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Abstract. We calculate the determinant of the bilinear form in middle degree of the generic artinian reduc-

tion of the Stanley–Reisner ring of an odd-dimensional simplicial sphere. This proves the odd multiplicity

conjecture of Papadakis and Petrotou and implies that this determinant is a complete invariant of the simpli-
cial sphere. We extend this result to odd-dimensional connected oriented simplicial homology manifolds, and

we conjecture a generalization to the Hodge–Riemann forms of any connected oriented simplicial homology
manifold. We show that our conjecture follows from the strong Lefschetz property for certain quotients of

the Stanley–Reisner rings.

1. Introduction

Let ∆ be a simplicial complex with vertex set V = {1, . . . , n} of dimension d − 1 > 0. Let k be a field,
and set K = k(ai,j)1≤i≤d, 1≤j≤n. We assume that ∆ is a connected homology manifold over k, i.e., ∆ is
connected, and the link of every nonempty face G of ∆ has the same homology as a sphere of dimension
d − |G| − 1 over k. Let K[∆] be the Stanley–Reisner ring of ∆, and set θi = ai,1x1 + · · · + ai,nxn ∈ K[∆]
for i ∈ {1, . . . , d}, so θ1, . . . , θd is a linear system of parameters for K[∆]. Let H(∆) = K[∆]/(θ1, . . . , θd) be
the generic artinian reduction of K[∆].

Assume that ∆ is oriented. Then there is a distinguished isomorphism deg : Hd(∆) → K [Bri97], see
Section 2. Let H(∆) be the Gorenstein quotient of H(∆), i.e., the quotient by the ideal (y ∈ H(∆) : (y ·z)d =

0 for all z ∈ H(∆)), where yd denotes the degree d component of y in H(∆). One has H
q
(∆) = Hq(∆)

for q ∈ {0, 1, d}; see, for example, Proposition 4.4. Also, if ∆ is a homology sphere over k, i.e., a homology
manifold with the same homology over k as a sphere of dimension d−1, thenH(∆) = H(∆). By construction,

H(∆) is an artinian Gorenstein ring: for each q, the bilinear form H
q
(∆) × H

d−q
(∆) → K given by

(y, z) 7→ deg(y · z) is nondegenerate.
Suppose that d is even. Let Dd/2 ∈ K×/(K×)2 be the determinant of the nondegenerate bilinear form on

H
d/2

(∆). That is, choose a basis y1, . . . , yp for H
d/2

(∆), and let M be the symmetric matrix whose (i, j)th

entry is deg(yi · yj). Then Dd/2 is the image of detM in K×/(K×)2; choosing a different basis for H
d/2

(∆)
only changes detM by a square, so Dd/2 is well-defined. For a subset F = {j1 < · · · < jd} of V of size d, set
[F ] to be the determinant of the d× d matrix whose (i,m)th entry is ai,jm .

Theorem 1.1. Let d be even, and let ∆ be a connected oriented simplicial k-homology manifold of dimension
d− 1. Then

Dd/2 = λ
∏

F facet of ∆

[F ] ∈ K×/(K×)2

for some λ ∈ k×/(k×)2.

Papadakis and Petrotou proved Theorem 1.1 for 1-dimensional simplicial spheres [PP23, Proposition 5.1].
Let F be a subset of V of size d. As [F ] is an irreducible polynomial (see Lemma 4.1), it defines a

valuation ord[F ] : K
× → Z given by the order of vanishing along the hypersurface defined by [F ]. This

descends to a homomorphism ord[F ] : K
×/(K×)2 → Z/2Z. We immediately deduce the following corollary
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to Theorem 1.1. It implies that the determinant of the bilinear form on H
d/2

(∆) is a complete invariant of
the connected oriented simplicial k-homology manifold ∆.

Corollary 1.2. Let d be even, and let ∆ be a connected oriented simplicial k-homology manifold of dimension
d− 1 with vertex set V . Let F be a subset of V of size d. Then

ord[F ](Dd/2) =

{
1 if F is a facet of ∆

0 if otherwise.

When ∆ is a simplicial sphere, Corollary 1.2 was conjectured by Papadakis and Petrotou [PP23, Conjec-
ture 5.4], who called it the odd multiplicity conjecture. This conjecture has motivated our work.

We conjecture a generalization of the odd multiplicity conjecture. Let ℓ =
∑n

j=1 xj ∈ H
1
(∆). For

0 ≤ q ≤ d/2, define the Hodge–Riemann form H
q
(∆) ×H

q
(∆) → K via (y, z) 7→ deg(ℓd−2q · y · z). When

d is even and q = d/2, the Hodge–Riemann form is the bilinear form on H
d/2

(∆) considered above, and

Conjecture 1.3 below is Corollary 1.2. Let Dq be the determinant of the Hodge–Riemann form on H
q
(∆).

Conjecture 1.3. Let ∆ be a connected oriented simplicial k-homology manifold of dimension d − 1 with
vertex set V , and let 0 ≤ q ≤ d/2. Let F be a subset of V of size d. Then

ord[F ](Dq) =

{
1 if F is a facet of ∆

0 if otherwise.

The nondegeneracy of the Hodge–Riemann form, which is part of Conjecture 1.3, is equivalent to the

map H
q
(∆) → H

d−q
(∆) given by multiplication by ℓd−2q being an isomorphism. By Lemma 4.5, this is

equivalent to H(∆) having the strong Lefschetz property in degree q, i.e., that there is some y ∈ H
1
(∆) such

that the map H
q
(∆) → H

d−q
(∆) given by multiplication by yd−2q is an isomorphism.

In particular, Conjecture 1.3 is a generalization of the algebraic g-conjecture for ∆ (that H(∆) has
the strong Lefschetz property), and it implies that the Hodge–Riemann form in any degree is a complete
invariant of ∆. A proof of the algebraic g-conjecture for connected oriented simplicial k-homology manifolds
was announced in [APP21], see also [Adi18, KX23, PP20]. While our work does not directly rely on it, we
have been heavily inspired by the recent progress on the algebraic g-conjecture, and, in particular, the key
insight that one should study the generic artinian reduction of K[∆] and the corresponding degree map. See
also [APP24].

In Example 4.11, we verify Conjecture 1.3 for simplicial spheres obtained from the boundary of the d-
dimensional simplex by successively doing stellar subdivisions in the interiors of facets. In Conjecture 5.1,
we give an alternative statement that we show is equivalent to Conjecture 1.3 holding for all 0 ≤ q ≤ d/2.

We can verify Conjecture 1.3 when q = 0. As H
0
(∆) is 1-dimensional, the determinant of the Hodge–

Riemann form is equal to the image of deg(ℓd) in K×/(K×)2. Then we can prove a more precise result.

Theorem 1.4. Let ∆ be a connected oriented simplicial k-homology manifold of dimension d−1 with vertex
set V . Let F be a subset of V of size d. Then

ord[F ](deg(ℓ
d)) =

{
−1 if F is a facet of ∆

0 if otherwise.

We show that Conjecture 1.3 follows from a strengthening of the algebraic g-conjecture for less generic
artinian reductions ofK[∆]. Let F be a subset of V of size d which is not a facet of ∆, and set θF1 =

∑
j ̸∈F a1,j .

Then θF1 , θ2, . . . , θd is still a linear system of parameters for K[∆] by Stanley’s criterion (see Proposition 2.2).
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Let HF (∆) = K[∆]/(θF1 , θ2, . . . , θd). Then there is a distinguished isomorphism deg : Hd
F (∆) → K (see

Section 2). Set HF (∆) to be the Gorenstein quotient of HF (∆). For example, if ∆ is a homology sphere
over k, then HF (∆) = HF (∆).

Conjecture 1.5. Let ∆ be a connected oriented simplicial k-homology manifold of dimension d− 1, and let
0 ≤ q ≤ d/2. Then for every non-face F of size d, HF (∆) has the strong Lefschetz property in degree q.

When d is even and q = d/2, Conjecture 1.5 is vacuously true. The following result is then a generalization
of Corollary 1.2.

Theorem 1.6. If Conjecture 1.5 holds for all ∆ of dimension d− 1 in degree q, then Conjecture 1.3 holds
for all ∆ of dimension d− 1 in degree q.

In order to deduce Conjecture 1.3 for ∆, we use Conjecture 1.5 for ∆ and for the stellar subdivisions of
∆ in the interiors of facets.

We also show that, when q = 0, Conjecture 1.5 is a consequence of Theorem 1.4. See Remark 4.3.
Our paper is organized as follows. In Section 2, we recall the construction and properties of the degree

map. In Section 3, we compute some special cases which will be used in the proofs of the main theorems. In
Section 4, we prove the main theorems. In Section 5, we give some examples and discuss possible extensions.

Throughout, we fix a connected oriented simplicial k-homology manifold ∆ of dimension d−1 with vertex
set V . If G is a face of ∆ with vertices {j1, . . . , jr}, we write xG := xj1 · · ·xjr for the corresponding monomial

in K[∆]. We will sometimes abuse notation and use xG to denote its image in H(∆) or H(∆). See [Sta84]
for any undefined terminology.

We will assume throughout that d > 1. If d = 1, the (not connected) case of a simplicial sphere of
dimension 0, i.e., ∆ consists of two points, is discussed in Example 3.3.

Acknowledgements. We thank Ed Swartz for suggesting Example 5.2.

2. Degree maps

We now discuss degree maps on artinian reductions of Stanley–Reisner rings of connected oriented sim-
plicial k-homology manifolds. The normalization of the degree map will be crucial in what follows, as the
results of the introduction can fail if we use an arbitrary isomorphism Hd(∆) → K. Explicitly, two such

isomorphisms vary by multiplication by a nonzero element ω ∈ K, and if p = dimH
q
(∆) is odd, then the

determinant of a nondegenerate bilinear form on H
q
(∆) will vary by multiplication by ωp = ω ∈ K×/(K×)2.

We first discuss orientations in the case when the characteristic of k is not 2. If d > 1, then an orientation
on a (d − 1)-dimensional simplex is a choice of ordering of the vertices, up to changing the ordering by an
even permutation. If d = 1, then an orientation on a (d− 1)-dimensional simplex is a choice of ϵ ∈ {1,−1}.
An orientation on a (d − 1)-dimensional simplex induces an orientation on each facet. If d > 1 and the
simplex is ordered by {v1 < · · · < vd}, then we orient {v2, . . . , vd} using the ordering v2 < · · · < vd, and we
orient the facet which omits vi by changing the ordering by even permutations so that vi is first. If d = 1
and the simplex is {v1 < v2}, then we orient {v1} by −1 and orient {v2} by 1.

Because ∆ is a k-homology manifold, each (d− 2)-dimensional simplex is contained in exactly two facets
(as the link must be S0). An orientation of ∆ is a choice of orientation for each facet of ∆ such that the two
orientations on any (d − 2)-dimensional simplex of ∆ induced by the two facets containing it are opposite.
In what follows, we fix a choice of orientation.

If k has characteristic 2, then we say that any k-homology manifold is oriented by definition.
For each facet F = {j1 < · · · < jd}, the orientation on ∆ defines a sign ϵF ∈ {1,−1}, which is 1 if

the permutation which takes (j1, . . . , jd) to the ordering given by the orientation is even, and is −1 if this
permutation is odd. If the characteristic of k is 2, then ϵF = 1 by definition.
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There is an explicit isomorphism deg : Hd(∆) → K, called the degree map. This isomorphism was con-
structed by Brion [Bri97], see also [KX23, Lemma 2.2]. Recall that, for a subset F = {j1 < · · · < jd} of V
of size d, [F ] is the determinant of the matrix whose (i,m)th entry is ai,jm .

Proposition 2.1. There is an isomorphism deg : Hd(∆) → K of K-vector spaces such that, for any facet
F of ∆, we have

(1) deg(xF ) =
ϵF
[F ]

.

In particular, if k does not have characteristic 2, then the degree map associated to the opposite orientation
is the negative of the original degree map.

More generally, consider d elements µ = (µ1, . . . , µd) in K[∆] of degree 1, with µi =
∑

j∈V µi,jxj for some

µi,j ∈ K. Let k[ai,j ] denote the polynomial ring k[ai,j ]1≤i≤d, 1≤j≤n with fraction field K, and consider the
k-algebra homomorphism evµ : k[ai,j ] → K defined by

evµ(ai,j) = µi,j .

We will use the following criterion for the elements of µ to be a linear system of parameters (l.s.o.p.).

Proposition 2.2. (Stanley’s criterion) [Sta92, Proposition 4.3] Consider d elements µ = (µ1, . . . , µd) in
K[∆] of degree 1. Then µ1, . . . , µd is an l.s.o.p. if and only if evµ([F ]) ̸= 0 for each facet F of ∆.

Suppose that µ = (µ1, . . . , µd) is an l.s.o.p. LetHµ(∆) := K[∆]/(µ1, . . . , µd). We still have dimHd
µ(∆) = 1

(see, for example, [Sch81]), and so the degree map described in Proposition 2.1 “specializes” to an isomor-
phism degµ : H

d
µ(∆) → K of K-vector spaces such that, for a fixed choice of facet F of ∆,

(2) degµ(xF ) =
ϵF

evµ([F ])
.

We will verify below that (2) is independent of the choice of facet F . We also have a well-defined Gorenstein
quotient Hµ(∆), i.e., the quotient of Hµ(∆) by the ideal (y ∈ Hµ(∆) : (y · z)d = 0 for all z ∈ Hµ(∆)), where
yd denotes the degree d component of y in Hµ(∆). For example, as in the statement of Conjecture 1.5, let
F be a subset of V of size d which is not a facet of ∆, and set θF1 =

∑
j ̸∈F a1,j . Then θF = (θF1 , θ2, . . . , θd)

is an l.s.o.p., and we write HF (∆) := HθF (∆), HF (∆) := HθF (∆), and degF := degθF .

We now describe two known techniques that can be used to compute the degree map. We first recall the
following application of Cramer’s rule, see, e.g., [PP23, Proposition 2.1]. Below, sgn(π) ∈ {±1} denotes the
sign of a permutation π.

Lemma 2.3. Let µ = (µ1, . . . , µd) be an l.s.o.p. Let F = {j1 < · · · < jd} be a subset of V of size d.
Fix 1 ≤ m ≤ d. Then

(3) evµ([F ])xjm = −
∑

v∈V∖F

sgn(πv) evµ([F ∪ {v}∖ {jm}])xv ∈ H1
µ(∆),

where πv ∈ Sd is the permutation such that the elements of πv ·(j1, . . . , jm−1, v, jm+1, . . . , jd) are in increasing
order.

Suppose that F and F ′ are facets of ∆. It is well-known that there is a sequence of facets F =
F1, F2, . . . , Fs = F ′, where Fj and Fj+1 meet along a common face of dimension d − 2 for 1 ≤ j < s.
Suppose that F = {j1 < · · · < jd} and F ′ meet along the common face F ∖ {jm}. Then multiplying (3) by
xF /xjm and tracing through the signs yields that ϵF evµ([F

′]) = ϵF ′ evµ([F ]) ∈ Hd
µ(∆). We conclude that

(2) holds for any facet F of ∆.
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Given a nonzero monomial x
bj1
j1

· · ·xbjs
js

∈ K[∆] with each bj > 0, define its support to be the face

{j1, . . . , js} of ∆. Suppose that the above monomial is not squarefree, i.e., bjm > 1 for some 1 ≤ m ≤ s. Let
F be a facet containing the support {j1, . . . , js}. Then Lemma 2.3 implies that

(4) x
bj1
j1

· · ·xbjs
js

= − 1

evµ([F ])

∑
v∈V∖F

sgn(πv) evµ([F ∪ {v}∖ {jm}])
xv · x

bj1
j1

· · ·xbjs
js

xjm

∈ Hµ(∆),

for some permutations πv as defined in Lemma 2.3. Importantly, all nonzero monomials on the right-hand

side of (4) have support strictly containing the support of x
bj1
j1

· · ·xbjs
js

. Hence we may compute the degree

of any monomial by using (4) to repeatedly increase the size of the support.
We will need the following lemma. Let R ⊂ K be the localization of k[ai,j ] at the irreducible polynomials

{[F ] : F facet of ∆}. By Proposition 2.2, evµ extends to a k-algebra homomorphism evµ : R → K.

Lemma 2.4. Let µ = (µ1, . . . , µd) be an l.s.o.p. Let g ∈ k[x1, . . . , xn]d be a polynomial of degree d. Then
deg(g) ∈ R and degµ(g) = evµ(deg(g)).

Proof. It is enough to consider the case when g is a monomial. If g is squarefree, then the result follows
from (2). If g is not squarefree, then the result follows by using (4) to repeatedly increase the size of the
support. □

We will apply Lemma 2.4 in combination with the following simple observation. We will often use the
remark below with P = [F ] for some non-face F of size d.

Remark 2.5. Consider an element f ∈ R. Let P ∈ k[ai,j ] be an irreducible polynomial, and suppose that
there is an l.s.o.p. µ with evµ(P ) = 0, but evµ(f) ̸= 0. We claim that ordP (f) = 0. Indeed, because
evµ(P ) = 0, P is not a scalar multiple of any {[F ] : F facet of ∆}, so ordP (f) ≥ 0. But P can’t divide f to
positive order as evµ(f) ̸= 0.

We next recall a formula for the degree map due to Karu and Xiao. It is closely related to the work of

Brion [Bri97] as well as a formula of Lee [Lee96, Corollary 4.5]. To state the formula, we define V̂ := {0}∪V

and K̂ := K(ai,0 : 1 ≤ i ≤ d). For a subset F̂ = {j1 < · · · < jd} of V̂ of size d, let [F̂ ] be the determinant of
the d× d matrix whose (i,m)th entry is ai,jm .

Proposition 2.6. [KX23, Lemma 3.1, Theorem 3.2] Let g ∈ K[x1, . . . , xn]d be a polynomial of degree d.
For any facet F = {j1 < · · · < jd} of ∆, let gF (t1, . . . , td) be obtained from g by setting xi to zero for i /∈ F

and setting xjm = tm for 1 ≤ m ≤ d. Let XF,m := (−1)m[F ∪ {0}∖ {jm}] ∈ K̂ for 1 ≤ m ≤ d. Then

(5) deg(g) =
∑

F facet of ∆

ϵF gF (XF,1, . . . , XF,d)

[F ]
∏d

m=1 XF,m

.

In particular, the expression in (5) lies in K. When g ∈ k[x1, . . . , xn] this formula specializes to a formula
for all l.s.o.p.’s. Explicitly, suppose that µ = (µ1, . . . , µd) is an l.s.o.p. Recall that we have an evaluation
map evµ : k[ai,j ] → K defined by evµ(ai,j) = µi,j for 1 ≤ i ≤ d and 1 ≤ j ≤ n. This naturally extends to

a k-algebra homomorphism êvµ : k[ai,j ]1≤i≤d,0≤j≤n → K̂ such that êv(ai,0) = ai,0 for 1 ≤ i ≤ d. Below, if
F = {j1 < · · · < jd} is a facet of ∆ and 1 ≤ m ≤ d, observe that êvµ([F ∪ {0} ∖ {jm}]) is nonzero since it
specializes (up to a sign) to evµ([F ]) by setting ai,0 to µi,jm for 1 ≤ i ≤ d. By Proposition 2.2, evµ([F ]) ̸= 0.

Corollary 2.7. Suppose that µ = (µ1, . . . , µd) is an l.s.o.p. Let g ∈ k[x1, . . . , xn]d be a polynomial of degree
d. For any facet F = {j1 < · · · < jd} of ∆, let gF (t1, . . . , td) be obtained from g by setting xi to zero for

i /∈ F and setting xjm = tm for 1 ≤ m ≤ d. Let XF,µ,m := (−1)mêvµ([F ∪ {0}∖ {jm}]) ∈ K̂ for 1 ≤ m ≤ d.
Then
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degµ(g) =
∑

F facet of ∆

ϵF gF (XF,µ,1, . . . , XF,µ,d)

evµ([F ])
∏d

m=1 XF,µ,m

.

Proof. Recall that R ⊂ K is the localization of k[ai,j ] at the irreducible polynomials {[F ] : F is a facet of ∆},
and evµ maps R to K which is contained in K̂. With the notation of Proposition 2.6, let R̂ ⊂ K̂ be the
localization of k[ai,j ]1≤i≤d,0≤j≤n at the irreducible polynomials {XF,m : F facet of ∆, 0 ≤ m ≤ d}, where
XF,0 := [F ]. Then êvµ extends to a k-algebra homomorphism êvµ : R̂ → K̂ such that evµ is the restriction

of êvµ to R ⊂ R̂. By Lemma 2.4, both sides of (5) lie in R̂ and êvµ(deg(g)) = degµ(g). The result now
follows by applying êvµ to both sides of (5). □

Finally, we show that the degree can be computed “locally” on ∆, in an appropriate sense. The closed star
Star∆(G) of a face G of ∆ is the simplicial complex consisting of all faces G′ of ∆ that contain G, together
with their subfaces. Let G = {j1, . . . , js} be a face of ∆, and let S be the set of vertices in Star∆(G). Let
KS be the subfield of K generated over k by ai,j , where 1 ≤ i ≤ d and j ∈ S. Let ∆′ be another connected
oriented simplicial k-homology manifold of dimension d, with vertex set V ′ and a face G′ = {j′1, . . . , j′s}.
Let K ′ = k(a′i,j)1≤i≤d,j∈V ′ be the field of coefficients for H(∆′). Suppose that there is an isomorphism of
simplicial complexes τ : Star∆(G) → Star∆′(G′) that maps jm to j′m for 1 ≤ m ≤ s. Then τ allows us to
identify KS with a subfield of K ′. Let deg∆ : Hd(∆) → K and deg∆′ : Hd(∆′) → K ′ denote the degree maps
for ∆ and ∆′ respectively.

Lemma 2.8. With the notation above, let xb1
j1
· · ·xbs

js
be a monomial of degree d with support G. Then

deg∆(x
b1
j1
· · ·xbs

js
) ∈ KS. Using the identification of KS with a subfield of K ′, we have

deg∆(x
b1
j1
· · ·xbs

js
) = ϵ deg∆′(xb1

j′1
· · ·xbs

j′s
),

where ϵ = 1 if the orientations on Star∆(G) induced by the orientations on ∆ and ∆′ agree, and ϵ = −1 if
they are opposite.

Proof. The only nonzero terms in the right-hand side of the formula for deg∆(x
b1
j1
· · ·xbs

js
) in (5) are those

corresponding to facets in Star∆(G), and those terms lie in KS(ai,0)1≤i≤d and are equal (up to a global sign)

to the corresponding terms in the formula for deg∆′(xb1
j′1
· · ·xbs

j′s
). □

3. Some important special cases

In this section, we analyze several important special cases. In order to prove the main theorems, we will
need a detailed understanding of the suspension of the boundary of the (d− 1)-dimensional simplex, i.e., the
complex Σ with vertex set V = {1, . . . , d+ 2} and minimal non-faces {1, . . . , d} and {d+ 1, d+ 2}. For this,
it will be helpful to study the boundary of the d-dimensional simplex, i.e., the complex Sd−1 with vertex
set {1, . . . , d+ 1} and minimal non-face {1, . . . , d+ 1}. We continue to assume that d > 1 unless otherwise
stated.

Recall that the polynomials {[G] : G ⊂ V, |G| = d} in k[ai,j ] are irreducible (see, for example, Lemma 4.1).
We will need the following lemma.

Lemma 3.1. If A can be written as a k-linear combination of {[G] : G ⊂ V, |G| = d} where at least two
coefficients are nonzero, then ord[G](A) = 0 for all G ⊂ V of size d.

Proof. The k-algebra generated by the irreducible polynomials {[G] : G ⊂ V, |G| = d} in k[ai,j ] is isomorphic
to the Plücker ring, i.e., the homogeneous coordinate ring of the Grassmannian of d planes in kn. In
particular, since the Plücker relations all have degree strictly greater than 1, the polynomials {[G] : G ⊂
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V, |G| = d} are linearly independent over k. Each [G] is homogeneous of degree d. Hence A is also
homogeneous of degree d. If ord[G′](A) > 0, then, by comparing degrees, A = λ[G′] for some λ ∈ k,
contradicting the assumption that at least two coefficients are nonzero. □

We can now analyze the boundary of the d-dimensional simplex, for d > 1.

Example 3.2. Let Sd−1 be the boundary of the d-dimensional simplex with vertex set {1, . . . , d + 1}. By
Lemma 2.3, for 1 ≤ m, p ≤ d+ 1, we have

(6) [V ∖ {p}]xm = (−1)|p−m|[V ∖ {m}]xp ∈ H1(∆).

Fix 0 ≤ q ≤ d/2. A basis for Hq(∆) = H
q
(∆) is xq

1. Using (6), we compute(
d∏

m=2

(−1)m−1[V ∖ {m}]

)
deg(xd

1) = [V ∖ {1}]d−1 deg(x1 · · ·xd),

and hence, for some ϵ ∈ {±1}, we have

deg(xd
1) =

ϵ[V ∖ {1}]d∏d+1
m=1[V ∖ {m}]

.

Using (6), we compute

[V ∖ {1}]d−2q deg(ℓd−2q · x2q
1 ) = Ad−2q deg(xd

1),

where A :=
∑d+1

m=1(−1)m−1[V ∖ {m}]. By Lemma 3.1, ord[G](A) = 0 for all facets G of ∆. Putting this
together gives

deg(ℓd−2q · x2q
1 ) =

ϵAd−2q[V ∖ {1}]2q∏d+1
m=1[V ∖ {m}]

.

Let Dq be the image of deg(ℓd−2q · x2q
1 ) in K×/(K×)2. Then

Dq =

{
ϵ
∏

G facet[G] if d is even

ϵA
∏

G facet[G] if d is odd.

We conclude that Conjecture 1.3 holds in this case. Observe that Conjecture 1.5 holds vacuously since Sd−1

has no non-faces of size d.

We will also need to analyze the case of S0, i.e., the disjoint union of two vertices. Although S0 is not
connected, H(S0) is a Gorenstein ring with a well-defined degree map, and we may verify directly that the
conclusion of Theorem 1.4 (and hence Conjecture 1.3) holds.

Example 3.3. Let d = 1, V = {1, 2}, and consider the complex S0 with vertex set {1, 2} and minimal
non-face {1, 2}. We orient S0 by assigning −1 to the facet {1} and assigning 1 to the facet {2}. We have

deg(ℓ) = deg(x1) + deg(x2) = − 1

a1,1
+

1

a1,2
=

a1,1 − a1,2
a1,1a1,2

.

We now analyze Σ, the suspension of the boundary of the (d − 1)-dimensional simplex. The proofs of
Theorem 1.1, Theorem 1.4, and Theorem 1.6 will depend on this special case, via a use of Lemma 2.8. Let
F = {1, . . . , d} and recall that V = {1, . . . , d+ 2} and ℓ = x1 + · · ·+ xd+2.
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Lemma 3.4. There are polynomials Ad+1, Ad+2 ∈ k[ai,j ] such that ord[G](Ad+1) = ord[G](Ad+2) = 0 for
any subset G of V of size d, and

[F ]ℓ = Ad+1xd+1 +Ad+2xd+2 ∈ H1(Σ).

Moreover, there is ϵ ∈ {±1} such that, for 0 < j ≤ d,

(7) deg(ℓd−j · xj
d+1) =

ϵAd−j
d+1[F ]j−1∏d

m=1[F ∪ {d+ 1}∖ {m}]
and deg(ℓd−j · xd

d+2) =
−ϵAd−j

d+2[F ]j−1∏d
m=1[F ∪ {d+ 2}∖ {m}]

.

Proof. By Lemma 2.3, for 1 ≤ m ≤ d, we have

(8) [F ]xm = (−1)d+1−m([F ∪ {d+ 1}∖ {m}]xd+1 + [F ∪ {d+ 2}∖ {m}]xd+2) ∈ H1(Σ).

For v ∈ {d+1, d+2}, by multiplying xv with the product of (8) over all 1 ≤ m < d and by using the relation
xd+1 · xd+2 = 0 in K[Σ], we deduce that there is ϵ′ ∈ {±1} such that(

d−1∏
m=1

[F ∪ {v}∖ {m}]

)
xd
v = ϵ′[F ]d−1x1 · · ·xd−1 · xv.

By Proposition 2.1, taking degrees of both sides of this equation yields

ϵF∪{v}∖{d−1} deg(x
d
v) =

ϵ′[F ]d−1∏d
m=1[F ∪ {v}∖ {m}]

If we set ϵ = ϵ′ϵF∪{v}∖{d−1}, then the j = d case of (7) follows since ϵF∪{d+1}∖{d−1} = −ϵF∪{d+2}∖{d−1}.
Applying (8) for 1 ≤ m ≤ d yields

(9) [F ]ℓ = Ad+1xd+1 +Ad+2xd+2 ∈ H1(Σ),

where for v ∈ {d+ 1, d+ 2}, we have

Av = [F ] + (−1)d+1
d∑

m=1

(−1)m[F ∪ {v}∖ {m}] ∈ k[ai,j ].

By Lemma 3.1, ord[G](Ad+1) = ord[G](Ad+2) = 0 for any subset G of V of size d. Using (9) and the relation
xd+1 · xd+2 = 0, we compute

[F ]d−j deg(ℓd−j · xj
v) = Ad−j

v deg(xd
v).

The result now follows from the j = d case of (7). □

Although it will not be needed in what follows, we observe that Lemma 3.4 implies Conjecture 1.3 for Σ
in the case 0 < q ≤ d/2. Explicitly, {xq

d+1, x
q
d+2} is a basis for Hq(Σ) = H

q
(Σ), and (7) implies that the

corresponding determinant Dq ∈ K×/(K×)2 is equal to

Dq = deg(ℓd−2q · x2q
d+1) deg(ℓ

d−2q · x2q
d+2) =

{
−
∏

G facet[G] if d is even

−Ad+1Ad+2

∏
G facet[G] if d is odd.

See also Example 4.11.
The next lemma will be crucial to the proof of Theorem 1.4. Recall that d > 1 and Σ is the suspension

of the boundary of the (d− 1)-dimensional simplex.

Lemma 3.5. For every non-face G of size d, we have ord[G](deg(ℓ
d)) = 0.
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Proof. By Lemma 2.4 and Remark 2.5, it is enough to show that there is an l.s.o.p. µ which has evµ([G]) = 0,
but degµ(ℓ

d) = evµ(deg(ℓ
d)) ̸= 0. Set µi = ai,1x1 + · · · + ai,dxd for 1 ≤ i < d, and set µd = ad,d+1xd+1 +

ad,d+2xd+2. Because Σ = Sd−2 ∗ S0, we see that Hµ(Σ) = H(Sd−2) ⊗ H(S0). Furthermore, we can write
ℓ = ℓ1 + ℓ2, where ℓ1 = x1 + · · ·+ xd and ℓ2 = xd+1 + xd+2. We have ℓd1 = 0 and ℓ22 = 0, and we see that

degµ(ℓ
d) = degµ(ℓ

d−1
1 · ℓ2) = degSd−2(ℓd−1

1 ) degS0(ℓ2).

Since degSd−2(ℓd−1
1 ) ̸= 0 and degS0(ℓ2) ̸= 0 by Example 3.2 and Example 3.3 respectively, we deduce that

degµ(ℓ
d) ̸= 0. It remains to show that evµ([G]) = 0. Since G is a non-face, either G = {1, . . . , d} or

G contains {d + 1, d + 2}. In the former case, evµ([G]) is the determinant of a matrix whose dth row is
identically zero. In the latter case, evµ([G]) is the determinant of a matrix whose last two columns are
identically zero except in the dth row and hence are linearly dependent. □

4. Proofs of theorems

In this section, we prove Theorem 1.4, then Theorem 1.6, and then finally Theorem 1.1. Recall that
throughout we are assuming that d > 1. We first prove a lemma which will be used in the proof of
Theorem 1.4. The case when p = m is very well known; see, for example [Bo̧c64, Theorem 61.1].

Lemma 4.1. For some 1 < p ≤ m, let N be the m × m matrix with Ni,j = ai,j if i = 1 and j ≤ p or if
i > 1, and Ni,j = 0 for i = 1 and j > p. Then detN is an irreducible polynomial in k[ai,j ].

Proof. Suppose that detN = f · g, where f, g ∈ k[ai,j ]. Because detN is linear in a1,1, we see that a1,1 must
occur in exactly one of f and g, say f . Because p > 1, the variables ai,1 appear in detN for i ≥ 1. Those
variables must also only occur in f , because a1,1ai,1 does not appear in detN . This implies that ai,j must
also occur only in f for each j, because ai,1ai,j does not appear in detN . We conclude that g is a unit. □

In particular, Lemma 4.1 implies that the polynomial detN defines a valuation on K. We now begin
proving Theorem 1.4. We first deal with the case when F is a facet.

Proposition 4.2. Let F be a facet of ∆. Then

ord[F ](deg(ℓ
d)) = −1.

Proof. Using Proposition 2.6 and properties of valuations, we have

(10) ord[F ](deg(ℓ
d)) ≥ min

G facet of ∆

(
d ord[F ](XG,1 + · · ·+XG,d)− ord[F ]([G])−

d∑
m=1

ord[F ](XG,m)

)
,

with equality if the minimum is achieved only once. As XG,m, [G], and [F ] are irreducible polynomials of
the same degree which are not scalar multiples of each other (except that [G] = [F ] if G = F ), we see that
for G ̸= F , the quantity in the minimum in (10) is nonnegative. Note that ord[F ](XF,1 + · · ·+XF,d) = 0 by
the proof of Lemma 3.1. Therefore the quantity in the minimum in (10) is equal to −1 when G = F , and so
the minimum is −1 and is achieved exactly once. □

Proof of Theorem 1.4. By Proposition 4.2, it suffices to show that if F is a subset of V of size d which is
not a facet, then ord[F ](deg(ℓ

d)) = 0. By Lemma 2.4 and Remark 2.5, it is enough to show that degF (ℓ
d) =

evθF (deg(ℓ
d)) ̸= 0.

First assume there is a facet F ′ of ∆ with |F ′ ∩ F | ≤ d− 2. Let [F ′] = evθF ([F
′]), which is irreducible by

Lemma 4.1. We use Proposition 2.6 to compute that ord
[F ′]

(degF (ℓ
d)) is bounded below by

(11) min
G facet of ∆

(
d ord

[F ′]
(XG,θF ,1 + · · ·+XG,θF ,d)− ord

[F ′]
(evθF ([G]))−

d∑
m=1

ord
[F ′]

(XG,θF ,m)

)
,
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with equality if the minimum is achieved only once. If G ̸= F , then it is easy to see that ord
[F ′]

(evθF ([G])) =

0, because [F ′] and evθF ([G]) are irreducible polynomials of the same degree which are not scalar multiples.
Similarly, ord

[F ′]
(XG,θF ,m) = 0 (this holds even if G = F ′). So if G ̸= F ′, then the quantity in the minimum

in (11) is nonnegative.

If G = F ′, then ord
[F ′]

(evθF ([G])) = ord
[F ′]

([F ′]) = 1. Write F ′ = {j1 < · · · < jd} and fix 1 ≤ m ≤ d.

Then for 1 ≤ m′ ≤ d, the coefficient of the monomial a1,0a2,j1 · · · am,jm−1
am+1,jm+1

· · · ad,jd in XF ′,θF ,m′

is 1 if m = m′ and is 0 otherwise, and the coefficient of this monomial in [F ′] is zero. We deduce that
XF ′,θF ,1 + · · ·+XF ′,θF ,d is nonzero with the same degree as [F ′] and ord

[F ′]
(XF ′,θF ,1 + · · ·+XF ′,θF ,d) = 0.

Therefore, the quantity in the minimum in (11) is −1 for G = F ′, so we deduce that ord
[F ′]

(degF (ℓ
d)) = −1.

In particular, degF (ℓ
d) ̸= 0.

Suppose that there is no such facet F ′. Then we show that ∆ must be the suspension Σ of the boundary
of a (d − 1)-dimensional simplex, i.e., the case discussed in Section 3. Let v be a vertex of ∆ not in F ,
so every facet containing v has d − 1 vertices from F . Let L be the link of v. Because ∆ is a k-homology
manifold, L is a (d− 2)-dimensional k-homology sphere whose facets are all contained in the boundary of F ,
which is isomorphic to Sd−2. In particular, because L is pure of dimension d− 2, L must be a subcomplex
of Sd−2.

Suppose that L is a proper subcomplex of Sd−2, i.e., it does not contain some facet G of Sd−2. Then the
map L ↪→ Sd−2 factors through the contractible complex Sd−2 ∖G, and so the induced map on Hd−2 is 0.
The long exact sequence in homology associated to the pair (Sd−2, L) begins

0 → Hd−2(L) → Hd−2(S
d−2) → Hd−2(S

d−2, L) → Hd−3(L) → · · · ,
which implies that Hd−2(L) = 0, contradicting that L is a k-homology sphere.

We see that ∆ is isomorphic to the join of Sd−2 with a disjoint union of some vertices {v1, . . . , vr}. Because
the link of any facet of Sd−2 is {v1, . . . , vr}, we must have r = 2 in order for ∆ to be a homology manifold.
Therefore ∆ = Σ. The case of Σ was treated in Lemma 3.5. □

Remark 4.3. The above argument, together with the proof of Lemma 3.5, shows that if F is a non-face of
size d, then degF (ℓ

d) = evθF (deg(ℓ
d)) is nonzero. In particular, Conjecture 1.5 holds when q = 0.

We now prove Theorem 1.6. We will need the following result of Novik and Swartz, which uses as
input results of Gräbe and Schenzel [Grä84, Sch81]. Let βq = dim H̃q(∆; k), the dimension of the reduced
cohomology of ∆ over k. By the universal coefficient theorem, this depends only on the characteristic of k.
Let (h0(∆), . . . , hd(∆)) be the h-vector of ∆. Let Hµ(∆) be the Gorenstein quotient of K[∆]/(µ1, . . . , µd)
for an l.s.o.p. µ = (µ1, . . . , µd) for K[∆].

Proposition 4.4. [NS09, Theorem 1.3 and 1.4] Let µ = (µ1, . . . , µd) be an l.s.o.p. for K[∆]. Then

dimH
q

µ(∆) =

{
hq(∆)−

(
d
q

)∑q−1
p=0(−1)q−pβp−1 if 0 ≤ q < d

1 if q = d.

In particular, dimH
q

µ(∆) is independent of the choice of l.s.o.p. Recall from the introduction that θF1 =∑
j ̸∈F a1,jxj and that HF (∆) is the Gorenstein quotient of K[∆]/(θF1 , . . . , θd). Let φ : K[∆] → H(∆) and

φF : K[∆] → HF (∆) be the quotient maps. Set ℓF = φF (
∑

j xj) ∈ H
1

F (∆).

Lemma 4.5. Fix some 0 ≤ q ≤ d/2. The algebra HF (∆) has the strong Lefschetz property in degree q if and

only if multiplication by ℓd−2q
F is an isomorphism from H

q

F (∆) → H
d−q

F (∆), i.e., ℓF is a strong Lefschetz
element.
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A similar equivalence holds for H(∆), i.e., H(∆) has the strong Lefschetz property in degree q if and only
if ℓ is a strong Lefschetz element in degree q.

Proof of Lemma 4.5. If ℓF is a strong Lefschetz element in degree q, then clearly HF (∆) has the strong
Lefschetz property in degree q. For the converse, we may replace k by its algebraic closure. Then a Zariski

open subset of all y ∈ H
1

F (∆) are strong Lefschetz elements in degree q. It follows that a Zariski open subset

of all coefficients (λ1, . . . , λn) ∈ kn correspond to elements
∑

λjxj ∈ H
1

F (∆) which are strong Lefschetz
elements in degree q. Therefore, we can find a strong Lefschetz element ℓF,λ =

∑
λjxj with each λj ∈ k×.

Let

HF,λ(∆) = K[∆]/(
∑
j ̸∈F

λja1,jxj ,
∑
j

λja2,jxj , . . . ,
∑
j

λjad,jxj),

and let HF,λ(∆) be the Gorenstein quotient. Because the λjai,j are algebraically independent, ℓF,λ is a

strong Lefschetz element for HF,λ(∆). Let Φ: HF (∆) → HF,λ be the graded isomorphism given by sending
ai,j to λjai,j . Then we have a commutative square

H
q

F (∆) H
d−q

F (∆)

H
q

F,λ(∆) H
d−q

F,λ (∆).

ℓd−2q
F

Φ Φ

ℓd−2q
F,λ

As the bottom horizontal arrow is an isomorphism, so is the top horizontal arrow. □

Let µ = (µ1, . . . , µd) be an l.s.o.p. for K[∆]. Let φµ : K[∆] → Hµ(∆) be the quotient map and set ℓµ =

φµ(
∑

j xj) ∈ H
1

µ(∆). Recall that R ⊂ K denotes the localization of k[ai,j ] at the irreducible polynomials

{[G] : G facet of ∆}, and evµ : R → K is the map defined by evµ(ai,j) = µi,j .

Lemma 4.6. Let µ = (µ1, . . . , µd) be an l.s.o.p. and let 0 ≤ q ≤ d/2. Suppose that multiplication by ℓd−2q
µ

is an isomorphism from H
q

µ(∆) → H
d−q

µ (∆), i.e., ℓµ is a strong Lefschetz element. Let P ∈ k[ai,j ] be an
irreducible polynomial such that evµ(P ) = 0. Then there are monomials y1, . . . , yp such that {φ(yi)} is a basis

of H
q
(∆) and ordP (detM) = 0, where M is the p×p matrix whose (i, j) entry is deg(ℓd−2q ·φ(yi) ·φ(yj)). In

particular, if Dq ∈ K×/(K×)2 is the determinant of the Hodge–Riemann form on H
q
(∆), then ordP (Dq) =

0 ∈ Z/2Z.

Proof. Choose monomials y1, . . . , yp in the degree q part of K[∆] such that {φµ(yi)} is a basis for H
q

µ(∆);

this is possible because H
q

µ(∆) is spanned by the images of monomials.

Let M be the p× p matrix whose (i, j) entry is deg(ℓd−2q ·φ(yi) ·φ(yj)). By Lemma 2.4, each entry of M
lies in R, so detM lies in R. By Remark 2.5, if we can show that evµ(detM) ̸= 0, then ordP (detM) = 0.

Let Mµ be the p × p matrix whose (i, j) entry is degµ(ℓ
d−2q
µ · φµ(yi) · φµ(yj)). By Lemma 2.4, the (i, j)

entry of Mµ is evµ(deg(ℓ
d−2q · φ(yi) · φ(yj))), so detMµ = evµ(detM). As ℓµ is a strong Lefschetz element

for H
q

µ(∆), detMµ ̸= 0, and we conclude that ordP (detM) = 0.

Finally, that detM is nonzero implies that {φ(yi)} is linearly independent in H
q
(∆). As dimH

q
(∆) =

dimH
q

µ(∆) by Proposition 4.4, {φ(yi)} is a basis for H
q
(∆), so detM computes the determinant of the

Hodge–Riemann form on H
q
(∆). This completes the proof. □
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Proposition 4.7. Let F be a subset of V of size d which is not a facet, and let 0 ≤ q ≤ d/2. Suppose
that HF (∆) has the strong Lefschetz property in degree q. Let Dq ∈ K×/(K×)2 be the determinant of the

Hodge–Riemann form on H
q
(∆). Then ord[F ](Dq) = 0.

Proof. By Lemma 4.5, ℓF is a strong Lefschetz element for H
q

F (∆). The result now follows from Lemma 4.6
setting µ = θF and P = [F ]. □

Lemma 4.8. Let F be a facet of ∆. Then for each q, there is a basis for H
q
(∆) consisting of the images of

monomials in K[∆] whose support is disjoint from F .

Proof. Using the l.s.o.p., one can write any monomial in H
1
(∆) in terms of the monomials corresponding to

vertices not in F . As H(∆) is generated in degree 1, this implies that each H
q
(∆) is spanned by monomials

whose support is disjoint from F . Some subset of these monomials form a basis. □

For a facet F of ∆, let ∆′ be the simplicial complex obtained by doing a stellar subdivision in the interior
of F , i.e., the vertex set of ∆′ is V ∪{n+1} = {1, . . . , n+1}, and the facets of ∆′ are the facets of ∆ except
for F , together with (F ∪ {n + 1}) ∖ {j} for each j ∈ F . Then ∆′ is an oriented connected k-homology
manifold, with its orientation determined by orienting the facets of ∆′ which are also facets of ∆ in the same
way that they are oriented in ∆.

Lemma 4.9. For 0 < q < d, we have dimH
q
(∆) + 1 = dimH

q
(∆′)

Proof. The geometric realization of ∆′ is homeomorphic to the geometric realization of ∆, so the reduced
Betti numbers do not change. Therefore, by Proposition 4.4, dimH

q
(∆′) − dimH

q
(∆) = hq(∆

′) − hq(∆).
That this is 1 when 0 < q < d follows from the formula for how the h-vector changes under refinement in
[Sta92, Theorem 3.2], or can be checked using the formula for the h-vector in terms of the f -vector. □

Note that the proof of Proposition 4.7 implies that if F is a non-face of size d and HF (∆) has the strong
Lefschetz property in degree q, then so doesH(∆). If ∆ has no non-faces of size d, then ∆ must be isomorphic
to Sd−1, and so Conjecture 1.3 holds for ∆ by Example 3.2. When proving Theorem 1.6, we may therefore
assume that H(∆) has the strong Lefschetz property in degree q.

Proof of Theorem 1.6. As Theorem 1.4 implies Conjecture 1.3 when q = 0, we may assume that 0 < q ≤ d/2.
Proposition 4.7 shows that if F is not a facet, then ord[F ](Dq) = 0. Suppose that F is a facet of ∆. By

Lemma 4.8, we may choose a collection of monomials y1, . . . , yp ∈ K[∆] of degree q whose support is disjoint

from F and such that their image in H
q
(∆) under φ : K[∆] → H(∆) is a basis. By the version of Lemma 4.5

for H(∆), ℓ is a strong Lefschetz element in degree q. Let M be the p × p matrix whose (i, j)th entry is
deg(ℓd−2q · φ(yi) · φ(yj)), so M is nonsingular and the image of detM in K×/(K×)2 is Dq.

Let ∆′ be the simplicial complex obtained by doing a stellar subdivision in the interior of F , with ori-
entation as described above. We can identify K[∆]/(xF ) with a subring of K[∆′], and hence consider
the images y′1, . . . , y

′
p of y1, . . . , yp in K[∆′]. Set y′p+1 = xq

n+1. Let φ′ : K[∆′] → H(∆′) be the quotient

map, and let ℓ′ = φ′(
∑n+1

j=1 xj) ∈ H
1
(∆′). Let M ′ be the (p + 1) × (p + 1) matrix whose (i, j)th entry is

deg((ℓ′)d−2q ·φ′(y′i) ·φ′(y′j)). For j ≤ p, we have y′j ·y′p+1 = 0 in K[∆′]. By Lemma 2.8, M ′ is a block diagonal
matrix whose northwest p × p block is M and whose (p + 1, p + 1) entry M ′

p+1,p+1 is equal to the degree

of ℓd−2q · x2q
d+1 in the complex Σ considered in Section 3 (up to sign). Lemma 3.4 implies that M ′

p+1,p+1 is
nonzero and ord[F ](M

′
p+1,p+1) = 2q − 1.

We see that M ′ is nonsingular, so {φ′(y′1), . . . , φ
′(y′p+1)} is a linearly independent subset of H

q
(∆′). As

dimH
q
(∆′) = dimH

q
(∆) + 1 by Lemma 4.9, {φ′(y′1), . . . , φ

′(y′p+1)} is a basis for H
q
(∆′). In particular,

detM ′ computes the determinant of the Hodge–Riemann form.
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As F is not a facet of ∆′, Proposition 4.7 gives that ord[F ](detM
′) is even. Since ord[F ](M

′
p+1,p+1) = 2q−1

is odd, we see that ord[F ](detM) is odd, as desired. □

Remark 4.10. The argument used to prove Theorem 1.6, together with Lemma 3.4, shows that, if ∆′ is
the stellar subdivision of ∆ in the interior of a facet of ∆, then Conjecture 1.3 holds for ∆ in degree q if and
only if it holds for ∆′ in degree q.

Example 4.11. Let ∆ be a simplicial sphere obtained from Sd−1, the boundary of the d-dimensional simplex,
by successively applying stellar subdivisions to the interiors of facets. Then Example 3.2 and Remark 4.10
imply that Conjecture 1.3 holds. In this case, for any q > 0, multiplication by ℓq−1 maps a basis for H1(∆)
to a basis for Hq(∆), and it follows that Dq is independent of q when q > 0. In particular, when d is even,
the analogue of Theorem 1.1 holds for Dq when q > 0. We saw special cases of this by explicit calculation
in Example 3.2 and Lemma 3.4.

Proof of Theorem 1.1. Theorem 1.6 implies Corollary 1.2. Hence if F is a facet of ∆, then ord[F ](Dd/2) =
1 ∈ Z/2Z. Let P ∈ k[ai,j ] be an irreducible polynomial that is not equal (up to multiplication by a scalar) to

one of the polynomials {[F ] : F facet of ∆}. Over k[ai,j ], we may factor P = Pm1
1 · · ·Pmr

r , where the Pi are

distinct irreducible polynomials over k and mi ∈ Z>0. Note that none of the Pi are scalar multiples of [F ].

We claim that there are monomials y1, . . . , yp such that {φ(yi)} is a basis of H
d/2

(∆) and ordP1(detM) = 0,
where M is the p× p matrix whose (i, j) entry is deg(φ(yi) ·φ(yj)). This implies that ordP (detM) = 0 and
hence ordP (Dd/2) = 0. We deduce that Dd/2 = λ

∏
F facet of ∆[F ] ∈ K×/(K×)2 for some λ ∈ k×/(k×)2,

completing the proof.
It remains to verify the claim. Let V (P1) be the vanishing locus of P1 inside Adn

k
, and let (µi,j) ∈ V (P1)

be a k-point. Set µi =
∑

j µi,jxj . First suppose that µ = (µ1, . . . , µd) is an l.s.o.p. for k(ai,j)[∆]. Observe

that evµ(P1) = 0 since (µi,j) ∈ V (P1). Then the claim follows from Lemma 4.6. Note that the assumption
in Lemma 4.6 that ℓµ is a strong Lefschetz element holds vacuously since we are in middle dimension. Hence
we may assume that µ is not an l.s.o.p. By Proposition 2.2 there must be some facet F of ∆ such that (µi,j)

is contained in the vanishing locus of [F ]. Applying this to every k-point of V (P1), we see that

V (P1) ⊂
⋃

F facet of ∆

V ([F ]).

As there are only finitely many facets, this implies that V (P1) is contained in V ([F ]) for some facet F . The
irreducibility of [F ] then implies that P1 and [F ] are equal up to multiplication by a scalar, a contradiction.

□

5. Further discussion

Assume that ℓ is a strong Lefschetz element in all degrees, i.e., the Hodge–Riemann form on H
q
(∆) is

nondegenerate for 0 ≤ q ≤ d/2. The primitive part of H
q
(∆) is H

q

prim(∆) := {y ∈ H
q
(∆) : ℓd−2q+1 · y = 0}.

Let Dprim,q ∈ K×/(K×)2 be the determinant of the induced Hodge–Riemann form on H
q

prim(∆). For

0 < q ≤ d/2, multiplication by ℓ induces an injection H
q−1

(∆) → H
q
(∆) which splits to give an isomorphism

H
q
(∆) ∼= H

q−1
(∆) ⊕H

q

prim(∆). As this decomposition is orthogonal with respect to the Hodge–Riemann

form, we haveDq = Dq−1Dprim,q. In particular, Dq = D0

∏q
q′=1 Dprim,q′ . Since we established Conjecture 1.3

when q = 0 in Theorem 1.4, we conclude that Conjecture 1.3 holding for all 0 ≤ q ≤ d/2 is equivalent to the
following conjecture.

Conjecture 5.1. Let ∆ be a connected oriented simplicial k-homology manifold of dimension d − 1 with
vertex set V . Then ℓ is a strong Lefschetz element in all degrees, and, for each subset F of V of size d and
0 < q ≤ d/2, we have ord[F ](Dprim,q) = 0.
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It is natural to try to extend Conjecture 1.3 to the setting of connected oriented pseudomanifolds, where
the construction of the degree map still works (see [KX23, Section 2.5]). However, a key property of homology

manifolds which was used in the proof of our results, e.g. Theorem 1.1, was that the dimension of H
q

µ(∆)
does not depend on µ, the chosen l.s.o.p. (see Proposition 4.4). We show in the example below that this
independence of the dimension can fail for pseudomanifolds.

Example 5.2. Let ∆ be the standard 6 vertex triangulation of RP2, and let ∆′ = ∆∗S0 be the suspension.
Over a field of characteristic 2, ∆′ is a connected oriented pseudomanifold, but it is not a homology manifold.
Using Macaulay2 [GS], we checked that, if one chooses an l.s.o.p. µ1, µ2, µ3, µ4 with all coefficients random
elements of the field with 1024 elements, the Hilbert function of Hµ(∆

′) is usually given by (1, 4, 9, 6, 1), and

the Hilbert function of Hµ(∆
′) is usually given by (1, 4, 8, 4, 1). If one chooses µ′

1, µ
′
2, µ

′
3 to be generic linear

combinations of the vertices of RP2 and chooses µ′
4 to be a generic linear combination of the vertices of S0,

then Hµ′(∆′) = H(µ′
1,µ

′
2,µ

′
3)
(∆)⊗H(µ′

4)
(S0), and similarly for Hµ′(∆′). We can then use Proposition 4.4 to

compute that the Hilbert function of Hµ′(∆′) is given by (1, 4, 9, 7, 1), and the Hilbert function of Hµ′(∆′)
is given by (1, 4, 6, 4, 1).

Recently, Papadakis and Petrotou [PP20] introduced a powerful technique using the special behavior of
differential operators in characteristic 2 to prove a strengthening of the strong Lefschetz property when
k has characteristic 2. Their technique was extended by Karu and Xiao [KX23] to prove the anisotropy

of the Hodge–Riemann form on H
q
(∆): if u ∈ H

q
(∆) is nonzero, then deg(ℓd−2q · u2) is nonzero. The

following example shows that this anisotropy property does not hold for the rings HF (∆), so it seems like
this technique cannot be used to prove the strong Lefschetz property for HF (∆).

Example 5.3. Let d = 2, and consider Σ as in Section 3, i.e., Σ has vertex set {1, 2, 3, 4} and minimal
non-faces {1, 2} and {3, 4}. Consider HF (Σ) = HF (Σ), where F = {1, 2}. Then θF,1 = a1,3x3 + a1,4x4, so
the relation x3 · x4 = 0 in K[Σ] implies that x2

3 = 0 in HF (Σ). As x3 ̸= 0 in HF (Σ), anisotropy fails for
HF (Σ).

It would be interesting to extend Theorem 1.1 by computing Dq is other cases. This is related to the

following question: for which choices of l.s.o.p. µ and 0 ≤ q ≤ d/2 is the image ℓµ of
∑

j xj in H
1

µ(∆) a

strong Lefschetz element for H
q

µ(∆), i.e., when is the hypothesis in Lemma 4.6 satisfied?
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