · · )

)
= degYP

(
ι∗ζ(E) · (1 + c1(π

∗
0O(1)) + c1(π

∗
0O(1))2 + · · · )

)
,

where we use Theorem 3.3.1 in the third equality.

We discuss a consequence of Corollary 3.3.2. Let X be a smooth multiplicity-

free subvariety of Pa0 × · · · × Pam such that π0 : X → Pa0 is birational. Let P be

the polymatroid such that the multidegree of X is given by the bases of P. The

assumption that π0 is birational implies that rkP(0) = rk(P) = dimX. In general,

the rings KP and A
•
P are subquotients of K(X) and A•(X).

Suppose that the restriction maps on K and Chow from
∏m

i=0 Pai to X are

surjective. Suppose also that the pairing (x, y) 7→ degX(xy) on A•(X) is nonde-

generate. Then the Hirzebruch–Riemann–Roch theorem implies that the pairing

(x, y) 7→ χ(X, xy) on K(X) is nondegenerate. This implies that K(X) = KP and
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A•(X) = A
•
(P), and so Corollary 3.3.2 gives an isomorphism K(X) → A•(X). As

we will see, these hypotheses are satisfied by wonderful varieties in their defining

embeddings.

Example 3.3.3. Recalling the embedding of M0,n as a multiplicity-free subvariety

of a product of projective spaces from Example 2.6.5. The restriction map on Chow

is surjective: this is equivalent to showing that A•(M0,n) is generated by pullbacks

of ψn along forgetful maps M0,n → M0,S where n ∈ S, which is shown in [EHKR10,

Theorem 5.5]. Kapranov’s description ofM0,n as an iterated blow-up [Kap93] implies

that the cycle class map A•(M0,n) → H2•(M0,n) is an isomorphism, so the Poincaré

pairing onA•(M0,n) is nondegenerate. Corollary 3.3.2 then constructs an isomorphism

K(M0,n) → A•(M0,n). See [LLPP24, Section 4] for an alternative description of this

isomorphism.

3.4 The structure of K-rings of matroids

We first motivate the definition of the Euler characteristic map χ(M,−) : K(M) → Z
in the case where M has a realization L ⊆ kE. Recall that, by Proposition 2.2.2 and

Proposition 3.1.1, we can identify A•(WL) with A
•(M) and can identify K(WL) with

K(M).

Theorem 3.4.1. Let M be a loopless matroid realized L ⊆ kE. Then, for any a ∈
K(WL),

χ(WL, a) = degM(ζM(a) · (1 + hE + h2E + · · · )).

Remark 3.4.2. Theorem 3.4.1 can be stated as saying that the diagram

K(WL) A•(WL)

Z Z

ζM

χ(WL,−) degWL
(−·(1+hE+··· ))

commutes. This should be compared with the classical Hirzebruch–Riemann–Roch

theorem, which says that for any smooth projective variety X, the diagram
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K(X)⊗Q A•(X)⊗Q

Q Q

ch

χ(X,−) degX(−·ToddX)

commutes. The map ζM is unrelated to the Chern character, and Theorem 3.4.1

cannot be deduced from Hirzebruch–Riemann–Roch. We will later give a version of

Hirzebruch–Riemann–Roch for K-rings of matroids in Proposition 3.4.5.

Proof of Theorem 3.4.1. By Proposition 2.6.1, the embedding WL ↪→
∏

F ̸=∅ PLF re-

alizes WL as a multiplicity-free subvariety. The restriction maps K(
∏

F ̸=∅ PLF ) →
K(WL) = K(M) and A•(

∏
F PLF ) → A•(WL) = A•(M) are surjective by Proposi-

tion 2.4.1 and Lemma 3.1.4. By Proposition 2.2.3, the Poincaré pairing on A•(WL)

is nondegenerate. By the discussion following Corollary 3.3.2, we have KP = K(WL)

and A
•
P = A•(WL), where P is the dragon-Hall–Rado polymatroid (see Proposi-

tion 2.7.2).

The projection WL → PL is birational. By Corollary 3.3.2, we have an iso-

morphism ζ : K(WL) → A•(WL) satisfying the desired formula. This isomorphism

satisfies ζ(ηF ) = hF by construction, so it agrees with ζM.

Motivated by Theorem 3.4.1, we make the following definition of χ(M,−).

Definition 3.4.3. Let M be a loopless matroid. Define χ(M,−) : K(M) → Z by

χ(M, a) = degM(ζM(a) · (1 + hE + h2E + · · · )) for any a ∈ K(M).

The following property of K(M) holds for realizable matroids by [AP15, Theorem

1.3].

Proposition 3.4.4. Let M be a loopless matroid. Then the pairing K(M)×K(M) →
Z given by (a, b) 7→ χ(M, ab) is unimodular.

Proof. It suffices to show that the induced pairing on K(M)Fp is nondegenerate for

every prime p. If x ∈ K(M) has the property that χ(M, xy) ≡ 0 (mod p) for all

y ∈ K(M), then the unimodularity of the Poincaré pairing on the Chow ring of a

matroid (Proposition 2.2.3) and the definition of the Euler characteristic implies that

ζM(x) · (1 + hE + h2E + · · · ) = 0 in A•(M)Fp . But this implies that ζM(x) = 0 in
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A•(M)Fp , so the fact that ζM is an integral isomorphism implies that x vanishes in

K(M)Fp .

A version of the usual Hirzebruch–Riemann–Roch theorem forK-rings of matroids

will be useful in the sequel.

Proposition 3.4.5. Let M be a loopless matroid. There is a ring homomorphism

ch: K(M) → A•(M)Q which induces an isomorphism K(M)Q → A•(M)Q defined by

ch([L]) = exp(c1(L)) = 1 + c1(L) + c1(L)2/2! + · · · .

There is a class ToddM ∈ A•(M)Q such that, for any ξ ∈ K(M)Q,

χ(M, ξ) = degM
(
ch(ξ) · ToddM

)
.

Moreover, the degree 0 part of ToddM is 1.

Proof. We first recall K(M) = K(XΣM
) and A•(M) = A•(XΣM

), i.e., the K and Chow

rings of the toric variety XΣM
(respectively). Hence, that the Chern character map ch

is well-defined and is an isomorphism after tensoring with Q is a general fact about

algebraic varieties [Ful98, Example 15.2.16]. Because K(M) is generated as a ring by

classes of line bundles by Lemma 3.1.4 and Proposition 2.2.4, the formula ch([L]) =
exp(c1(L)) determines ch. By Proposition 2.2.3, the pairing A•(M)Q ⊗ A•(M)Q → Q
given by (x, y) 7→ degM(x · y) is a perfect pairing. Therefore there is some class

ToddM ∈ A•(M)Q such that the linear functional x 7→ χ(M, ch−1(x)) on A•(M)Q is

given by x 7→ degM(x · ToddM).

Lastly, we check that the degree 0 part of ToddM, which is some number in Q,

must be 1. We have that

ζM(ηE) = ζM(1− [L∆E
]−1) = hE.

In particular, ζM([L∆E
]) = (1 + hE + h2E + · · · ). Using Proposition 2.7.4 and the
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definition of χ(M,−), we have

χ(M,L⊗t
∆E

) = degM((1 + hE + h2E + · · · )t+1) =
tr−1

(r − 1)!
+O(tr−2)

as degM(c1(L∆E
)r−1) = degM(h

r−1
E ) = 1. On the other hand, Hirzebruch–Riemann–

Roch gives that

χ(M,L⊗t
∆E

) =
degM(c1(L)r−1 · ToddM)

(r − 1)!
tr−1 +O(tr−2).

Comparing these implies that the degree 0 part of ToddM is 1.

Additionally, the fact that K(M) = K(XΣM
) is the K-ring of a smooth variety

endow it with the structure of an augmented λ-ring [SGA71, Exposé V, Exemple

3.9.1]. This means that we have a rank function ϵ that takes values in Z, and for each

natural number k, we have operations λk and Ψk (the latter called Adams operations)

characterized by the property that

λk([E ]) = [∧kE ] and Ψk([L]) = [L⊗k]

for any vector bundle E and any line bundle L. Since our simplicial generators ηF are

all of the form 1− [L] for some line bundle L, we have ϵ(ηF ) = 0, and

Ψk(ηF ) =
k∑

i=1

(−1)i+1

(
k

i

)
ηiF .

Note that the Adams operations are ring homomorphisms, which is not at all com-

binatorially obvious from the above formula. The Adams operations become simul-

taneously diagonalizable after tensoring with Q, and their eigenspaces (which are

independent of k > 1) map isomorphically to the graded pieces of the Chow ring

via the Chern character. We also have a duality automorphism D, characterized by

the property that D([E ]) = [E∨] for any vector bundle E . In terms of the simplicial
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generators, this takes the form

D(ηF ) =
−ηF
1− ηF

= −ηF − η2F − · · · .

We now establish a combinatorial version of Serre duality for K-rings of matroids.

The proof uses some results from [BEST23] to reduce to Serre duality on XE. A

different proof is given in [LLPP24, Section 6], which uses the theory of valuative

invariants of matroids to reduce to the case of realizable matroids. The following

result will not be used in the sequel.

Theorem 3.4.6. Let M be a loopless matroid of rank r. Then there is a class ωM ∈
K(M) such that

χ(M, E) = (−1)r−1χ(M, ωM ·D(E))

for all E ∈ K(M).

We first indicate the geometry of this result and its proof. Suppose M is realized

by L ⊆ kE. Then Serre duality implies the identity

χ(WL, E) = (−1)r−1χ(WL, [ωWL
] ·D(E)) (3.2)

for all E ∈ K(WL), where ωWL
is the canonical bundle of WL. Note that WL is

embedded in XE. In [BEST23, Theorem 7.10], it is shown that there is a vector

bundle QL of rank n− r on XE which has a regular section that cuts out WL. This

implies that there is a Koszul resolution

0 → ∧n−rQ∨
L → · · · → Q∨

L → OXE
→ OWL

→ 0.

In particular, this exact sequence implies that

[OWL
] =

n−r∑
i=0

(−1)i[∧iQ∨
L].

We have that

(∧iQ∨
L)

∨ = ∧iQL
∼→ detQL ⊗ ∧n−r−iQ∨

L.
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Therefore

D([OWL
]) =

n−r∑
i=0

(−1)iD([Q∨
L])

= [detQL] ·
n−r∑
i=0

(−1)i[∧n−r−iQ∨
L]

= (−1)n−r[detQL] · [OWL
].

The restriction map i∗ : K(XE) → K(WL) is surjective. Using the projection formula,

the fact that duality commutes with restriction, and Serre duality on XE, we have

χ(WL, i
∗[E ]) = χ(XE, [OWL

] · [E ])

= (−1)n−1χ(XE, D([OWL
]) ·D([E ]) · [ωXE

])

= (−1)r−1χ(XE, [OWL
] ·D([E ]) · [detQL] · [ωXE

])

= (−1)r−1χ(WL, D(i∗[E ]) · i∗[detQL] · i∗[ωXE
]).

The adjunction formula implies that ωWL
= i∗ detQL ⊗ ωXE

as i∗QL is the normal

bundle of WL in XE, so this gives a second proof of (3.2) which only uses Serre

duality on XE. This proof can be adapted to prove Theorem 3.4.6. Recall that, for

each i ≥ 0, there is an operation λi : K(XE) → K(XE) which satisfies λi([E ]) = [∧iE ]
if E is a vector bundle on XE. We will need the following three facts:

1. For each loopless matroid M, there is a class [∆M] ∈ A•(XE) such that

degM(i
∗a) = degXE

([∆M] · a)

for all a ∈ XE, where i
∗ : A•(XE) → A•(M) is the restriction map.

2. For each loopless matroid M of rank r, there is a class [QM] ∈ K(XE) such that

ζE

(
n−r∑
i=0

(−1)iλi(D([QM]))

)
= [∆M].
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3. We have that

D(λi(D([QM]))) = λn−r([QM]) · λn−r−i(D([QM])).

The first fact follows the description of the Chow cohomology of a toric variety in

terms of Minkowski weights, see [FS97, Theorem 3.1]. The class [∆M] is called the

Bergman class of M. The class [QM] is constructed in [BEST23] using equivari-

ant localization on XE. In [BEST23], an isomorphism ζXE
: K(XE) → A•(XE)

is constructed using equivariant techniques. That this isomorphism agrees with

ζE : K(XE) → A•(XE) follows from [BEST23, Corollary 10.6]; the proof of this corol-

lary also gives the second fact. The third fact follows from the description of [QM] in

terms of equivariant localization, see [BEST23, Section 2].

We first prove a version of the projection formula for K(M). Let i∗ : K(XE) →
K(M) be the (surjective) restriction map. Define

[OM] =
n−r∑
i=0

(−1)iλi(D([QM])).

Proposition 3.4.7. Let M be a loopless matroid. Then for any [E ] ∈ K(XE), we

have

χ(M, i∗[E ]) = χ(XE, [OM] · [E ]).

Proof. Using the first and second fact above, Theorem 3.4.1, and Proposition 3.2.3,

we compute

χ(XE, [OM] · [E ]) = degXE
(ζE([OM]) · ζE([E ]) · (1 + hE + · · · ))

= degXE
([∆M] · ζE([E ]) · (1 + hE + h2E + · · · ))

= degM(i
∗ζE([E ]) · i∗(1 + hE + h2E + · · · ))

= degM(ζM(i
∗[E ]) · (1 + hE + h2E + · · · )).

This is equal to χ(M, i∗[E ]) by Theorem 3.4.1.

Proof of Theorem 3.4.6. The third fact above implies that, for any loopless matroid
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M of rank r,

D([OM]) = (−1)n−rλn−r([QM]) · [OM].

As the restriction map i∗ : K(XE) → K(M) is surjective, it suffices to prove the

equality in Theorem 3.4.6 for a class of the form i∗[E ], where [E ] ∈ K(XE). Using

Serre duality on XE, we have

χ(M, i∗[E ]) = χ(XE, [OM] · [E ])

= (−1)n−1χ(XE, D([OM]) ·D([E ]) · [ωXE
])

= (−1)r−1χ(XE, [OM] ·D([E ]) · [detQM] · [ωXE
])

= (−1)r−1χ(M, D(i∗[E ]) · i∗[detQM] · i∗[ωXE
]).

Setting ωM = i∗[detQM] · i∗[ωXE
] gives the result.

Remark 3.4.8. One can check that ωM is the class of the line bundle whose first

Chern class is x∅ + xE + c1(LM⊥), where M⊥ is the dual matroid to M.

3.5 A formula for the Euler characteristic

We now give a formula for the Euler characteristic map on the K-ring of a matroid.

As K(M) is generated by the classes ηF , for F a non-empty flat, it suffices to compute

χ(M, ηt1F1
· · · ηtmFm

) for any non-empty flats F1, . . . , Fm and a vector t = (t1, . . . , tm) ∈
Zm

≥0. We have the following result.

Theorem 3.5.1. Let M be a loopless matroid, let F1, . . . , Fm be flats of M, and let

t = (t1, . . . , tm) ∈ Zm
≥0. Then we have

χ(M, ηt1F1
· · · ηtmFm

) =

1 t satisfies dragon-Hall–Rado

0 otherwise.
(3.3)

Proof. Using the definition of χ(M,−), we have

χ(M, ηt1F1
· · · ηtmFm

) = degM(h
t1
F1

· · ·htmFm
· (1 + hE + h2E + · · · )). (3.4)
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If
∑
ti > r − 1, then both sides of (3.3) vanish, so we may assume that

∑
ti ≤

r − 1. The unique term on the right-hand side of (3.4) which is in degree r − 1

is ht1F1
· · ·htmFm

h
r−1−

∑
ti

E . The result follows from the observation that t1F1, . . . , tmFm

satisfies the dragon-Hall–Rado condition if and only if t1F1, . . . , tmFm, (r−1−
∑
ti)E

satisfies the dragon-Hall–Rado condition and has sum r − 1. The result then follows

from Proposition 2.7.4.

Remark 3.5.2. A computation of the Euler characteristics of monomials in the toric

generators of K(M) is given in [LLPP24, Section 8].

3.6 Projection formulas

In this section, we show that χ(M,−) can be computed as a sheaf Euler characteristic

on a projective scheme, the scheme YP considered previously for a certain polymatroid

P. This will enable us to use vanishing theorems on YP to control the sign of χ(M,−).

In Section 4, we will use this to prove inequalities about χ(M,−) which are not clear

combinatorially. It also allows one to compute χ(M,−) using, for example, Čech

cohomology.

We first sketch the geometry of the formula below. Let L ⊆ kE be a linear subspace

of dimension r which is not contained in any coordinate hyperplane, and let M be

the matroid represented by L. Assume that k has characteristic 0. Let F1, . . . , Fm

be flats of M. Let X denote the image of the map WL →
∏m

i=1 PLFi . Assume that

LF1 ∩ · · · ∩ LFm = 0. Then X has dimension r − 1, and the map p : WL → X is

birational. By [BF22, Theorem 4.3], which is based on [Bri01, Theorem 5], X has

rational singularities because it is a multiplicity-free subvariety. As WL is smooth,

this implies that Rp∗OWL
= OX . The projection formula then gives that, for any line

bundle L on X, we have

H i(X,L) = H i(WL, p
∗L) for all i.

In particular, χ(X,L) = χ(WL, p
∗L). Suppose L is the restriction of a line bundle

on
∏m

i=1 PLF . Then L extends over the degeneration of X to some YP given by
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Proposition 2.5.1. As Euler characteristics are locally constant in proper flat families,

this implies that we may compute the Euler characteristic of L on YP.

Theorem 3.6.1. Let F1, . . . , Fm be non-empty flats of a loopless matroid M. Let P

be the polymatroid on [m] whose bases are the t ∈ Zm
≥0 which satisfy the dragon-Hall–

Rado formula. Then

χ(M,L⊗k1
∆F1

⊗ · · · ⊗ Lkm
∆Fm

) = χ(YP,O(k1, . . . , km)).

Note that, by Proposition 2.7.2, P is indeed a polymatroid. We prepare for the

proof of Theorem 3.6.1 with the following proposition.

Proposition 3.6.2. Let P be a polymatroid with cage (a1, . . . , am) on [m], and let

YP ⊆ Pa1 × · · · × Pam be the corresponding reduced union of Schubert varieties. Let

p : Pa1 × · · · × Pam → Pa1 × · · · × Pam−1 be the projection that forgets the last factor.

Let P′ be the polymatroid on [m−1] whose rank function is obtained by restricting the

rank function of P to [m− 1]. Then p∗ : K(Pa1 × · · · × Pam) → K(Pa1 × · · · × Pam−1)

satisfies p∗[OYP
] = [OY ′

P
].

Proof. First note that if Yb is a product of projective spaces embedded linearly in

Pa1 × · · · × Pam whose multidegree is b = (b1, . . . , bm), then p(Yb) is the product

of projective spaces embedded linearly in Pa1 × · · · × Pam−1 whose multidegree is

b′ = (b1, . . . , bm−1). Also, p∗[OYb
] = [OYb′ ] because Yb → Yb′ is projective bundle.

We write p∗[OYP
] in terms of the basis forK(Pa1×· · ·×Pam) given by the structure

sheaves of products of projective spaces [OYb
], and then we check that the claimed

formula for p∗[OYP
] satisfies the recursion of Proposition 2.5.5. First we do the case

b = (a1, . . . , am−1), i.e., we compute the coefficient of [OPa1×···×Pam−1 ]. The classes in

K(Pa1 × · · · × Pam) which contribute to this term are [OYe ], for e = (a1, . . . , am−1, i)

for some i ∈ {0, . . . , am}. We see that the coefficient of [OPa1×···×Pam−1 ] is the sum of

the coefficients of these classes in the expression of [OYP
] as a sum of structure sheaves

of products of linear spaces. By Proposition 2.5.5, this sum is 1 if b is independent

in P′ and is 0 otherwise.

We may now inductively assume that the formula holds for all b′ > b and prove

it for b = (b1, . . . , bm−1). We say that e extends b if it is of the form (b1, . . . , bm−1, i)
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for some i. Let cb′ be the coefficient of [OYb′ ], and let c̃e be the coefficient of [OYe ]

in the expression of [OYP
] as a sum of structure sheaves of products of linear spaces.

Then we have ∑
b′≥b

cb =
∑
b′≥b

∑
e′ extending b′

c̃e′

=
∑

e′≥(b1,...,bm−1,0)

c̃e

= 1,

where in the last step we use Proposition 2.5.5.

For any projection p from a product of projective spaces to some of the fac-

tors and a polymatroid P, then p(YP) = YP′ , where P′ is the polymatroid obtained

by restricting the rank function of P. By iterating Proposition 3.6.2, we see that

p∗[OYp ] = [OYP′ ].

Proof of Theorem 3.6.1. In the case when F1, . . . , Fm are all of the non-empty flats

of M, then the result follows Corollary 3.3.2 and definition of the Euler characteristic

map on K(M). It suffices to show that if the theorem holds for F1, . . . , Fm+1, then it

holds for F1, . . . , Fm. Let P be the polymatroid associated to F1, . . . , Fm+1, and let P′

be the polymatroid associated to F1, . . . , Fm. Let p : Prk(F1)−1 × · · · × Prk(Fm+1)−1 →
Prk(F1)−1 × · · · × Prk(Fm)−1 be the projection, and note that p(YP) = YP′ . We have

χ(M,L⊗a1
∆F1

⊗ · · · ⊗ L⊗am
∆Fm

) = χ(M,L⊗a1
∆F1

⊗ · · · ⊗ L⊗am
∆Fm

⊗ L⊗0
∆Fm+1

)

= χ(YP,O(a1, . . . , am, 0))

= χ

(
m+1∏
i=1

Prk(Fi)−1, [OYP
]⊗O(a1, . . . , am, 0)

)

= χ

(
m∏
i=1

Prk(Fi)−1, p∗[OYP
]⊗O(a1, . . . , am)

)
= χ(YP′ ,O(a1, . . . , am)).



Chapter 4

K-theoretic positivity

In this chapter, we study positivity properties of K-rings of matroids. Our guiding

principle is that wonderful varieties resemble smooth projective toric varieties, and so

we expect analogues of the positivity properties forK-rings of toric varieties described

in Section 1.2. These positivity properties are best expressed in terms of analogues of

the h∗-vector of a lattice polytope. We also expect those positivity properties to hold

for matroids which are not necessarily realizable. See Conjecture 4.3.1. Our strongest

result in this direction is Theorem 4.0.2

Let M be a loopless matroid. For a line bundle L on XΣM
, it follows from the

definition of the Euler characteristic map (and more explicitly, from Theorem 3.5.1)

that the function t 7→ χ(M,L⊗t) is a polynomial in t, which we call the Snapper

polynomial of L on M.

Definition 4.0.1. For a loopless matroid M on a ground set E and a line bundle L
in K(M), we define its h∗-vector (h∗0(M,L), . . . , h∗d(M,L)) by

∑
k≥0

χ(M,L⊗k)tk =
h∗(M,L; t)
(1− t)d+1

where h∗(M,L; t) =
d∑

k=0

h∗k(M,L)tk,

and d is the degree of the Snapper polynomial of L.

We will show that, for certain L, the h∗-vector is a Macaulay vector, i.e., it is the

Hilbert function of a graded k-algebra R• with R0 = k which is generated in degree

49
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1. In particular, the h∗-vector is non-negative. See Section 4.1 for more on Macaulay

vectors. Our main result is the following theorem.

We say that a line bundle L on XΣM
is simplicially positive if c1(L) is a non-

negative linear combination of the hF ’s. Equivalently, L is simplicially positive if, in

the unique expression

L = ⊗F ̸=∅L⊗kF
∆F

,

we have kF ≥ 0 for all F .

A line bundle L is simplicially positive on XΣM
if and only if it is of the form

LP for a polymatroid P which is a Minkowski sum of simplices. Note that P is not

determined by L, i.e., we may have LP
∼→ LQ where P is a Minkowski sum of simplices

but Q is not.

Theorem 4.0.2. Let M be a loopless matroid, and let L be a simplicially positive line

bundle on XΣM
. Then h∗(M,L) is a Macaulay vector.

In Section 4.1, we review Macaulay vectors and their relationship with Cohen–

Macaulayness and cohomology vanishing. In Section 4.2, we use properties of YP to

prove Theorem 4.0.2. A generalization of Theorem 4.0.2 is conjectured in Section 4.3.

Results on the degree of Snapper polynomials, necessary for studying h∗-vectors, are

given in Section 4.4. We discuss applications and examples in Section 4.5 and 4.6.

4.1 Macaulay vectors

Recall that the Hilbert function of a graded algebra over a field k is the sequence of

the k-dimensions of the graded pieces. For the numerical properties we consider, we

may extend scalars to an extension of k, so we may assume k is infinite as needed.

Definition 4.1.1. A sequence (h0, h1, . . . , hd) of integers is a Macaulay vector if

(h0, h1, . . . , hd, 0, 0, . . . ) is the Hilbert function of a graded artinian k-algebra A• which

is generated in degree 1 and has A0 = k.

Macaulay vectors are also called M-vectors and O-sequences. Macaulay gave an

explicit description of these vectors as follows [BH93, Theorem 4.2.10]. Given positive
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integers n and d, there is a unique expression

n =

(
kd
d

)
+

(
kd−1

d− 1

)
+ · · ·+

(
kδ
δ

)
, kd > kd−1 > · · · > kδ ≥ 1.

Set n⟨d⟩ =
(
kd+1
d+1

)
+ · · ·+

(
kδ+1
δ+1

)
. Then (1, a1, . . . , ad) is a Macaulay vector if and only

if 0 ≤ at+1 ≤ a
⟨t⟩
t for all t ≥ 1.

Macaulay vectors often appear in the following way. Suppose R• is a graded

Cohen–Macaulay algebra of Krull dimension d+1 with R0 = k. If the quotient of R•

by the ideal generated by R1 is artinian, then R• admits a linear system of parameters

[BH93, Propositions 1.5.11 and 1.5.12]. In this case, the quotient by a linear system

of parameters is a graded artinian algebra A• with the property that

∑
k≥0

(dimkR
k)tk =

dimkA
0 + (dimkA

1)t1 + · · ·+ (dimkA
d)td

(1− t)d+1
.

See, for instance, [BH93, Remark 4.1.11]. In particular, if R• is generated in degree

1, then the numerator of its Hilbert series
∑

k≥0(dimkR
k)tk is a polynomial whose

coefficients form a Macaulay vector. For the proof of Theorem 4.0.2, we record the

following cohomological criterion for a section ring to be Cohen–Macaulay.

Proposition 4.1.2. Let L be an ample line bundle on a geometrically connected

and geometrically reduced projective variety X over k of dimension d. Suppose that

H i(X,L⊗k) = 0 for all i > 0 when k ≥ 0, and H i(X,L⊗k) = 0 for all i < d when

k < 0. Then, the section ring

R•
L :=

⊕
k≥0

H0(X,L⊗k)

is a graded Cohen–Macaulay k-algebra with R0
L = k. If furthermore R•

L is generated

in degree 1, then the sequence (h0, . . . , hd) defined by

∑
k≥0

χ(X,L⊗k)tk =
h0 + h1t+ · · ·+ hdt

d

(1− t)d+1
(4.1)
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is a Macaulay vector.

Proof. The sequence (h0, . . . , hd) is well-defined via (4.1) because χ(X,L⊗k) is a poly-

nomial in k (see [Sta12, Section 4.3]). Because X is geometrically connected, geomet-

rically reduced, and proper over Speck, we have R0
L = k. Because all of the higher

cohomology vanishes, we have χ(X,L⊗k) = dimH0(X,L⊗k) for k ≥ 0. Therefore

the second statement follows from the first by our discussion above about Macaulay

vectors.

It remains to show that R•
L is a Cohen–Macaulay graded ring. That is, we show

that the local cohomology H i
m(R

•
L;R

•
L) with respect to the irrelevant ideal m of

R•
L vanishes for i < d + 1. The vanishing when i = 0, 1 is automatic since R•

L

is the section ring of O(1) on X = ProjR•
L. For i ≥ 2, we have H i

m(R
•
L;R

•
L) =⊕

k∈ZH
i−1(ProjR•

L,L⊗k) by [BS98, Theorem 20.4.4]. As X = ProjR•
L, the sheaf

cohomology vanishing hypothesis gives desired vanishing of local cohomology.

4.2 Properties of YP and Theorem 4.0.2

Let P be a polymatroid with cage (a1, . . . , am), and let YP ⊆ Pa1 × · · · × Pam be

the subscheme defined in Section 2.5. We note that YP is Cohen–Macaulay (Propo-

sition 2.5.3) and compatibly Frobenius split, and we use these properties of prove

Theorem 4.0.2.

Note that YP is defined over SpecZ, with an embedding in a product of projective

spaces over SpecZ. Viewing the product of projective spaces as a homogeneous space,

YP is a reduced union of Schubert varieties, and hence it is a compatibly Frobenius

split subscheme of the product of projective spaces when base changed to any field k

of positive characteristic [BK05, Proposition 1.2.1, Theorem 2.3.10]. Together with

Proposition 2.5.3, this gives the following strong cohomology vanishing results on YP.

Proposition 4.2.1. Let L be the restriction of a very ample line bundle from the prod-

uct of projective spaces to YP. Then, we have H i(YP,L⊗k) = 0 for all i > 0 when k ≥
0, and H i(YP,L⊗k) = 0 for all i < rk(P ) when k < 0. Moreover, YP is geometrically

reduced and geometrically connected, and the section ring R•
L =

⊕
k≥0H

0(YP,L⊗k) is



CHAPTER 4. K-THEORETIC POSITIVITY 53

generated in degree 1.

Proof. The cohomology vanishing follows from [BK05, Theorem 1.2.8(ii), Theorem

1.2.9] because YP is Cohen–Macaulay. By [BK05, Theorem 1.2.8(ii)], YP is projec-

tively normal in the embedding given by L, so R•
L is generated in degree 1. It remains

to check that YP is geometrically reduced and geometrically connected. That it is ge-

ometrically reduced is obvious; it is geometrically connected because each component

of YP contains the point [1, 0, . . . , 0]× [1, 0, . . . , 0]× · · · × [1, 0, . . . , 0].

Proof of Theorem 4.0.2. Let L =
⊗m

i=1 L
⊗ki
∆Fi

for some flats F1, . . . , Fm of the ma-

troid M and integers ki > 0. Let P be the restriction of the dragon-Hall–Rado

polymatroid to the flats F1, . . . , Fm. By Theorem 3.6.1, we have that χ(M,L⊗ℓ) =

χ(YP,O(k1, . . . , km)
⊗ℓ). Note that O(k1, . . . , km) is the restriction of a very ample

divisor from the product of projective spaces to YP. By Proposition 4.2.1, we have

that YP and O(k1, . . . , km) satisfy the conditions of Proposition 4.1.2, including the

generation of
⊕

k≥0H
0(YP,O(k1, . . . , km)

⊗ℓ) in degree 1. Hence, we conclude that

h∗(M,L) is a Macaulay vector.

4.3 Positivity for more general line bundles

We conjecture a generalization of Theorem 4.0.2. In Section 4.5, we explain how the

conjecture contains a question of Speyer [Spe09] as a special case, and how Theo-

rem 4.0.2 answers this question for a new family of cases.

Conjecture 4.3.1. Let M be a loopless matroid on E, and let P be a polymatroid

on E. Then, the h∗-vector h∗(M,LP) is a Macaulay vector and is in particular non-

negative.

It is reasonable to expect positivity properties from LP because LP is globally

generated as it is the restriction of the line bundle corresponding to P on XE, see

Proposition 2.3.5. Several other cases in which Conjecture 4.3.1 holds are discussed

in Section 4.6.
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4.4 Degree of Snapper polynomials and numerical

dimension

To study the h∗-vectors of the line bundles LP in Conjecture 4.3.1, one needs some

tools to understand the degrees of Snapper polynomials, since the degree is essential

in the definition of h∗(M,LP). We give one such tool.

Definition 4.4.1. The numerical dimension of a line bundle L in K(M) is the largest

non-negative integer k such that c1(L)k ̸= 0 in A•(M).

Our main result on numerical dimensions is the following.

Theorem 4.4.2. Let M be a loopless matroid of rank r on a ground set E.

1. For L a line bundle in K(M), the degree of the Snapper polynomial χ(M,L⊗t)

is at most the numerical dimension of c1(L). Moreover, the degree equals r− 1

if and only if the numerical dimension is r − 1.

2. For P a polymatroid on E such that the base polytope B(P) is full dimensional

(i.e., (n− 1)-dimensional), then the numerical dimension of LP is r− 1, so the

degree of the Snapper polynomial of LP is r − 1.

Proof. Let L be a line bundle of numerical dimension d. Because c1(L⊗t) = tc1(L),
we have, by Proposition 3.4.5, that

χ(M,L⊗t) = degM((1 + tc1(L) + t2c1(L)2/2! + · · · ) · ToddM).

Since c1(L)d+1 = 0, we see that the right-hand side is a polynomial in t whose leading

term is tℓdegM(c1(L)ℓ · ToddM)/ℓ! for the largest 0 ≤ ℓ ≤ d such that degM(c1(L)ℓ ·
ToddM) ̸= 0. Moreover, because the degree 0 part of ToddM is 1, we have

χ(M,L⊗t) = degM(c1(L)r−1)
tr−1

(r − 1)!
+O(tr−2).

Thus, L has numerical dimension r − 1 if and only if the Snapper polynomial has

degree r − 1. We have proven the first statement (1).
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For second statement (2), we only need show that the numerical dimension of LP

is r − 1 if B(P) is full dimensional. When B(P) is full dimensional, the line bundle

LP on XE is big and nef by Proposition 2.3.5. By [Laz04, Corollary 2.2.7], we can

write the first Chern class as the sum of an ample class and an effective divisor class

(inside A•(XE)⊗Q). Restricting this to A•(M), we get that c1(LP) = A+E, where

A is the restriction of an ample class from XE and E is the restriction of an effective

class.

We now prove by induction on k that degM(c1(LP)
kAr−1−k) > 0, using Proposi-

tion 4.4.3 stated below. The case k = 0 is Proposition 4.4.3(1). For k > 0, Proposi-

tion 4.4.3(2) gives that

degM(c1(LP)
kAr−1−k) = degM(c1(LP)

k−1Ar−k) + degM(c1(LP)
k−1EAr−1−k)

≥ degM(c1(LP)
k−1Ar−k),

which is positive by induction.

Proposition 4.4.3. Let M be a loopless matroid of rank r.

1. Let A ∈ A1(M) be the restriction of an ample class from XE. Then we have

degM(A
r−1) > 0.

2. Let P1, . . . ,Pr−2 be polymatroids. Then, for any class E ∈ A1(M) which is the

restriction of an effective divisor class on XE, degM(c1(LP1) · · · · c1(LPr−2) ·E) ≥
0.

This result, which is well-known to experts, can be deduced from the mixed

Hodge–Riemann relations in degree 0 [AHK18, Theorem 8.9]. We briefly indicate

the proof.

Proof of 4.4.3. The polytopal description of nef and ample line bundles on a toric

variety (see [Ful93, Section 3.4]) implies the following:

• If A is an ample divisor class on XE, then for any flag ∅ ⊊ S1 ⊊ · · · ⊊ Sk ⊊ E,

we may write A =
∑

∅⊊S⊊E cSxS ∈ A1(XE), where cS > 0 if S ̸= Si for some i,

and cSi
= 0 for i = 1, . . . , k.
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• If N is a nef divisor class on XE, then for any flag ∅ ⊊ S1 ⊊ · · · ⊊ Sk ⊊ E, we

may write N =
∑

∅⊊S⊊E cSxS ∈ A1(XE), where cS ≥ 0 for all S, and cSi
= 0 for

i = 1, . . . , k.

To prove Proposition 4.4.3(1), we show by induction that if ∅ ⊊ F1 ⊊ · · · ⊊ Fk ⊊ E

is a chain of flats of M, then degM(xF1 · · ·xFk
· Ar−1−k) > 0. The case k = r − 1

follows from the construction of the degree map (see [AHK18, Definition 5.9]). For

the inductive step, we choose an expression A =
∑

∅⊊S⊊E cSxS with cS > 0 for all

S ̸∈ {F1, . . . , Fk} and cFi
= 0. Restricting this to A1(M), we have A =

∑
∅⊊F⊊E cFxF ,

where the sum is over non-empty proper flats of M. Using the linearity of degM, we

then get

degM(xF1 · · ·xFk
· Ar−1−k) =

∑
∅⊊F⊊E

cF degM(xF · xF1 · · ·xFk
· Ar−2−k).

If F ∈ {F1, . . . , Fk}, then the corresponding term in the above sum is 0 because cF

vanishes. If F is not comparable with {F1, . . . , Fk}, then the corresponding term is 0

by Proposition 2.2.4. If F is comparable with {F1, . . . , Fk}, then the corresponding

term is positive by induction. There is at least one term like this because every

maximal chain of proper non-empty flats has length r − 1.

The proof of Proposition 4.4.3(2) is similar, using that c1(LPi
) ∈ A1(XE) is a nef

divisor class.

4.5 Application to Speyer’s g-polynomial

In this section, we apply Theorem 4.0.2 to study Speyer’s g-polynomial, which is de-

scribed and motivated in Section 1.3. An outstanding problem about the g-polynomial

is to show that it has non-negative coefficients for all matroids. In [Spe09], Speyer

used the Kawamata–Viehweg vanishing theorem to show the non-negativity for ma-

troids realizable over a field of characteristic 0. The non-negativity was proved for all

sparse paving matroids in [FS, Theorem 13.16]. Using Theorem 4.0.2 we give a new

infinite family of matroids for which the non-negativity holds.
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We begin by explaining how the non-negativity of the coefficients of Speyer’s g-

polynomial is a special case of Conjecture 4.3.1. For a loopless matroid M of rank

r, let ω(M) be the tr coefficient of gM(t). We say that M is connected if B(M) has

dimension n − 1, i.e., it is full-dimensional. If dimB(M) has dimension n − c, then

there is a partition E = E1 ⊔ · · · ⊔Ec and connected matroids M1, . . . ,Mc on ground

sets E1, . . . , Ec such that B(M) = B(M1)× · · · × B(Mc). In forthcoming work, Alex

Fink, Kris Shaw, and David Speyer show the following result.

Proposition 4.5.1. Suppose that ω(M) ≥ 0 for all connected matroids. Then all

coefficients of gM(t) are non-negative for all loopless matroids.

The following result was communicated to the author by Alex Fink, Kris Shaw,

and David Speyer. We sketch a proof using a result from [BEST23]. The dual M⊥ of

a matroid M is the matroid whose rank function is given by rkM⊥(S) = |S|−rkM(E)+

rkM(E \ S).

Proposition 4.5.2. Let M be a loopless matroid of rank r with c connected compo-

nents. Then, we have

ω(M) = (−1)r−cχ(M,L−1
M⊥).

A geometric proof for realizable matroids of the above result was sketched in

Section 1.3, as the line bundle on WL denoted detQL is LM⊥ .

Proof of Proposition 4.5.2. By Definition 3.4.3, we have

χ(M,L−1
M⊥) = degM(ζM([L−1

M⊥ ]) · (1 + hE + h2E + · · · )).

We compute ζM([L−1
M⊥ ]) by computing on XE. By Proposition 3.2.3, we have that

ζM([L−1
M⊥ ]) = ι∗ζE([L−1

M⊥ ]).

In [BEST23, Theorem 10.1], there is a description of ζE using torus localization onXE;

that the map denoted ζ there agrees with ζE follows from [BEST23, Corollary 10.6]

(see [EHL23, Proof of Theorem 1.8]). Computing in the equivariant Chow groups of
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the permutohedral variety XE using [BEST23, Theorem 10.1] (see [EHL23, Corollary

6.5]), we have that ζE([L−1
M⊥ ]) is the class denoted c(Q∨

M) in [BEST23]. Therefore

ζM([L−1
M⊥ ]) is the restriction to A•(M) of this class, and so the result follows from

[BEST23, Theorem 10.12].

Now, recall the formal identity satisfied by the h∗-vector

h∗d(M,L) = (−1)dχ(M,L−1), (4.2)

where d is the degree of the Snapper polynomial. See, for instance, [Sta12, Section

4.3]. Moreover, when M is connected, the polytope B(M⊥) is full dimensional, so

Theorem 4.4.2 implies that the degree d of the Snapper polynomial is r−1. Therefore,

the two preceding propositions show that the non-negativity of the coefficients of gM(t)

is a special case of Conjecture 4.3.1 with P = M⊥.

We now make explicit how Theorem 4.0.2 proves the positivity of ω(M) in some

special cases. For this, we will need some matroid terminology, see [Oxl11]. The first

step is to express [LM⊥ ] as a Laurent monomial in the [L∆F
], or, equivalently, write

c1(LM⊥) as a linear combination of the hF . To do so, for a matroid M, we recall its

β-invariant [Cra67], defined by two properties:

• β(U0,1) = 0, β(U1,1) = 1, and β(M) = 0 if M is disconnected, and

• the recursive relation: for any i which is not a loop or coloop of M,

β(M) = β(M/i) + β(M \ i).

Equivalently, the β-invariant is the coefficient of x in the Tutte polynomial of M.

Proposition 4.5.3. Let M be a loopless matroid on [n]. Then, the polytope B(M⊥)

satisfies

c1(LM⊥) =
∑

F connected flat
of rkM(F )≥2

∑
clM(S)=F

(−1)|S|−rkM(S)+1β(M|S)hF ∈ A•(M).
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Proof. Let B(∆S) be the simplex Conv({ei : i ∈ S}). Then [ABD10, Theorem 2.6]

expressed B(M⊥) as a signed Minkowski sum of these simplices as follows:

B(M⊥) =
∑

S⊆[n],|S|≥2

(−1)|S|−rkM(S)+1β(M|S)B(∆S) +
∑

i loop of M

B(∆i).

This gives an expression for c1(LM⊥) ∈ A1(XE) as a sum of the simplicial generators

hS. As the restriction of hS ∈ A1(XE) to XΣM
is equal to hclM(S) ∈ A1(M) and hi = 0,

we obtain the desired expression.

Example 4.5.4. Let M be the graphical matroid associated to the complete graph

K4; this is a matroid on E = {1, 2, 3, 4, 5, 6}. There are 5 connected flats of rank at

least two: the four triangles F1, F2, F3, F4 and E. Then Proposition 4.5.3 implies that

c1(LM⊥) = −hE + hF1 + hF2 + hF3 + hF4 ∈ A1(M).

Theorem 4.5.5. Let M be a loopless matroid of rank r such that, for all connected

flats F of M of rank at least 2, we have
∑

clM(S)=F (−1)|S|−rkM(S)+1β(M|S) ≥ 0. Then

ω(M) ≥ 0.

Proof. First suppose that M is connected, so the polytope B(M⊥) is full dimensional.

By Theorem 4.4.2(2), the degree of the Snapper polynomial of LM⊥ is r − 1 in this

case. By Theorem 4.0.2 along with (4.2), we thus have ω(M) = (−1)r−1χ(M,L−1
M⊥) =

h∗r−1(M,LM⊥) ≥ 0.

Now suppose that M = M1 ⊕ · · · ⊕Mc, with each Mi connected. The hypothesis

implies that each LM⊥
i
is simplicially positive for each i, and so ω(Mi) ≥ 0. By [FS12,

Proposition 7.2], gM(t) = gM1(t) · · · gMc(t). Because the t
i coefficient of gM(t) vanishes

for i > rk(M), we have

ω(M) = ω(M1) · · ·ω(Mc) ≥ 0.

Equivalently, Theorem 4.5.5 states that ω(M) ≥ 0 if LM⊥ is simplicially positive.

While it appears that this is not often satisfied, Theorem 4.5.5 does show that ω(M) ≥
0 for many matroids. We give two examples.
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Example 4.5.6. For a non-empty subset S ⊆ E, let HS be the corank 1 matroid on

E with S as its unique circuit. A co-transversal matroid is a matroid M that arises

as the matroid intersection M = HS1 ∧ · · · ∧ HSc for some (not necessarily distinct)

subsets S1, . . . , Sc. In this case, one verifies that c1(LM⊥) =
∑c

i=1 hSi
∈ A•(M). Thus,

Theorem 4.5.5 applies to all co-transversal matroids.

Co-transversal matroids are realizable over an infinite field of arbitrary charac-

teristic, so we could have used [Spe09, Proposition 3.3] or Remark 4.6.3 below to

deduce that ω(M) ≥ 0. We now construct an infinite family of matroids to which

Theorem 4.5.5 applies but which are not realizable over a field of characteristic 0, as

follows. We will use the notion of principal extensions, whose definition and properties

can be found in [Oxl11, §7.2].

Lemma 4.5.7. Let M be a loopless matroid on E, and fix a non-empty flat G. Denote

by M′ = M+G ⋆ the principal extension of M by G. Then, writing

c1(LM⊥) =
∑

F a flat of M

cFhF ∈ A•(M),

then the expression for c1(L(M′)⊥) ∈ A•(M′) is

c1(L(M′)⊥) = hG∪⋆ +
∑
F⊇G

cFhF∪⋆ +
∑
F ̸⊇G

cFhF .

Proof. A computation using Proposition 2.3.5 gives that c1(LM⊥) =
∑

F rkM(F )xF ,

so (2.3) implies that the coefficients cF are defined by the property that
∑

F ′⊆F cF ′ =

rkM(F ) for all flats F of M.

Now, we recall that the set of flats of M′ is partitioned into three categories [Oxl11,

Corollary 7.2.5]:

1. {F : F flat of M with F ̸⊇ G}, in which case rkM′(F ) = rkM(F ),

2. {F ∪ ⋆ : F flat of M with F ⊇ G}, in which case rkM′(F ∪ ⋆) = rkM(F ), and

3. {F ∪ ⋆ : F flat of M with F ̸⊇ G, F is not covered by an element in [G,E]}, in
which case rkM′(F ∪ ⋆) = rkM(F ) + 1.
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Thus, in A•(M′), since h⋆ = 0 so that −xE∪⋆ =
∑

∅⊆F⊊E xF∪⋆, we have

hG∪⋆ =
∑

∅⊆F⊊E

xF∪⋆ +
∑

G⊆F⊊E

−xF∪⋆ =
∑
F ̸⊇G

xF∪⋆.

The claimed expression for c1(L(M′)⊥) in all three cases of flats now follows, as the

above expression for hG∪⋆ contributes only to the case (iii) and not to cases (i) or (ii).

Explicitly, we have:

1. In this case, the coefficient of xF is
∑

F ′⊆F cF ′ = rkM(F ) = rkM′(F ).

2. In this case, the coefficient of xF∪⋆ is again
∑

F ′⊆F cF ′ = rkM(F ) = rkM′(F ∪ ⋆).

3. In this case, the coefficient of xF∪⋆ is

1 +
∑
F ′⊆F

cF ′ = 1 + rkM(F ) = rkM′(F ∪ ⋆).

Given any loopless matroid M, repeatedly applying the lemma provides a method

for constructing a matroid M̃ for which Theorem 4.5.5 applies. Moreover, a matroid

is realizable over an infinite field k if and only if its principal extensions are realizable

over the same field k. Thus, the matroid M̃ has the same realizability property as

M over infinite fields. In particular, the lemma produces infinite families of matroids

that are not realizable or are realizable only in certain positive characteristics for

which Theorem 4.5.5 applies.

4.6 Examples and problems

We present a few cases in which Conjecture 4.3.1 holds.

Example 4.6.1. When M is the Boolean matroid, then h∗(M,LP) is the usual h∗-

vector of the base polytope B(P), and hence is non-negative. Moreover, because base

polytopes of polymatroids have the property that every lattice point in kB(P) is a

sum of k lattice points in B(P) (see [Wel76, Chapter 18.6, Theorem 3]), h∗(M,LP) is

a Macaulay vector.
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Example 4.6.2. Let ∇ be the uniform matroid of corank 1, i.e., we have B(∇) =

Conv({(0, 1, . . . , 1), (1, 0, 1, . . . , 1), . . . , (1, 1, . . . , 1, 0)}) and c1(L∇) ∈ A1(M) is the

class usually denoted −x∅ = β. Then [LLPP24, Lemma 8.5] implies that

χ(M,L⊗t
∇ ) =

∑
i

fr−1−i(BC>(M))

(
t

r − 1− i

)
,

where fj(BC>(M)) is the number of j-dimensional faces of the reduced broken circuit

complex of M under any ordering >. As
(

t
r−1−i

)
=
∑i

j=0(−1)j
(
i
j

)(
t+i
r−1

)
, we may

express the Snapper polynomial in terms of the h-vector of the reduced broken circuit

complex:

χ(M,L⊗t
∇ ) =

∑
i

hr−1−i(BC>(M))

(
t+ i

r − 1

)
.

Comparing this with the definition of h∗(M,L∇), we have hi(BC>(M)) = h∗i (M,L∇).

By [Bjö92], the reduced broken circuit complex is shellable and therefore Cohen–

Macaulay, so its h-vector is a Macaulay vector. This argument is closely related to

[PS06].

Example 4.6.3. Let M be a connected matroid which has a realization L ⊆ kE over

a field of characteristic 0. It follows from [BEST23, Theorem 7.10] that there is a

vector bundle QL of rank n− r on XE which has a section which cuts out WL ⊆ XE,

so there is a Koszul resolution

0 → ∧n−rQ∨
L → ∧n−r−1Q∨

L → · · · → Q∨
L → OXE

→ OWL
→ 0.

By [BF22, Theorem 5.1], we have that

Hj(XE,∧n−r−iQL ⊗ (detQL)
⊗(k−1)) = 0 for j > 0, k ≥ 1.

Recall that ∧n−r−iQL ⊗ (detQL)
⊗(k−1) ∼= ∧iQ∨

L ⊗ (detQL)
⊗k. Using an equivariant

description of the class [QL] ∈ KT (XE) [BEST23, Proposition 3.7], one can check that

detQL = LM⊥ ; see [EHL23, Proposition 4.6] for a similar computation. By [Laz04,

Proposition B.1.2], for k ≥ 1, the above cohomology vanishing result implies that
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H i(WL,L⊗k
M⊥) = 0 for i > 0, and the restriction map H0(XE,L⊗k

M⊥) → H0(WL,L⊗k
M⊥)

is surjective. By [Wel76, Chapter 18.6, Theorem 3], the ring ⊕k≥0H
0(XE,L⊗k

M⊥) is

generated in degree 1. Therefore the ring

R• :=
⊕
k≥0

H0(WL,L⊗k
M⊥)

is generated in degree 1. This implies that ProjR• is the image of WL under the

complete linear system of LM⊥ which is the space of visible contours of L. It is

proved in [Tev07, Theorem 1.4 and 1.5] that ProjR• has rational singularities. In

particular,

H i(WL,L⊗k
M⊥) = H i(ProjR•,O(k))

for all i and k. Because B(M⊥) is full dimensional, the line bundle LM⊥ is nef and big.

By the Kawamata–Viehweg vanishing theorem, H i(WL,L⊗k
M⊥) = H i(ProjR•,O(k)) =

0 for k < 0 and i < dimWL. As WL is rational, H i(WL,OWL
) = 0 for i > 0.

Then Proposition 4.1.2 implies that R• is Cohen–Macaulay, and so h∗(M,LM⊥) is a

Macaulay vector.

We conjecture a monotonicity property for h∗-vectors of matroids, inspired by

Stanley’s monotonicity result for h∗-vectors of polytopes [Sta93], which implies the

following conjecture when M is the Boolean matroid.

Conjecture 4.6.4. Let P1,P2 be polymatroids with B(P1) ⊆ B(P2). Then for any

loopless matroid M, h∗i (M,LP1) ≤ h∗i (M,LP2) for all i.

If the degree of the Snapper polynomial of L is rk(M) − 1, then
∑
h∗i (M,L) =

degM(c1(L)r−1), so the following result gives evidence for Conjecture 4.6.4.

Proposition 4.6.5. Let P1,P2 be polymatroids with B(P1) ⊆ B(P2). Then

degM(c1(LP1)
r−1) ≤ degM(c1(LP2)

r−1).

Proof. Because B(P1) ⊆ B(P2), the difference of the divisor class in A1(XE) corre-

sponding to B(P2) with the divisor class corresponding to B(P1) is an effective divisor
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class, see Section 2.3. Then,

c1(LP2)
r−1 − c1(LP1)

r−1

= (c1(LP2)− c1(LP1)) · (c1(LP2)
r−2 + c1(LP2)

r−3c1(LP1) + · · ·+ c1(LP1)
r−2).

By Proposition 4.4.3, the degree of this class is non-negative.

In [Sta91], Stanley proved restrictions on the Hilbert function of a graded Cohen–

Macaulay integral domain. When M is realized by L ⊆ kE, then the ring R• =

⊕k≥0H
0(WL,L⊗k

P ) is an integral domain. If R• is Cohen–Macaulay, then [Sta91, The-

orem 2.1] implies Conjecture 4.6.6. If R• is Cohen–Macaulay and k has characteristic

0, then [Sta91, Proposition 3.4] implies Conjecture 4.6.7.

Conjecture 4.6.6. Let M be a loopless matroid, and let P be a polymatroid. Let s

be the largest integer such that h∗s(M,LP) ̸= 0. Then, for all 0 ≤ i ≤ s,

h∗0(M,LP) + · · ·+ h∗i (M,LP) ≤ h∗s(M,LP) + · · ·+ h∗s−i(M,LP).

Conjecture 4.6.7. Let M be a loopless matroid, and let P be a polymatroid. Let s

be the largest integer such that h∗s(M,LP) ̸= 0. Then, for all m ≥ 0 and n ≥ 1 with

m+ n < s,

h∗1(M,LP) + · · ·+ h∗n(M,LP) ≤ h∗m+1(M,LP) + · · ·+ h∗m+n(M,LP).

If L is a simplicially positive line bundle on XΣM
, then Proposition 2.5.1 and a

Frobenius splitting argument implies that, for any realization of M, the ring section

ring R• is Cohen–Macaulay. In particular, in this case Conjecture 4.6.6 holds if M is

realizable, and Conjecture 4.6.7 holds if M is realizable over a field of characteristic

0.

By Example 4.6.3, Conjecture 4.6.6 and Conjecture 4.6.7 hold for h∗(M,LM⊥)

when M is realizable over a field of characteristic 0. In the case of Example 4.6.2, the

inequalities in Conjecture 4.6.6 and Conjecture 4.6.7 hold by [ADH23, Theorem 1.4].
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(SGA 6), Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec

la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman,

M. Raynaud et J. P. Serre.

[SP] The Stacks Project Authors. Stacks project.

[Spe08] David E. Speyer. Tropical linear spaces. SIAM J. Discrete Math.,

22(4):1527–1558, 2008.



BIBLIOGRAPHY 70

[Spe09] David E. Speyer. A matroid invariant via the K-theory of the Grass-

mannian. Adv. Math., 221(3):882–913, 2009.

[Sta80] Richard P. Stanley. Decompositions of rational convex polytopes. Ann.

Discrete Math., 6:333–342, 1980.

[Sta91] Richard P. Stanley. On the Hilbert function of a graded Cohen-Macaulay

domain. J. Pure Appl. Algebra, 73(3):307–314, 1991.

[Sta93] Richard P. Stanley. A monotonicity property of h-vectors and h∗-vectors.

European J. Combin., 14(3):251–258, 1993.

[Sta12] Richard P. Stanley. Enumerative combinatorics. Volume 1, volume 49

of Cambridge Studies in Advanced Mathematics. Cambridge University

Press, Cambridge, second edition, 2012.

[SU03] P. Sankaran and V. Uma. Cohomology of toric bundles. Comment.

Math. Helv., 78(3):540–554, 2003.

[Tev07] Jenia Tevelev. Compactifications of subvarieties of tori. Amer. J. Math.,

129(4):1087–1104, 2007.

[Wei94] Charles A. Weibel. An introduction to homological algebra, volume 38

of Cambridge Studies in Advanced Mathematics. Cambridge University

Press, Cambridge, 1994.

[Wel76] D. J. A. Welsh. Matroid theory. Academic Press [Harcourt Brace Jo-

vanovich, Publishers], London-New York, 1976. L. M. S. Monographs,

No. 8.

[Yuz02] Sergey Yuzvinsky. Small rational model of subspace complement. Trans.

Amer. Math. Soc., 354(5):1921–1945, 2002.


	Abstract
	Acknowledgements
	Introduction
	Wonderful compactifications
	Lattice point counting in polytopes
	Degenerations of torus-orbit closures
	K-theoretic positivity for matroids
	Organization and overview

	Geometry and combinatorics of wonderful varieties
	The geometry of wonderful varieties
	Bergman fans
	Line bundles on the permutohedral toric variety
	Simplicial presentations of Chow rings of matroids
	Multiplicity-free subvarieties
	Examples of multiplicity-free subvarieties
	Multidegree of wonderful varieties

	K-theory of wonderful varieties
	K-rings of matroids
	Simplicial generators of K(M)
	Euler characteristics on multiplicity-free subvarieties
	The structure of K-rings of matroids
	A formula for the Euler characteristic
	Projection formulas

	K-theoretic positivity
	Macaulay vectors
	Properties of YP and Theorem 4.0.2
	Positivity for more general line bundles
	Degree of Snapper polynomials and numerical dimension
	Application to Speyer's g-polynomial
	Examples and problems

	Bibliography

