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ABSTRACT. We prove the local motivic monodromy conjecture for singularities that are nondegenerate with
respect to a simplicial Newton polyhedron. It follows that all poles of the local topological zeta functions of
such singularities correspond to eigenvalues of monodromy acting on the cohomology of the Milnor fiber of
some nearby point, as do the poles of Igusa’s local p-adic zeta functions for large primes p.
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1. INTRODUCTION

Singularities are a central and pervasive phenomenon in geometry, and one prototypical setting in which
they arise is the fiber of a smooth function over an isolated critical value. Monodromy studies how the nearby
smooth fibers vary as one moves around such a critical value. Since Milnor’s foundational work on complex
hypersurface singularities [Mil68], monodromy has served as a bridge between topological, geometric, and
analytic perspectives. It reveals subtle invariants of singularities, particularly through the linear action on the
cohomology of the Milnor fiber, a topological invariant introduced by Milnor. The monodromy conjectures
predict that certain analytic invariants of singularities, encoded in local zeta functions, detect eigenvalues
of this monodromy action. These conjectures have guided extensive work over the past four decades on the
interaction between resolution data, Newton polyhedra, and monodromy.

The conjectures appear in several closely related forms. In the archimedean setting, a theorem of Mal-
grange shows that poles of certain oscillatory integrals give rise to monodromy eigenvalues [Mal74]. In the
nonarchimedean setting, Igusa introduced p-adic local zeta functions to study congruence counting problems
[Igu75], and it was observed by Igusa and Denef that the real parts of their poles appear to be governed
by monodromy eigenvalues [Den85, Igu88]. This observation led to the local p-adic monodromy conjecture
[Den91lal. A topological variant, formulated by Denef and Loeser using Euler characteristics of resolution
strata, is known as the local topological monodromy conjecture [DL92]. All of these conjectures remain wide
open in general.
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Motivic integration provides a unifying framework for these observed and predicted phenomena. By re-
placing numerical invariants such as volumes or Euler characteristics with classes in the Grothendieck ring
of varieties, Denef and Loeser introduced the local motivic zeta function, a refinement that simultaneously
encodes arithmetic, topological, and geometric information [DL98]. The corresponding local motivic mon-
odromy conjecture predicts that poles of this motivic zeta function give rise to eigenvalues of monodromy.
By specialization from motivic zeta functions to p-adic and topological zeta functions, the motivic conjecture
implies both the topological conjecture and the p-adic conjecture in cases of good reduction.

A useful way to view the monodromy conjectures—especially the p-adic monodromy conjecture—is as a
local analogue of the Riemann hypothesis for varieties over finite fields (i.e., the last of the Weil conjectures),
famously proved by Deligne [Del74]. In both settings, one begins with a generating function defined by
counting solutions to polynomial equations. In the Weil conjectures, the Hasse-Weil zeta function records
the number of points of a variety over algebraic extensions of a finite field, while in the p-adic setting, Igusa’s
local zeta function records the number of solutions to a polynomial congruence modulo p™, for all n. The
expectation in each case is that the analytic behavior of this generating function—specifically, the location
of its poles—is governed by underlying cohomological data. For smooth projective varieties, the Riemann
hypothesis proved by Deligne says that the zeta function is controlled by the action of Frobenius on étale
cohomology. Analogously, the p-adic monodromy conjecture predicts that the poles of Igusa’s local zeta
function reflect the action of geometric monodromy on the cohomology of Milnor fibers.

The motivic zeta function takes this generating function perspective one step further, and may be viewed
as a universal cohomological zeta function: it interpolates between arithmetic and topological realizations
and expresses the principle that local counting problems, even at the level of congruences modulo powers of
a prime, are governed by the geometry and topology of singularities.

Despite the conceptual elegance of the motivic monodromy conjecture and the close analogy between the
p-adic monodromy conjecture and the Weil conjectures, which were proved more than fifty years ago, both
of these conjectures remain wide open; very few cases are known. One basic obstacle on the motivic side
is that motivic zeta functions take values in Grothendieck rings, which have zero divisors, making even the
notion of a pole subtle. Progress on these conjectures has relied on identifying classes of singularities for
which the zeta functions and monodromy can be analyzed explicitly.

One such class is the Newton nondegenerate singularities. The condition of nondegeneracy is generic,
i.e., an open and dense subset of the polynomials with fixed Newton polytope are Newton nondegenerate.
Following the work of Kouchnirenko and Varchenko [Kou76, Var76], nondegeneracy ensures that many
invariants of a singularity are governed by the combinatorial geometry of its Newton polyhedron. In this
setting, local zeta functions admit explicit descriptions in terms of faces of the polyhedron, and monodromy
eigenvalues can often be studied using toric geometry and combinatorial topology.

In this paper, we prove the local motivic monodromy conjecture for nondegenerate singularities whose
Newton polyhedra are simplicial. This additional assumption on the Newton polyhedron enables us to incor-
porate techniques from Ehrhart theory and the theory of local h-polynomials. Our main result establishes
that one can choose a set of candidate poles for the local motivic zeta function such that each candidate
pole corresponds to a nearby eigenvalue of monodromy (Theorem 1.1.1).

More precisely, if f is a nondegenerate polynomial whose Newton polyhedron is simplicial, then every
candidate pole of its local motivic zeta function gives rise to an eigenvalue of monodromy at the origin or at a
nearby point on the hypersurface. As immediate consequences, we recover the local topological monodromy
conjecture for this class of singularities (Theorem 1.1.3), and the local p-adic monodromy conjecture for
almost all primes (Theorem 1.1.4).

The proof has two complementary components. First, we establish existence results for monodromy
eigenvalues using a nonnegative, combinatorial formula for alternating sums of reduced cohomology along
coordinate strata (Sections 3-4). This formula is expressed in terms of Ehrhart data and local h-polynomials,
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and avoids the cancellation phenomena that complicate earlier approaches based on monodromy zeta func-
tions. Second, we identify and eliminate fake poles of the motivic zeta function by introducing a local
formal zeta function, whose algebraic properties make it possible to intersect sets of candidate poles and
systematically remove those not forced by monodromy (Sections 5-6).

Although our main theorems are stated for simplicial Newton polyhedra, many of the arguments apply
more broadly. In particular, we obtain additional cases of the motivic monodromy conjecture in dimension
three, and we isolate precise combinatorial obstructions that arise in higher dimensions (Section 7). These
results clarify the role of simpliciality and highlight the remaining challenges in extending the conjecture to
arbitrary nondegenerate singularities.

1.1. Main results. Throughout, let k be a field of characteristic 0, and let f € k[z1,...,z,] be a regular
function whose vanishing locus X ; contains 0 € A™. The coefficients of f are contained in a finitely generated
subfield k' C k, so we may choose an embedding k' C C, view f as a holomorphic function on C", and
consider the Milnor fiber 7, with its monodromy action, for any geometric point € X ;. The characteristic
polynomial of the induced action on H*(F,,C) is independent of all choices and its zeros are the eigenvalues
of monodromy of f at x. The monodromy is quasi-unipotent, so all such eigenvalues of monodromy are roots
of unity. We say that exp(2mic) is a nearby eigenvalue of monodromy of f if 0 lies in the Zariski closure of
the locus of points € Xy such that exp(2mic) is an eigenvalue of monodromy of f at x.

The local motivic zeta function is a subtle invariant of the singularity of f at 0, introduced by Denef
and Loeser [DL98]. Let K" be the Grothendieck ring of k-varieties with good ji-action, where fi = l'&n,um
is the inverse limit of the groups of mth roots of unity, and let M# := K~[L~1] be the associated motivic
ring obtained by inverting I := [A!]. Then the local motivic zeta function Zy.i(T) € MA[T] is expressible
non-uniquely as the formal power series expansion of a rational function in M# [T, ﬁ (sb) EZX T 0,0/ bEP

for some finite P C Q. Any such P is a set of candidate poles for Znot(T'), as defined in [BV16, BN20].

Local Motivic Monodromy Conjecture. There is a set of candidate poles P C Q for Zmot(T') such that,
for every a € P, exp(2mic) is a nearby eigenvalue of monodromy.

Note that the notion of poles is subtle in this context because K” is not known to be an integral domain; in
particular, it is unclear whether the intersection of two sets of candidate poles for Z,o(T') is necessarily a set
of candidate poles. Our first main result (Theorem 1.1.1) confirms the local motivic monodromy conjecture
for singularities that are nondegenerate with respect to a simplicial Newton polyhedron.

For u = (uq,...,uy) in Z2, let 2® := 21" - - -z, and write f = )" a,z*. The Newton polyhedron of f,
denoted Newt(f), is the Minkowski sum conv{u : a, # 0} + RZ,. For each face F of Newt(f), we consider
flr =) cp aux". Then f is nondegenerate if, for all compact faces F, the vanishing locus of f|F has no
singularities in the complement of the coordinate hyperplanes in A™.

For any face F' of 9 Newt(f) that meets the interior of the orthant RZ, let C'r := R>¢F be the closure
of the cone spanned by F. The set of all faces of such cones forms a fan A whose support is the positive
orthant RZ,. We say that Newt(f) is simplicial if A is a simplicial fan.

Theorem 1.1.1. Suppose that Newt(f) is simplicial and f is nondegenerate. Then there is a set of candidate
poles P C Q for Zmot(T) such that, for every a € P, exp(2mwia) is a nearby eigenvalue of monodromy.

In other words, the local motivic monodromy conjecture is true for any nondegenerate singularity with a
simplicial Newton polyhedron. This was known previously for n = 2 [BN20]. Our definition of simplicial
Newton polyhedron agrees with that in [JKYS19]. A convenient Newton polyhedron, i.e., one that intersects
each of the coordinate axes [Kou76], is simplicial if and only if each of its compact faces is a simplex.
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Remark 1.1.2. The methods used in the proof of Theorem 1.1.1 are discussed in Section 1.4. Roughly
speaking, we have one collection of arguments, presented in Sections 3-4 that proves the existence of eigenval-
ues corresponding to candidate poles associated to many facets of Newt(f). Another collection of arguments,
presented in Sections 5-6, shows that certain such candidate poles are fake and can be removed to give a
smaller set of candidate poles. Each of these arguments is carried out not only for simplicial Newton poly-
hedra, but in somewhat greater generality. As a result, we are able to prove a range of cases of the local
motivic monodromy conjecture where f is nondegenerate and Newt(f) is not necessarily simplicial, including
all such cases for n = 3. See Section 7 for details.

The local motivic monodromy conjecture is a motivic analogue of the local p-adic and topological mon-
odromy conjectures, and the following cases of the latter conjectures are consequences of Theorem 1.1.1.

The local motivic zeta function specializes to the local topological zeta function Zi.,(s) € Q(s) by ex-
panding Zmet(T') as a power series in L — 1 and setting T — L~ and [Y] — x(Y/f) [DL98, Section 2.3]. It
follows that the poles of Ziop(s) are contained in every set of candidate poles for Zp,o (T).

Theorem 1.1.3. Suppose Newt(f) is simplicial and f is nondegenerate. If a is a pole of Ziop(s), then
exp(2mia) is a nearby eigenvalue of monodromy.

This confirms the local topological monodromy conjecture [DL92, Conjecture 3.3.2] for singularities that are
nondegenerate with respect to a simplicial Newton polyhedron.

If f € Zp[z1,...,3,) has good reduction mod p, i.e., if f € Fplz1,...,x,] is nondegenerate with Newt(f) =
Newt(f), then Zno(T") also specializes to the Igusa local p-adic zeta function Z(,)(s) € Q(p®), which is viewed
as a global meromorphic function in the complex variable s. In this case, the real part of any pole of Z,(s)
is contained in every set of candidate poles for Z,o (7).

Theorem 1.1.4. Suppose f € Zpy[z1,...,x,], Newt(f) is simplicial, and f is nondegenerate with good
reduction mod p. If o is a pole of Z,)(s), then exp(2miR(a)) is a nearby eigenvalue of monodromy.

If f € Z[xy,...,x,] is nondegenerate, then f has good reduction mod p for all but finitely many primes p.
In this sense, Theorem 1.1.4 implies that the local p-adic monodromy conjecture holds for nondegenerate
singularities with simplicial Newton polyhedra.

1.2. Background and motivation. We now discuss the background and motivation for the local mon-
odromy conjectures in more detail. In particular, we recall the definitions of the local motivic, p-adic, and
topological zeta functions and how they relate to the geometry of embedded log resolutions. We also recall
A’Campo’s formula for the zeta function of monodromy at the origin.

1.2.1. Archimedean zeta functions. The motivation for the local monodromy conjectures comes from a the-
orem of Malgrange concerning the following archimedean analogues of local zeta functions. Suppose k = R
or C, and let ® be a smooth function supported on a compact set that does not contain any critical points
of f other than 0. Consider the function

Zu()i= [ ®(a)lfa)fdz,
where § =1 if k =R and 6 = 2 if k = C. This integral converges for s € C with £(s) > 0.

Theorem 1.2.1 ([Mal74]). The function Zg(s) extends to a meromorphic function on C whose poles are
rational numbers. Moreover, if « is a pole of Zg(s), then exp(2mia)) is an eigenvalue of monodromy.

Furthermore, every eigenvalue of monodromy of f at the origin corresponds to a pole of Zg(s) for some P.
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1.2.2. Log resolutions and zeta functions of monodromy. Let h: F, — F, denote the monodromy action on
the Milnor fiber of f at © € Xy. The zeta function of monodromy of f at z is then

_det (1 —th* | H(F,,C))
~ det (1 — th* | Hodd(F,,C))
The zeta function of monodromy at 0 may be expressed in terms of the numerical data of a log resolution
and the topological Euler characteristics of the strata in the fiber, as follows.

Let m: Y — A™ be a proper morphism that is an isomorphism away from X, such that the support of
D:=71X ) is a divisor with simple normal crossings. Let Dy,..., D, be the irreducible components of
D. The associated numerical data of this log resolution are the pairs of integers (IV;, v;), where N; and v; — 1

are the orders of vanishing of 7*(f) and 7*(dx1 A - -+ A dx,,), respectively, along D;.
For I C {1,...,r}, let Dy :=(),c; D; and Dj := Dy ~\ ;47 D1ugyy- We then define

Er:=D;nNa 1(0) and Ef = D Nnx~*(0)

(1) Ca () :

i€l

for the corresponding closed and locally closed strata in the fiber over 0.

Theorem 1.2.2 ([A’C75]). The zeta function of monodromy acting on the cohomology of Fo is
T
@ Golt) = [ (1 = 50,
i=1

where we omit the corresponding term if E is empty.

Note that the exponents x(Ey) can be positive or negative, and there can be a great deal of cancellation in
simplifying this rational function expression for ((t) down to a quotient of two relatively prime polynomials.
In particular, it is difficult to determine from the numerical data of the log resolution whether any given
root of 1 —¢Vi is an eigenvalue of monodromy.

1.2.3. Igusa’s local p-adic zeta functions. Let k be a finite extension of @, equipped with the unique ex-
tension of the p-adic valuation and its associated norm. Let R C k be the valuation ring, with p C R the
maximal ideal. For instance, if f € Qp[z1,...,2,], then R = Z, and p = pZ,. Igusa introduced and studied
the local zeta function

Zy(s) == / (@) de,
g

in his proof of a conjecture of Borewicz and Shafarevich [BS66, p. 63] on rationality of generating functions
for the number of solutions mod p™ to a polynomial equation with integer coefficients. Here, dz denotes the
normalized Haar measure on the compact additive group p™. Note that Z,(s) is a nonarchimedean analogue
of the asymptotic integrals Zg(s); the role of @ is played by the indicator function of the compact subset
p”. Igusa proved that Z,(s) is a rational function in ¢~* [Igu75], where ¢ = |R/p|, and that its real poles
other than —1 are all of the form «; := —v;/N;, where (N;, ;) is the numerical data associated to some
exceptional divisor in a given log resolution [Igu78]. Denef gave a second proof of the rationality of Z,(s),
using p-adic cell decompositions [Den84].

Remark 1.2.3. Note that some sources in the literature define a local p-adic zeta function by integrating
with respect to the restriction of the normalized Haar measure on R™; the result differs from our Z,(s) by
a factor of ¢~™. Such renormalizations do not affect the poles of the local zeta functions.

Typically, very few of the rational numbers «; associated to the numerical data in a log resolution are ac-
tually poles of Z,(s). In the archimedean setting, this is explained by Malgrange’s theorem (Theorem 1.2.1),
since many rational numbers that appear in this way do not correspond to eigenvalues of monodromy.
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Both Denef [Den85] and Igusa [Igu88] observed that the analogue of Malgrange’s theorem seems to hold
for Z,(s); in all examples that had been computed, whenever «; is a pole of Z,(s), the corresponding root
of unity exp(2mic;) is an eigenvalue of monodromy. Loeser proved that this is true for n = 2 [Loe88] and for
certain nondegenerate singularities in higher dimensions [Loe90]. By the early 1990s, the expectation that
this nonarchimedean analogue of Malgrange’s theorem should hold was known as the monodromy conjecture.
See, e.g., [Den9la, Conjecture 4.3], [Den91b, Conjecture 2.3.2], and [Vey93, p. 546-547]. We will follow the
usual convention and call this the local p-adic monodromy conjecture to distinguish it from the topological
and motivic variants that followed.

Local p-adic Monodromy Conjecture. Suppose k is a number field. For all but finitely many primes
p C Ok, if a is a pole of Z,(s), then exp(2miR(a)) is a nearby eigenvalue of monodromy.

Interest in this conjecture has persisted through the decades [Nic10, VS22]. Bories and Veys proved it for
n = 3 when f is nondegenerate [BV16, Theorem 0.12]. There has been little progress in higher dimensions.

1.2.4. Good reduction. The local p-adic zeta function has a particularly simple expression when X = Xy C
A™ has an embedded log resolution with good reduction mod p. Most results showing that poles of Z,(s)
correspond to nearby eigenvalues of monodromy for n > 3, including those of [BV16] and our Theorem 1.1.4,
have a good reduction hypothesis.

Suppose the log resolution 7: Y — A" factors through a closed embedding ¥ — P x A™ over k. Let
P and A% denote the projective and affine spaces of dimension m and n, respectively, over R. Let Xr and
Yr be the closures of X and Y in A% and P} x A%. Then 7 extends naturally to a projective morphism
mr: YR — Xg. Let X and Y be the respective special fibers of X and Yr. Base change to F, = R/p gives
a projective morphism 7: Y — X. Let D; be the special fiber of the closure of D; in Y.

Definition 1.2.4. The resolution w: Y — A™ has good reduction mod p if

. z is smooth in a neighborhood of T 1(0);
e Di,..., D, are smooth and distinct over Fy, and they meet each other transversely.

Note that, if f and 7 are defined over a number field K, then 7 has good reduction mod p for all but finitely
many primes p in the ring of integers Ok [Den87, Theorem 2.4].

Any resolution with good reduction mod p gives rise to a pleasant formula for Z,(s) in terms of the
numerical data of the resolution and the number of Fy-points in the strata of the fiber over 0. Let

E; ={zem (0):2 € D, if and only if i € I}.

Theorem 1.2.5 ([Den87, Theorem 3.1]). Suppose 7 has good reduction mod p. Then
—N;s—v;

3) Z(o) = Y (@ VMEE)]

Ic{1,...,r} i€l

Note that point counts over finite fields are analogous to topological Euler characteristics over C; both are
additive with respect to disjoint unions and multiplicative with respect to products. The role of |E; (Fg)| in
(3) is analogous to that of x(E?) in (2). When |E3(Fq)| vanishes, then a term in (3) involving a pole at o
vanishes, and when the Euler characteristic x(E;) vanishes, a term in (2) involving the multiplicity of the
corresponding eigenvalue of monodromy vanishes. For more explicit connections, see [Den91a].

1.2.5. Local topological zeta functions. The analogy between Euler characteristics and the point counts over
finite fields that appear in formulas for the local zeta functions in cases of good reduction leads to the
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topological zeta functions of Denef and Loeser. Heuristically, these are limits of local p-adic zeta functions.
The local topological zeta function is defined as follows:

1
Ziop(s) = Z x(E7) H Nis+v;
Ic{1,...,r} icl

It is independent of the choice of resolution [DL92, Theorem 2.1.2].

Suppose f has coefficients in a number field K. Then poles of Zi,,(s) give rise to poles of most local
p-adic zeta functions. More precisely, after clearing denominators, we may assume that f has coefficients in
the ring of integers. In this case, if v is a pole of Zio(s) then, for all but finitely many primes p in the ring
of integers, there are infinitely many unramified extensions k| K, such that « is a pole of the local p-adic
zeta function of f over k. See [DL92, Theorem 2.2].

Local Topological Monodromy Conjecture ([DL92, Conjecture 3.3.2]). If a is a pole of Ziop(s), then
exp(2mia) is a nearby eigenvalue of monodromy.

We note that local topological zeta functions have a pleasantly simple expression for singularities that are
nondegenerate [D192, Section 5]. For the corresponding formula for the local p-adic zeta function of a
nondegenerate singularity with good reduction mod p, see [DHO1, Theorem 4.2].

One naturally expects that the local topological monodromy conjecture should be easier to prove than
the local p-adic monodromy conjecture, even in the good reduction case, and experience does bear this out.
For instance, both conjectures are known in the special case when f is nondegenerate and n = 3. However,
the proof of the topological case [LVP11] preceded the proof of the p-adic case [BV16] by a few years and is
considerably shorter. See [VS22, Exercise 3.65] for an example of a nondegenerate hypersurface (for n = 5)
with a real pole of its local p-adic zeta functions that is not a pole of its local topological zeta function.

1.2.6. The local motivic zeta function. The local motivic zeta function of f at 0 is a formal power series with
coefficients in a localization of the ji-equivariant Grothendieck ring of varieties and can be defined in terms
of an embedded log resolution, as follows.

Let pup, := Speck[t]/(t™ — 1) denote the group of mth roots of unity over k, and let
fi = m fi,.
An action of i on a k-variety Y is good if the action factors through g, for some m, and Y is covered
by invariant affine opens. The Grothendieck ring K" is additively generated by classes [Y], where Y is a
k-variety with good ji-action, subject to the relations:
e if Z is a closed fi-invariant subvariety, then [Y] = [V \ Z] + [Z];
e if W — Y is a fi-equivariant A™-bundle, then [WW] = [A™ x Y.
In the second relation, ji acts trivially on A™. Multiplication in the Grothendieck ring K# is given by
[Y]-[Z] =[Y x Z], with the diagonal ji-action on Y x Z.
For each nonempty subset I C {1,...,7}, let m; := gcd{N; : i € I'}. Then DY is covered by Zariski
open subsets U C Y on which 7" f is of the form ug™’, where u is a unit on U, and g is a regular function.
Consider the Galois cover D} — D9, with Galois group f,,, whose restriction to such an open set D{NU is

{(z,y) € A" x (DS NU) : 2™ =u"'}.
Then E? comes with the evident good ji-action that factors through p,,, and commutes with the projection
to A™. Let _ _
E} := D7 xun {0}
be the induced Galois cover of the fiber of D} over 0, with the good fi-action that it inherits from Dj.
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Let L := [Al], and set M# = KA[L7!]. The local motivic zeta function of f at 0 is the formal power
series expansion in M”[T] of the following rational function in M#(T):
Zmot(T) = Z (L — 1)I[ES] H ﬂ
me Blly _p-vipN
Ic{1,...,r} i€l
Note, in particular, that Zy.i(T) is contained in the subring of M”[T] generated over M#” by T and
——L _ :1 < i <r}. This subring depends on the choice of a log resolution, but the power series
1-L=viTHNi
Zmot(T') is independent of all choices.

Remark 1.2.6. In the literature, an additional multiplicative factor of L™ sometimes appears in the
definition of the local motivic zeta function. See, e.g. [RV03, (0.1.2)] and [VS22, Theorem 3.18]. Other
versions differ from ours by a factor of L. — 1 [BN20, Corollary 5.3.2]. These renormalizations are not
relevant to the local motivic monodromy conjecture.

Grothendieck rings of varieties are not integral domains [Poo02], so care is required in defining poles of
Zmot(T'). Various notions are possible. See, for instance, [RV03, §4]. We follow the now standard convention
and state the local motivic monodromy conjecture in terms of sets of candidate poles, as in [BV16, BN20].

Definition 1.2.7. Let P be a finite set of rational numbers. Then P is a set of candidate poles for Zot(T")
if Zmot(T) is contained in
1

alp =
M { "1 —LeT?

] (a,b) EZX L5 0,a/bEP
Roughly speaking, if « satisfies any reasonable notion of being a pole of Zyot(T), then it is contained in
every set of candidate poles.

Remark 1.2.8. In practice, passing to an embedded log resolution 7 is not a useful way of computing local
zeta functions; this typically introduces many exceptional divisors whose numerical data correspond neither
to poles of the zeta function nor to eigenvalues of monodromy. One obtains more efficient expressions for
the local zeta functions of nondegenerate singularities by first proving that they can be computed from a log
smooth partial resolution [BN20] or a stacky resolution [Que24].

1.3. Prior results. The local monodromy conjectures remain wide open in general, despite the persistent
efforts of many mathematicians over a period of decades. Perhaps most surprising is that the local topological
monodromy conjecture remains open for isolated nondegenerate singularities, even though there are well-
known and relatively simple combinatorial formulas for both the characteristic polynomial of monodromy
[Var76, Theorem 4.1] and the local topological zeta function [DL92, Theorem 5.3]. Nevertheless, there is a
vast literature on the local monodromy conjectures, far more than can reasonably be reviewed here. We give
only a brief and largely ahistorical review of prior work closely related to our main theorems, and recommend
the excellent survey articles [Nic10, VS22] for more detailed discussions and further references.

1.3.1. Local monodromy conjectures. For n = 2, Bultot and Nicaise proved the local motivic monodromy
conjecture in full generality [BN20, Theorem 8.2.1], building on earlier work of Loeser [Loe88].

For nondegenerate singularities when n = 3, Lemahieu and Van Proeyen proved the local topological
monodromy conjecture [LVP11]. Bories and Veys used the same arguments for existence of eigenvalues
and developed new arguments to reduce the size of sets of candidate poles, proving the local p-adic mon-
odromy conjecture [BV16]. They also proved a naive variant of the local motivic monodromy conjecture
for nondegenerate singularities with n = 3. In the naive variant, the ring K* is replaced with the ordinary
Grothendieck ring of varieties (without fi-action); the local motivic zeta function specializes to the local
naive motivic zeta function by setting [Y] — [Y/f].
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Esterov, Lemahieu, and Takeuchi introduced new arguments for both existence of eigenvalues and can-
cellation of poles for local topological zeta functions of nondegenerate singularities, especially for n = 4, and
stated a conjecture for how these should generalize to higher dimensions [ELT22, Conjecture 1.3]. Recently,
while this paper was in the final stages of preparation, Quek produced a naive motivic upgrade for some
of the pole cancellation arguments from [ELT22], giving a new proof of the main result of Bories and Veys
for n = 3. Quek also suggested a different way in which the pole cancellation statements for small n might
generalize to higher dimensions [Que24, Question 5.1.8]. Neither of these predictions is correct. See Exam-
ples 2.2.1 and 2.2.3. We also note that some of the claimed results in [ELT22] are incorrect already for n = 4.
In particular, the classification of facets of Newton polyhedra in [ELT22, Lemma 5.18] is incomplete (Exam-
ple 2.2.5) and there are counterexamples to their claimed results on existence of eigenvalues (Example 2.2.2)
and cancellation of poles (Example 2.2.4).

In higher dimensions, Budur and van der Veer recently proved the local monodromy conjectures for
nondegenerate singularities whose Newton polyhedron is a large dilate of a convenient Newton polyhedron
[BvdV22, Theorem 1.10]. Indeed, they show that when P = Newt(f) is convenient and k is sufficiently large,
every candidate eigenvalue corresponding to a facet of kP is an eigenvalue of monodromy. The proof is an
application of Varchenko’s formula [Var76, Theorem 4.1], and the bound on k& depends on P. Here we show,
by different arguments that depend on Ehrhart theory and positivity properties of local h-polynomials, that
any k > 2 is large enough. We also prove a generalization of this result when P is not necessarily convenient.
See Theorem 3.4.7 and Proposition 3.4.11.

1.3.2. Global zeta functions and strong monodromy conjectures. There are global versions of the local motivic,
p-adic, and topological zeta functions and their associated monodromy conjectures. See, e.g., [DL92] for a
discussion of the local and global topological zeta functions. The difference between the local and global
motivic zeta functions is illustrated by [BN20, Theorems 8.3.2 and 8.3.5]. The global zeta functions are
invariants of Xy C A", while the local zeta functions are invariants of its germ at 0.

Replacing “local” by “global” in each of the local monodromy conjectures gives rise to its global coun-
terpart. There are also strong versions of the local and global monodromy conjectures proposing that the
real parts of the poles of the corresponding zeta functions are zeros of the Bernstein-Sato polynomial by. If
«a is a zero of by then exp(27ia) is an eigenvalue of monodromy, and all eigenvalues of monodromy occur in
this way [Mal74]. It is also conjectured that the orders of poles of local zeta functions are bounded by the
multiplicities of zeros of by [DL92, Conjecture 3.3.1'].

The strong local and global motivic monodromy conjectures are known for n = 2 [BN20]. Loeser has
given a combinatorial condition on Newton polyhedra that guarantees that each candidate pole associated
to a facet is a zero of the Bernstein-Sato polynomial [Loe90]. Nondegenerate polynomials with such Newton
polyhedra therefore satisfy the strong local motivic monodromy conjecture.

Aside from this, we note that if X; is smooth aside from an isolated singularity at 0, then each local
monodromy conjecture at 0 implies the corresponding global monodromy conjecture. The Newton polyhedra
whose nondegenerate singularities are isolated were classified by Kouchnirenko [Kou76]. Furthermore, if f
has such a Newton polyhedron and f|r has no singularities outside the coordinate hyperplanes for all faces
F of Newt(f), not just the compact faces, then X is smooth away from 0. Thus the global motivic
monodromy conjecture for isolated singularities with simplicial Newton polyhedra that satisfy this stronger
nondegeneracy condition follows from Theorem 1.1.1.

1.3.3. Further variants of the local zeta functions and monodromy conjectures. There are also monodromy
and holomorphy conjectures for p-adic zeta functions twisted by a character, and topological analogues of
twisted p-adic zeta functions. For discussions of these variants, see, e.g., [Den91b]. Another variant is the
topological zeta function for a variety equipped with a holomorphic form that plays the role of ®(z)dz in
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Malgrange’s archimedean zeta functions [Vey07]. Our results on eigenvalues of monodromy in Sections 3-4
are applicable to all such variants.

1.4. Methods and structure of the paper. We conclude the introduction with a brief overview of our
approach to the local motivic monodromy conjecture and outline the content of each section of the paper.

1.4.1. Key definitions. We first recall the notion of candidate poles and candidate eigenvalues. In the liter-
ature, a candidate pole and candidate eigenvalue is associated to each facet of Newt(f). For our purposes,
it is important to extend these notions to a wider class of faces of Newt(f). To be precise, let G be a proper
face of Newt(f) that contains the vector 1 = (1,...,1) in its linear span, denoted span(G). Let 1) be the
unique linear function on span(G) with value 1 on G. Then

ag = —¢G(1)
is the candidate pole associated to G, and exp(2miag) is the corresponding candidate eigenvalue of mon-
odromy. We say that G contributes ag as a candidate pole. If G’ contains G as a face, then G’ also contains
1 in its linear span and ag = ag.

Definition 1.4.1. Let Contrib(«) be the set of faces of Newt(f) that contribute the candidate pole c.

Then {a € Q : Contrib(a) # 0} U {—1} is a set of candidate poles for Zo(7) [BN20, Corollary 8.3.4].
This set of candidate poles is standard in the literature. The key difference here is that we consider faces in
Contrib(«) of arbitrary codimension, not just facets. This change in perspective is crucial in what follows.

Let C be a cone in A, the fan over the faces of Newt(f). The rays of C' are the union of rays through
vertices in Newt(f) and rays disjoint from Newt(f) that contain a coordinate vector ey for some 1 < ¢ < n.
In particular, for each ray of C, there is a corresponding distinguished generator: either the corresponding
vertex of Newt(f), or the corresponding coordinate vector e;,. We let Gen(C') be the set of distinguished
generators of the rays of C.

We say that a vertex A in G is an aper with base direction e} if (e}, A) > 0, and (e}, V) = 0 for all
V € Gen(Cg) with V # A. In this case, GN{V € R%, : (e;, V) = 0} is the corresponding base of G.

Definition 1.4.2. A face G of Newt(f) is By if it has an apex A with base direction e}, and (e}, A) = 1.

The notion of By was introduced for simplicial facets in [LVP11, Definition 3]. For arbitrary facets, our
definition agrees with [Que24, Definition 1.1.7] but is more restrictive than [ELT22, Definition 3.1]. All of
these definitions of B;-facets agree when Newt(f) is simplicial. Note that the base direction e} determines
the apex A. The converse is not true. A Bi-face may have several apices, and when the face is not a facet,
each of those apices can have multiple base directions. We introduce the following definition.

Definition 1.4.3. A face G of Newt(f) is UBy if it has an apex A with a unique base direction e}, and
(€5, A) =1.

Theorems 1.4.6 and 1.4.7 show the importance of the notion of UB;-faces. Note that every Bi-facet is
UBj; the distinction between By and UBj is only relevant when considering higher codimension faces.

1.4.2. FEigenvalue multiplicities and local h-polynomials. The starting point for our work is the third author’s
nonnegative formula for the multiplicities of eigenvalues of monodromy at 0 when f is nondegenerate and
Newt(f) is convenient [Stal7, Section 6.3]. Specializing [Stal7, Theorem 6.20] from equivariant mixed
Hodge numbers to equivariant multiplicities, one obtains a combinatorial formula with nonnegative integer
coefficients for the multiplicities of the eigenvalues of monodromy on the reduced cohomology of Fy.
Assume that Newt(f) is simplicial. If we forget the lattice structure of the fan A, we may view A as
encoding a triangulation of a simplex, e.g., by slicing with a transverse hyperplane. Then the combinatorial
formula for eigenvalues is a sum over cones C' in A of a contribution that is a product of two nonnegative
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factors, one coming from Ehrhart theory (the number of lattice points in a polyhedral set). The other factor
is the evaluation of the local h-polynomial ¢/(A, C;t) at t = 1. These local h-polynomials were first introduced
and studied by Stanley in the special case where C' = 0 and later generalized by Athanasiadis, Nill, and
Schepers [Ath12a, Nil12]. They have nonnegative, symmetric integer coefficients and naturally appear when
applying the decomposition theorem to toric morphisms. See [Sta92, Theorem 5.2, [KS16, Theorem 6.1]
and [dCMM18].

This formula for eigenvalue multiplicities in the convenient nondegenerate case offers fundamental advan-
tages over earlier approaches to existence of eigenvalues. Whereas the formulas of A’Campo and Varchenko
for zeta functions of monodromy typically involve a great deal of cancellation, the third author’s formula is a
sum of nonnegative terms. Moreover, for each compact face G in Contrib(«), there is a canonically associated
essential face E C (. See Definition 3.3.1. Then the Ehrhart factor in the summand associated to Cg for
the multiplicity of exp(2mi«) is strictly positive. Thus, either exp(27ic) is an eigenvalue of monodromy or
(A, Cg;t) is zero. There are a number of simple sufficient conditions for the nonvanishing of ¢(A, Cg;t);
for instance, if E meets the interior of the positive orthant, then £(A, Cg;0) = 1. The general problem of
classifying when local h-polynomials vanish was posed by Stanley [Sta92, Problem 4.13]. See [dMGP*20)
for a classification when n < 4 and E = () and for partial results in higher dimensions.

1.4.3. A nonnegative formula for nearby eigenvalues. In Section 3, we extend the results of [Stal7] to the
case where Newt(f) is simplicial but not necessarily convenient. In this setting, the singularity of X; at
0 may not be isolated, and the Milnor fibers at 0 and at nearby points may have cohomology in multiple
positive degrees. _ B

In this setting, we consider Y(F,) := >_;(—1)"H(F,,C) as a virtual representation, where H denotes
reduced cohomology. Now exp(2mia) has a multiplicity m,(«), which may be positive or negative, as an
eigenvalue in this virtual representation. We consider these multiplicities not only at 0 but also at a general
point 7 in each coordinate subspace A! contained in X;. The idea of studying the eigenvalues at these
points was first introduced when n = 3 in [LVP11] and further developed in [ELT22]. We give a nonnegative
formula for the alternating sum

Y U g, (o).
ATCXy

See Theorem 3.2.1 for a precise statement.
Theorem 3.2.1 implies, in particular, the remarkable fact that the corresponding alternating product of
monodromy zeta functions is a polynomial, i.e.,

(—ynto i
(4) 11 (Cff_“t)) e 7).

AICXf

From this perspective, the theorem provides a nonnegative formula for the vanishing order of this polynomial
at exp(2mia). See Remark 3.2.3 for the precise formula.

Just as in the convenient case, this nonnegative formula is a sum over cones C in A, and each of the terms
is once again an Ehrhart factor times £(A, C;1). Moreover, for each compact G € Contrib(a), we have an
essential face E C G, and the Ehrhart factor in the Cg-summand for the multiplicity of exp(2mia) is strictly
positive. We deduce the following corollary. See Corollary 3.3.2 for an equivalent statement.

Corollary 1.4.4. Suppose Newt(f) is simplicial and f is nondegenerate. Let G be a compact face in
Contrib(«) with essential face E. If (A, Cg;t) is nonzero, then ZAIfo(fl)”717|I|T7LmI (o) > 0. In partic-
ular, exp(2mia)) is a nearby eigenvalue of monodromy (for reduced cohomology).
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This motivates a detailed study of necessary conditions for the vanishing of (A, Cg;t) when E is the
essential face associated to some compact face G € Contrib(a). In this situation, we also have some additional
structure which is crucial for our arguments. The face Co\Cg € lka(Cg) admits what we call a full partition.
See Lemma 3.3.4 and Definition 4.1.2.

1.4.4. A necessary condition for the vanishing of the local h-polynomial. Motivated by the results of Section 3,
in Section 4 we undertake a detailed investigation of the conditions under which ¢(A, C’;t) vanishes, where
C’ is a cone in A that is contained in a cone that admits a full partition. This section is self-contained and
applies to any local h-polynomial of a geometric triangulation. See [LPS23] for further work on necessary
conditions for the vanishing of the local h-polynomial in a more general setting, for quasi-geometric homology
triangulations.

Recall that ¢(A,C’;t) is naturally identified with the Hilbert function of a module L(A,C’) [Athl2b,
Ath12a], as follows. Consider the ideal in the face ring Q[lka(C")] generated by monomials ¢ such that
C U C" meets the interior of the orthant RZ,. Then L(A,C’) is the image of this ideal in the quotient of
Q[lka(C")] by a special linear system of parameters. Thus £(A, C’;t) = 0 if and only if every such monomial
is contained in the ideal generated by a special linear system of parameters. When C' admits a full partition,
we can associate a distinguished monomial with image in L(A, C"). By reducing to a result in [LPS23], we
show that this monomial is nonzero in L(A, C”).

Using this calculation, we prove the following theorem, which is an immediate consequence of Theo-
rem 4.1.3. A cone C in lka(C") is a U-pyramid if it meets the interior of the positive orthant and there is a
ray r € C such that (C' U C’) \ r is contained in a unique coordinate hyperplane in R", i.e., C' is a pyramid
with a unique base direction with respect to the apex r in lka(C"). See Definition 4.1.1.

Theorem 1.4.5. Let A be a simplicial fan supported on RY,. Let C" be a cone in A, and let C € Ika (C").
If (A, C'5t) = 0 and C admits a full partition, then C is a U-pyramid.

When G is compact and C = Cg \ Cg € lka(CEg), the condition that G is UB; is equivalent to the
condition that C' is a U-pyramid. See Lemma 3.3.3. This leads to the following theorem, which is our main
result on existence of eigenvalues.

Theorem 1.4.6. Suppose Newt(f) is simplicial and f is nondegenerate. Let o € Q. Then either every face
in Contrib(«) is UB;1, or exp(2mia) is an eigenvalue of monodromy for the reduced cohomology of the Milnor
fiber at the generic point of some coordinate subspace AT C Xy.

Section 3 proves that this theorem follows from Theorem 1.4.5, whose proof is given in Section 4.

1.4.5. The local formal zeta function and its candidate poles. In Sections 5 and 6, we prove the following
theorem, which is complementary to Theorem 1.4.6.
Theorem 1.4.7. Suppose Newt(f) is simplicial and f is nondegenerate. Let

P ={aeQ: Contrib(a) # 0} U{—1}, and P' = {a € P : a & Z, every face in Contrib(a) is UB;}.
Then P P’ is a set of candidate poles for Zmet(T).

Note that Theorem 1.1.1 follows directly from Theorems 1.4.6 and 1.4.7, using the fact that 1 is an
eigenvalue of monodromy on H?(Fy, C).

Our starting point for the proof of Theorem 1.4.7 is the formula for Zy,0¢(7") in [BN20, Theorem 8.3.5],
which expresses Zn,ot(T) as a sum over lattice points in the dual fan to Newt(f). We introduce the local
formal zeta function Zg,(T'), which is a power series over a polynomial ring that specializes to Zyot (7). The
local formal zeta function depends only on Newt(f), unlike Z,0+(7") which depends on f. The advantage of
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working with Zg,,(T') is that an intersection of two sets of candidate poles of Z,, (T) is a set of candidate
poles (Lemma 5.3.5), so it suffices to show that, for each « € Z such that Contrib(«) consists entirely of
UB;-faces, there is a set of candidate poles for Zg, (T') not containing «. Explicitly,

(5) Zior(T) = Z Yo ((L _ 1)n7dimG Z L(u,1>TN(u))7
G

u€ogNN™

where G varies over all nonempty compact faces of Newt(f), og denotes the dual cone to G, C° denotes the
relative interior of a polyhedral cone C, N is a certain piecewise linear function, and Ys and L are formal
variables satisfying the following relations:

(1) Yy =1if V is a primitive vertex of Newt(f), and

dim F

(2) Yo+ YF = % if F'is a compact Bi-face with nonempty base G.
See Definition 5.3.1 for details. The key relation above is (2), which specializes to a natural relation in the
fi-equivariant Grothendieck ring of varieties. See Lemma 5.2.2.

Given a subset C C RZ,, we can define the contribution Zi,(T)|c of C to Zsr(T) to be the same

expression as the right-hand side of (5), except that the second summation runs over v € o N C NN". See

(19). When F is a compact B;-face with nonempty base G and apex A in the direction e}, and C' C 0% is
a nonzero rational polyhedral cone, then we deduce the following relation:

(6) Ziox(T)| ¢ + Zion (T (e = (L — 1)n( 3 L—(u,l)T(u,A))’
u€(C°U(C’)°)NN"

where C' C o is the cone spanned by €’ and e;. See Lemma 5.4.1. The above equation (6) is a key technical
tool underlying our strategy to show fakeness of poles, and it is analogous to a formula involving the local
topological zeta function in [ELT22, Lemma 3.3]. For example, if Contrib(a) consists of a single B; (and
hence UB;) facet F with apex A, then one can deduce an expression for Zg, (7T) with no candidate pole
at a by applying (6) with C’ = o0&, as G varies over all faces of G not containing A. This is analogous to
approaches to showing fakeness of poles under certain assumptions for the local topological zeta function in
[ELT22, LVP11] and the local naive motivic zeta function in [Que24, Theorem A].

When we only assume that every face in Contrib(a) is By, it may not be possible to extend the above
approach. The key difficulty is that it may not be possible to choose a single base direction e; for all faces
of Contrib(a). In our case, we assume that all elements of Contrib(a) are UB;. This assumption implies
that we may choose base directions for elements of Contrib(a) satisfying a natural compatibility condition:
to every face G in Contrib(a), we may assign a pair (Ag,eg) such that G is By with apex Ag and base
direction ef;, and, if G C G’ and Ag = A¢r, then ef, = ef,. See Definition 6.1.3 and Lemma 6.2.1.

We now sketch the remainder of the proof, and refer the reader to Section 6.1 for a more detailed overview.
We first fix a minimal element M of Contrib(a) and reduce to considering only elements of Contrib(«) that
contain M. See Section 6.3. We then use the above compatibility condition to construct a fan with support
R™ satisfying certain properties. See Section 6.5 and Section 6.6. In particular, we assign to every cone 7 in
the fan a coordinate vector eX such that, if M C G and og N7 # (0), then G is a By-face with base direction
eX. In this sense, we locally choose a single base direction. Then Zg, (T) is the sum of all contributions
Ztor(T)| o as 7 varies over all cones of the fan. Analogously to the case when Contrib(«) is a single B;-facet,
we then intersect each cone 7 with the dual fan to Newt(f) and repeatedly apply (6) to obtain an expression
for Zgor(T')| o with no candidate pole «, allowing us to complete the proof of Theorem 1.4.7. See Section 6.4.

1.4.6. Beyond the simplicial case. In this introduction, we have stated our main results under the assumption
that Newt(f) is simplicial. However, both our arguments about eigenvalues and about poles are carried out in
somewhat greater generality. In Section 7, we state our most general result on the local motivic monodromy
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conjecture for nondegenerate singularities (Theorem 7.1.1), which is sufficient to prove the local motivic
monodromy conjecture in all cases when f is nondegenerate and n = 3 (Theorem 7.2.1).

Finally, observe that exp(2mia) appearing as a zero or pole of the monodromy zeta function implies that
exp(2mic) is an eigenvalue of monodromy, but the converse is not true. When Newt(f) is simplicial and X
is nondegenerate, we prove that there is a set of candidate poles P such that, for all « € P\ Z, exp(27mia) is
a zero or pole of the monodromy zeta function at the generic point of some coordinate subspace AT C X -
This stronger statement about when certain monodromy zeta functions are sufficient to detect eigenvalues is
not true when Newt(f) is not simplicial and n > 4. In such cases, there may be poles of local topological zeta
functions such that exp(27mic) appears as a zero or pole of the monodromy zeta function only at points along
strata that are properly contained in coordinate subspaces. See [ELT22, Example 7.5]. For one combinatorial
approach to detecting such eigenvalues, see [Est21].

1.5. Notation. We now set up some additional notation which we will use for the remainder. With the
exception of Section 7, the notation of the various sections is otherwise largely independent.

Let F' C RZ, be a rational polyhedron whose affine span does not contain the origin, and let span(F)
denote the linear span of F. Let 1z be the unique Q-linear function on span(F') with value 1 on F. The
lattice distance pp of F from the origin is the smallest positive integer pr such that ppyp is a Z-linear
function. If F C G is an inclusion of such rational polyhedra, then pp divides pg.

A face of Newt(f) is interior if it meets RZ,. The functions ¢r, for F' a face of a proper interior face of
Newt(f), assemble into a function ¥ on RZ that is piecewise linear with respect to A.

For a polyhedral cone C, let 9C denote its boundary, defined to be the union of all faces of C of dimension
strictly less than dimC. Let C° = C ~ 0C denote the relative interior of a polyhedral cone. A nonzero
vector v in Z" is primitive if it generates the group Rv N Z™. Recall that C is simplicial if it is a pointed
cone generated by dim C rays. For a set of vectors S in R", let (S) denote the cone that they span.

A geometric triangulation of a simplex is a subdivision of a geometric simplex into a union of geometric
simplices that meet along shared faces.

For a positive integer ¢, we write [¢] = {1,...,¢}.

Acknowledgments. We thank M. Mustata and J. Nicaise for helpful conversations related to the mon-
odromy conjectures, K. Karu for explaining aspects of the commutative algebra of local h-polynomials, and
M. H. Quek for insightful comments on an earlier draft of this paper and telling us about Example 2.2.2.
We thank the referee for helpful comments. The work of ML is supported by an NDSEG fellowship, and the
work of SP is supported in part by NSF grants DMS-2001502 and DMS-2053261.

2. EXAMPLES

2.1. Basic examples. Our first two examples are intended to serve as a guide to the main constructions in
the paper. In these examples, Newt(f) is simplicial and f is supported at the vertices of Newt(f), so f is
nondegenerate [BO16].

Below, E(F,) € Z[Q/Z] is an alternative encoding of Cf—f? (see (7) in Section 3). The local formal zeta
function Zgo, (T) lies in a quotient ring of Z[L, L™1][Y : K nonempty compact face of Newt(f)][T], where
L,T,Yy are formal variables. See Definition 5.3.1.

Example 2.1.1. Let f(z1,22) = 23 — 2}. Then X has an isolated cusp at 0, and Newt(f) is convenient
and has a unique compact facet F' with vertices v = (3,0) and w = (0,2). Note that ap = —5/6, and F is
not By. Theorem 1.4.6 says that exp(2miar) is an eigenvalue of monodromy for f at 0.
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Then A is the trivial fan and €(A C;t) equals 1 if C = Cp, and equals 0 otherwise. We have monodromy

zeta function (o(t) = 25z, and E(Fo) = [1/6] + [5/6]. The local formal zeta function is

(L —1) (YRL™°T® + Y, L2T3(1 + L73T%) + Y, L7 'T%(1 + L7272 + L~'T~%))
_ 576 .

Zfor(T) -
The local motivic zeta function Zp,q(T) is
(L= 1) (ST 4 [V (1)])L5T + [ L=2T3(1 + L3T3) + [uo] L1 T2(1 + L2T2 4 L™47—4))
1—1L-576 ’

where Yz(1) is an elliptic curve minus 6 points, with a free pg-action, and Yx(1)/ue is isomorphic to P!
minus 3 points. After simplification, the local naive motivic zeta function is

(L—1)(L=? —L=47T° + L=47°% — L=977)
(1-L-1T7)(1 —L-5T%) '
For p ¢ {2,3}, f has good reduction mod p, and the local p-adic zeta function is
(p _ 1)(p5s+5 _p2s+2 _|_ps+2 _ 1)

Zp)(s) = (p*tL — 1)(pbs5 — 1)
The local topological zeta function is Zyop(s) = %.

Example 2.1.2. Let f(z1,22,23) = 2} — 23z3. Then X is the Whitney umbrella. There are three
coordinate subspaces contained in X;: A? = {0}, A% = {2, = 23 = 0} and AP} = {2; = 25 = 0}. The
singular locus of X is A} In particular, f does not have an isolated singularity at the origin and Newt(f)
is not convenient. The only maximal compact face of Newt(f) is a 1-dimensional face F with vertices
v =(2,0,0) and w = (0,2,1). Note that F is UB;y and (1,1,1) ¢ span(F'). There are two unbounded interior
facets: Iy = {e +e5 =2} = F 4+ Rspes and I = {e] +2e5 =2} = F 4+ Rxpeq, with Fy N Fy = F.

Then ap, = —1, and F} is not By. Theorem 1.4.6 predicts that exp(2wiar, ) = 1 is a nearby eigenvalue of
monodromy for reduced cohomology. Also, ap, = —3/2, and F» is UB;. Then Theorem 1.4.7 predicts that
there is a set of candidate poles for Z,o¢ (7)) not containing —3/2. In this particular case, the corresponding
candidate eigenvalue exp(2miap,) = —1 is a nearby eigenvalue of monodromy.

The fan A has two maximal cones C'r, and CF, intersecting in a unique interior 2-dimensional face Cp.
We have

1 lfC:CFl OI'C:CF27
A Cit) =<1+t ifC=CF,
0 otherwise.

The monodromy zeta function at a general point ; of each coordinate subspace A is given by: (y(t) =
n—1—|1]

(=1) ~
(1=t)(1+1), Copyy =11, Gz, = 1. Then HA’CXJ' (C?f(tt)) = 1—¢#2. Equivalently, E(Fy) = [1/2],

E(Fapy) =0, E(Fagy) = =1, and ¥, (=1)" 1 WIE(F,,) = 14 [1/2]. The local formal zeta function
is

L3T2(L — 13(Y,(1 — L7'T) + L~'T(1 — L~1))
(1—L 121 - L 'T)(1 — L2T7?) '

Zfor (T) =

The local motivic zeta function is
IL*STQ(IL - 1)‘3( o] (1 — I[flT) I[flT( I[fl))
(I—L12(1— L '7)(1 - L °17) |

Zmot (T) =
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After simplifying, the local naive motivic zeta function is
L=1T?(L —1)(1 - L=27)
(1-L7)(1 —L—272) °
For p # 2, f has good reduction mod p, and the local p-adic zeta function is
Z(p)(s) = ( 5?1_71)1%”;_1 ) :
p (et +1)

(s+2)
2(s+1)2"

The local topological zeta function is Ziop(s) =

2.2. Counterexamples. We present counterexamples to Conjecture 1.3, Proposition 3.7, and Lemma 5.18
of [ELT22] and show that the answer to [Que24, Question 5.1.8] is negative. Example 2.2.2 shows that
[ELT22, Conjecture 1.3] is wrong already for n = 4.

The polyhedral computations in these examples were done using polymake [GJ00], and the computation
of the zeta functions can be verified using the Sage code of [VS12].

Example 2.2.1. Let
24 1 17 14 2
f(z1, T2, w3, 24, 25, 76) = aF + 25 + 23* + 253 + 227 + 25 + w3ws26 + T2y + 24T5TE + T125T4TE.

Then f is a nondegenerate polynomial with an isolated singularity at 0 whose Newton polyhedron is simplicial
and convenient, with sixteen compact facets and ten vertices. There are five compact facets containing the
face with vertices {(8,0,0,0,0,0), (0,5,0,0,0,0),(0,0,1,0,1,1),(0,3,0,1,0,0) }, each of which contributes the
candidate pole —69/40. All of these facets are B, and no other facets contribute —69/40. Two of these
facets are obtained by adding either {(0,0,0,0,0,14),(0,0,0,1,1,1)} or {(0,0,0,0,0,14),(1,0,2,1,0,1)} to
the above face. The existence of these two facets implies that the condition in [ELT22, Conjecture 1.3] is
not satisfied, so the conjecture predicts that exp(27i(—69/40)) is an eigenvalue of monodromy. But this is
not one of the 1912 eigenvalues of monodromy at the origin.

. . . 3_ 2_ —
The local topological zeta function of f is Ziop(s) = —614265?87(8551’;1?10(?48;159%2?%2?12%?234075

not have —69/40 as a pole. One can deduce from Theorem 6.1.2 that there is a set of candidate poles for
Zmot(T) which does not contain —69/40.

, which does

Example 2.2.2. Let
fx1, @, 3, 24) = x%o + x‘; + :z:g + 1:4110 + xin + xox3 + T1T2 + T123.

Then f is a nondegenerate polynomial with an isolated singularity at the origin whose Newton polyhedron
is simplicial and convenient, with six compact facets and eight vertices. There are two compact facets
containing the face with vertices {(0,0, 0, 10), (0,1,0,2),(1,0,1,0)}, each of which contributes the candidate
pole —19/10. Both of these facets are B;, and they are obtained by adding either (0,1,1,0) or (1,1,0,0).
No other facets contribute —19/10. The condition in [ELT22, Conjecture 1.3] is not satisfied, so their
conjecture predicts that exp(27i(—19/10)) is an eigenvalue of monodromy. However, the only eigenvalues of
monodromy are {1,+4}. This contradicts the claim in [ELT22] that they have proven [ELT22, Conjecture
1.3] for polynomials in four variables.

The local topological zeta function of f is Ziop(s) = 7

s+
(s+1)(ds+7)°
One can deduce from Theorem 1.4.7 that there is a set of candidate poles for Z,o(T") which does not contain
—19/10. We thank M. H. Quek for informing us that there are counterexamples to [ELT22, Conjecture 1.3]

in four variables.

which does not have —19/10 as a pole.

Example 2.2.3. Let

21 22 24 12 2
fz1, 20,3, 24, 25) = 27 + 25" + 25 + z$ + x5t + zxe + argxgxg + x3T425 + x3mg.
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Then f is a nondegenerate polynomial with an isolated singularity at the origin whose Newton polyhedron is
simplicial and convenient, with ten compact facets and nine vertices. Every compact facet contains the face
with vertices {(1,1,0,0,0),(0,0,1,1,1)}, and the candidate pole of every facet is —2. These ten facets have
a choice of compatible apices in the sense of [Que24, Definition 5.1.5], so [Que24, Question 5.1.8] predicts

that {—1} is a set of candidate poles for the local naive motivic zeta function.
752 +455+96

24(s+1)(s+2)2>

local naive motivic zeta function contains —2. When n = 6, there are counterexamples to [Que24, Question

5.1.8] whose candidate pole is not an integer.

The local topological zeta function of f is Ziop(s) = so any set of candidate poles for the

Example 2.2.4. In [ELT22, Definition 3.1], the authors give a different definition of a Bj-facet when the
facet is non-compact. They say that a facet F with Unb(Cr) # 0 is a By -facet of non-compact type if the
image F' of F' under the projection R™ — R™/(Unb(CF)) is a B;-facet. Then [ELT22, Proposition 3.7] claims
that if a pole o # —1 is contributed only by a single B;-facet, then « is not a pole of Zio,(s). Consider the
nondegenerate polynomial
f(x1, 22, k3, T4) = X123 + T2T3 + 332332 + xi.

Then Newt(f) has four vertices and eight facets, one of which is compact. There is a Bj-facet F' of non-
compact type with vertices {(1,0,1,0),(0,1,1,0),(0,1,0,5)} and Unb(Cr) = {e1, ea} whose candidate pole
is —6/5. It is the only facet whose candidate pole is —6/5, so [ELT22, Proposition 3.7] claims that —6/5 is
not a pole of Ziop(s). In fact, Ziop(s) = m.

At the origin, the monodromy zeta function is 1. The singular locus of Xy is the set of points of the
form {(c, —¢,0,0)}. At any ¢ # 0, the monodromy zeta function is equal to —(t — 1)(t* + 3+t +t + 1), so
exp(2mi(—6/5)) is an eigenvalue of monodromy.

Example 2.2.5. Let
fla1, @0, 23, 24) = xlf5 + x§5 + xg?’ + x}lg + 2124 + 22924

Then f is a nondegenerate polynomial with an isolated singularity at the origin whose Newton polyhedron
is convenient, with two compact facets and six vertices. The vertices

{(45,0,0,0),(0,45,0,0),(0,0,23,0),(1,0,0,1),(0,1,0,1)}

form a facet F. Then F is not a “B-facet” in the sense of [ELT22, Definition 3.10], but any four affinely
independent vertices form a Bj-facet. This contradicts [ELT22, Lemma 5.18]. See [Sel25] for a revised
classification of B-facets for n = 4.

Observe that F' is the unique facet with candidate pole —1103/1035. The topological zeta function is
Ziop(s) = %, so —1103/1035 is a pole of the topological zeta function. The lattice point
(1,44,0,0) = 1/45(45,0,0,0) + 44/45(0,45,0,0) is contained in F', and the lattice simplex with vertices

{(1,44,0,0), (0,0, 23,0), (1,0,0,1), (0,1,0,1)}

is contained in F' and is not B;. This implies that F' is not pseudo-UB; (see Definition 3.4.3 below), and so
exp(2mi(—1103/1035)) is an eigenvalue of monodromy by Theorem 7.1.1(1).

3. A NONNEGATIVE FORMULA FOR NEARBY EIGENVALUES

Here and throughout, f € k[z1,...,x,] is a nondegenerate polynomial that vanishes at 0. In this section,
we do not assume that Newt(f) is simplicial. For a geometric point x in the hypersurface Xy, we write

Mz () to denote the multiplicity of exp(2mia) in the virtual representation Y (F,) := Zi(—l)iﬁ"(]—;, C),
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where H denotes reduced cohomology. We define

(7) E(F,) = ) mg(a)la] € Z[Q/Z),

[o]€Q/Z
where Z[Q/Z] is the group algebra of Q/Z. For example, when Newt(f) is convenient, then Xy has an
isolated singularity at the origin [Kou76, 1.13(ii)]. In this case, the Milnor fiber Fy has the homotopy type
of a wedge sum of (n — 1)-dimensional spheres [Mil68], and exp(2mi) is a nearby eigenvalue for reduced
cohomology if and only if the coefficient mg(«) is nonzero.

Note that E(F,) encodes information equivalent to that in the monodromy zeta function (,(¢). This
alternative notation is useful when studying how the monodromy action interacts with finer invariants of
the cohomology of the Milnor fiber, such as its mixed Hodge structure [Stal7, Section 6.3]. The additive
structure of E(]—}) and the restriction to reduced cohomology are also more natural from a combinatorial
perspective: it aligns with standard formulas for local h-polynomials and thereby leads to the nonnegative
formula for nearby eigenvalues that we prove here.

Given 8 € Q, let D(3) € Z~¢ be the denominator of 3, written as a reduced fraction. Fix M € Z~g, and
consider the following Z-module homomorphism:

Vs Z[Q/Z) — Z[Q/Z), given by Uy ([8]) = {W] if M divides D(B),

0 otherwise.
For example, when M = 1, then W, is the identity map.

Let 27 denote a general point in the coordinate subspace A’ C A™ for I C [n]. Under appropriate
conditions, the main result of this section is a formula with nonnegative integer coefficients for

Uy | > () VE(E,)

AICXf

For example, when Newt(f) is simplicial or convenient, we will see that we obtain a nonnegative formula
when M =1 (see Remark 3.2.2). The set of coordinate subspaces contained in Xy depends only on Newt(f).
Explicitly, A’ C X if and only if ]RIZO N Newt(f) = 0.

3.1. The local h-polynomial. Let A’ be a simplicial fan with support R, If we forget the lattice structure
of the fan A’, we may view A’ as encoding a triangulation of a simplex, e.g., by slicing with a transverse
hyperplane. For C' a cone in A’ let 0(C”) be the smallest face of the cone R% containing C”. Set

e(C") :==dimo(C’) — dim C".
We use the following definition of the local h-polynomial (see, for example, [KS16, Lemma 4.12]).
Definition 3.1.1. Let A’ be a simplicial fan with support RY,, and let C" be a cone in A’. Then the local
h-polynomial L(A’,C';t) is defined as
YA, 1) = Z (—1)codim(©) geodim(C)=e(C) (4 _ 1)e(C)
C'cCeA’

The local h-polynomial has several important properties. Most important for our purposes is that its
coefficients are nonnegative integers [Ath12a]. We refer the reader to [KS16] for more details and a more
general setting. Observe that

(8) K(A/,C,,l) — Z (_1)codim(0).

c'cCceA’
e(C)=0
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Recall that A denotes the fan over the faces of Newt(f). The following definition extends the notions of
Gen(C),Vert(C) and Unb(C), for C a cone in A.

Definition 3.1.2. Let C’ be a polyhedral cone contained in a cone of A, such that every ray of C' not in A
intersects O Newt(f) at a lattice point. Let Gen(C") = Vert(C’) U Unb(C") be the set of distinguished lattice
point generators of the rays of C' defined as follows:

Vert(C') = {w € Z" : {w} = r N d Newt(f) for some ray r of C'}, and
Unb(C') = {e; : e; € C",R>pe; N Newt(f) = 0}.
When C’ is simplicial, we need the following definition.

Definition 3.1.3. Let C’ be a simplicial cone contained in a cone of A, such that every ray of C' not in A
intersects O Newt(f) at a lattice point. Let Gen(C') = {wy,...,w,}, and define finite sets Box¢w and Boxcr
as follows:

T T
Boxgy = {wEZ":w:ZAiwi,0<)\i<1} and Boxcx:{weZ":w:Z/\iwi,OS/\i<1}.
i=1 i=1

When C' = {0}, then Boxg, = Boxcgr = {0}.

Note that Boxcr = Uccer Boxgr, and Boxer = {0} if Gen(C’) C {e1,...,en}.

Recall that if F' C RZ is a rational polyhedron whose affine span aff(F') does not contain the origin, we
write pp for the lattice distance of F to the origin. If F is a lattice polytope, then we may consider the
normalized volume Vol(F') € Zq of F, i.e., the Euclidean volume on aff(F') scaled such that the volume of
a unimodular lattice simplex is 1. When F' =), pp = Vol(F') = 1. We will need the following basic lemma.

Lemma 3.1.4. Let C’ be a simplicial cone contained in a cone of A such that every ray of C' not in A
intersects O Newt(f) at a lattice point. Let F' be the convex hull of the elements of Gen(C’), and let ¢ be the
linear function on C' with value 1 on F. Then

Y [Fow)] = Vol(F) Y [i/pr]-
weBox o/ =0

Proof. The result follows from the fact that ¢ induces a group homomorphism:

¢: (span(C’) N Z™) /(Zawy + - - - + Zw,) — Q/Z,

where the domain is a finite set in bijection with Boxcr, im(¢) = =7Z/Z and |ker(¢)| = Vol(F). See also

PF

[Stal7, Examples 4.12-4.13]. a

3.2. Nearby eigenvalues along coordinate subspaces. We now state our nonnegative formula for the
multiplicity of nearby eigenvalues along coordinate subspaces. We first introduce some notation.

Recall that 1 is the unique piecewise linear function on RZ, with value 1 on all interior faces of 9 Newt(f).
Let C be a cone in A. If C' = CF for some face F of Newt(f)j then we set pc := pp to be the lattice distance
of F' to the origin. Otherwise, we set pc := 1. Equivalently, pc is the smallest positive integer such that
pc¥|c is the restriction of a Z-linear function on span(C). Observe that if C' C C' € A, then pco divides ps.

Fix M € Z~q. Let Aps be the (possibly empty) subfan of A consisting of all maximal cones C' in A such
that M divides p¢o, together with all the faces of C'. Observe that if C' is a cone in A and M divides p¢,
then all cones in A containing C lie in Ajy;.

If A’ is a fan refining A, let A, denote the restriction of A’ to Aps. Given a cone C’ in A’ contained in
a cone of A, let 7(C’) denote the smallest cone in A containing C”.
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Theorem 3.2.1. Assume that f is nondegenerate. Let M € Z~q and let A’ be a simplicial fan refining
A. Assume that every ray of A’ ~ A intersects the boundary of Newt(f) at a lattice point, and Unb(C’) =
Unb(7(C")) for all C" in AY;. Then

9) o | Y () HEE) | =w | Y waL ey Y [—o(w))

ATCXy Cren’ weBoxY,,

Remark 3.2.2. We consider two important special cases when such a A’ exists when M = 1. Firstly,
if Newt(f) is simplicial, then the hypotheses of the theorem hold with A’ = A. Secondly, if Newt(f) is
convenient, then there exists a simplicial fan A’ that refines A and has the same rays as A. In this case, as
Unb(C’) = Unb(7(C")) = @ for all C’ in A’, the hypotheses of the theorem hold.

As a simple example where the hypotheses fail, suppose there exists C € A with dimC = 3 and
| Vert(C)| = | Unb(C)| = 2. Then there is no simplicial refinement of C' in which all maximal cones contain

Unb(C).

Remark 3.2.3. When M =1, (9) can be restated in terms of monodromy zeta functions at x, as follows:

(71)71,717\“ .
H <C1II—(tt)) = H H (1 — exp(—2mivp(w))t)ACD),

AlCXy C’eA’ weBoxy,
For the remainder, we work in terms of E(F,,) rather than the corresponding monodromy zeta function.

We now give three examples which show that the sum ZAIch(*l)”ﬂ*mE(fzI) appearing in Theo-
rem 3.2.1 can fail to detect nearby eigenvalues and can have strictly negative coefficients.

Example 3.2.4. In Example 2.2.4, consider the facet F' with candidate pole a = —6/5. It was shown that
there exists € Xy arbitrarily close to the origin such that m,(a) is nonzero. On the other hand, Xy is
smooth at z; for T # 0, so ZMch(—l)”_l_mE(fm) = —E(Fo) = 1. In particular, [—«] does not appear.
See also Example 3.4.9 below.

Example 3.2.5. The following example appeared in [ELT22, Example 7.4]. Consider the nondegener-
ate polynomial f(z1,72,23,74) = o5 + 2325 + (22 + 23)23322. Let F C R* be the 3-dimensional lattice
simplex with vertices w; = (0,0,6,0), wy = (0,4,5,0), ws = (2,13,2,0), wy = (0,13,2,2). Then F is
the unique compact facet of Newt(f), and it has candidate pole & = —1/3. The authors showed that
E(F) = —(D0<icaalt/24] =301, -4[i/6]), and that [a] does not appear in E(F,,) for a general point z; in

any Al C X, but that there exists x € Xy arbitrarily close to the origin such that E(F,) contains [a]. We
have

20§i<24[i/24} - Zl§i<6[i/6] ifr1=90

Zl§i<5[i/5] if I = {2}
\n—1—|I| & Y Zo§¢<78[i/78] + Zlgi<6[i/6] if I ={1} or {4}
e = 5 /T8~ Toccelif®] i 1= {1,4)

—[1/2] if I ={1,2} or {2,4}

[1/2] if I ={1,2,4}.

In particular, ZAIfo (=1)"~*=HIE(F,,) has strictly negative integer coefficients. See also Example 3.4.10
below.
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Example 3.2.6. Counsider f as a polynomial in n+ 1 variables, i.e., f € k[z1,...,2,] Cklz1,...,Tn, Tpt1)-
Then one can verify that both sides of (9) are identically zero. Geometrically, if I C {1,...,n} and I' =
TU{n+1}, then (-1)" VIE(F,,) + (1) IEF,,) =0.

We will deduce Theorem 3.2.1 from Varchenko’s formula for the monodromy zeta function of a nondegen-
erate singularity [Var76, Theorem 4.1]. First, recall that pc is the lattice distance from the origin to F if
C = CF, and is 1 otherwise. Recall that A, is the (possibly empty) subfan of A consisting of all maximal
cones C' in A such that M divides p¢, together with all the faces of C.

Lemma 3.2.7. Let M € Z~q. If C is a cone in AN Ay, then Uy ([i/pc]) =0 for any i € Z. In particular,
U ([ (w)]) = 0 for allw € CNZ™.

Proof. It Wy ([i/pc]) # 0, then M divides D(i/p¢). Therefore for C' a maximal cone in A containing C', M
divides p5 and hence C' € Ay, a contradiction. The second statement follows since the restriction of pc1)
to C is the restriction of a Z-linear function on span(C) for all cones C' in A. g

Observe that when A, is empty, the proposition below states that ¥y, (E(Fp)) = 0.

Proposition 3.2.8. Let M € Z~o and let Ay, be a simplicial fan refining Apr. Assume that every ray of
Ay N Ay intersects the boundary of Newt(f) at a lattice point, and Unb(C’) = Unb(7(C")) for all C' in
Ao Then

Un(E(Fo) = D ()T | 3D [=(w)]
C’eAQw weBox o/
Unb(C’)=0
e(C’)=0
Proof. Suppose that C in A satisfies Unb(C) = (). Then C = Cp for some bounded face F of Newt(f), and
we may set Vol(C) := Vol(F). For example, when C = {0}, then F' = () and Vol(C) = 1. With this notation,
Varchenko’s formula for the monodromy zeta function [Var76, Theorem 4.1] states that

pc—1
(10) E(F)= Y (-1)"VolC) Y [i/pc].
CeA 1=0
Unb(C)=0
e(C)=0

Let S ={C € Ay : Unb(C) = 0,e(C) = 0}. Applying ¥, to both sides of the above equation, and using
Lemma 3.2.7, we obtain the equation

pc—1
Var(E(Fo) = Y (=)™ Vol(C) <Z Wﬂc]) :
ces i=0
Let C € S and set S, = {C' € A}, : 7(C") = C,dimC" = dimC}. Let C' € Si. By assumption,
Unb(C’) = Unb(C) = 0. Then C = Cp for some lattice polytope F, and C’ is the cone over a lattice
polytope G C F. Define Vol(C’) := Vol(G) and pc := pg. Note that dimC’ = dim C implies that
pcr = pco. By the additivity of normalized volume, we have

pc—1
U (E(Fo)) = Y (—1)THwy, <Z [i/pc]> > Vo).

ces i=0 cresy



22 MATT LARSON, SAM PAYNE, AND ALAN STAPLEDON

Since dim C” = dim C, the condition e(C”") = 0 is equivalent to the condition e(C) = 0. Let S’ = {C’ € A/, :
Unb(C’) = ,e(C’) = 0}. Then rearranging the above equation gives

pcr—1
Uy (BE(Fo)) = Y (1) gy, (VOl(C') > WPC/])

cres’ i=0

By Lemma 3.1.4, we obtain our desired result. ]

We also need the following remark. Given ¢ = (c1,...,¢,) € K™, let fo(x1,...,2,) == f(z1+c1, . 20 +
¢,). Consider a coordinate subspace Al C Xy, and a general point xy in AT, Let J = [n] ~ I, and
consider the projection map pr;: R® — R and the polyhedron Newt(f); := pr;(Newt(f)) C R’. Let g
be a nondegenerate polynomial with Newton polyhedron P and Milnor fiber ]?0 at the origin. By [Var76,
Theorem 4.1], E(ﬁo) depends only on P, and not on the choice of g. We set

E(P) := E(F).

Remark 3.2.9. With the notation above, F,, is the Milnor fiber of f,, at the origin. It follows from [ELT22,
Proposition 7.2] and its proof that f,, is nondegenerate with Newton polyhedron equal to Newt(f) s x RI>O.
Then -

(11) E(Fy,) = E(Newt(f); x RL,) = E(Newt(f).,)-

We deduce that if the coefficient of [a] in E(Newt(f)) is nonzero for some such choice of I, then exp(2mic)
is a nearby eigenvalue of monodromy (for reduced cohomology).

Recall that for a set of vectors S, (S) denotes the cone that they span. We now prove Theorem 3.2.1. Our
strategy is to apply Proposition 3.2.8 to each coordinate projection of Newt(f).

Proof of Theorem 8.2.1. Consider a coordinate subspace A! in X ¢. Let J = [n] \ I, and consider the pro-
jection map pr;: R” — R’ and the polyhedron Newt(f); = pr,(Newt(f)) c R’. By (11), E(F,,) =
E(Newt(f) ), where E(Newt(f),) is the invariant E applied to the Milnor fiber at the origin of any non-
degenerate polynomial with Newton polyhedron Newt(f);. Our first goal is to apply Proposition 3.2.8 to
compute W, (E(Newt(f),)).

If C C R%, is a cone, then we use the notation Cj := pr;(C). Let A; be the fan over the faces of
Newt(f);. Then Ay = {C; : C € A,RL, C (Unb(C))}. Let Ay be the subfan of A, consisting of all
maximal cones C; in A such that M divides pc,, together with all the faces of C;. Observe that if C' € A
and RL C (Unb(C)), then pc = pc,. It follows that Ay = {Cy: C € Ap,RL, C (Unb(C))}.

If Ay is empty, then Proposition 3.2.8 implies that Wy, (E(Newt(f);)) = 0. Assume that Ay is
nonempty. Then IR{I>0 € Aps. In order to apply Proposition 3.2.8, we want to construct a simplicial
refinement of A ; yy. Since each ray in A’ A intersects Newt(f), no such ray is contained in RL ;, and hence
RL, € A),. Consider the simplicial fan A’} = {C" : C" € A}, RL € (Unb(C”))}. This is the star of RL,
in A}, and it follows from [CLS11, Exercise 3.4.8] that A}, is a refinement of A as.

We next verify that AfL u satisfies the hypotheses of Proposition 3.2.8. Firstly, the intersection of a ray
of A’ \y \ Ay with the boundary of Newt(f) is the image of the intersection of a ray in A, \ Ay with
the boundary of Newt(f), and hence is a lattice point. Secondly, for a cone C' C R™ containing RL, let
Unb;(Cy) = {e; € R’ : ¢; € Cj,R>pe; N Newt(f); = 0}. Fix C’ in A’ such that RL, C (Unb(C’)).iSince
Unb(C”") = Unb(7(C”)) by assumption, we compute:

Unb;(C)) = {pr,(e;) : ¢, € Unb(C"),i & I} = {pr,(e;) : e; € Unb(7(C")),i ¢ I} = Unb,(7(C"),).
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Moreover, 7(C”) s is the smallest cone in A; containing C”;. We conclude that the hypotheses of Proposi-
tion 3.2.8 hold.

Let 1 be the unique piecewise linear function on R’ with value 1 on all interior faces of @ Newt(f). Let
o7(C;) be the smallest face of RZ, containing C”;, and let e;(C”;) = dim o ;(C’) — dim C’. Then applying
Proposition 3.2.8 gives -

Uy (E(Newt(f),) = > (=DM Ha, | > [y, (w)]

! ’
CLEA M weBoxC/J
Uan (C/]):Q
eJ (C‘/])=O

We compute that e;(C) = dimo;(C’) —dim C) = (dimo(C’) — |I|) — (dim C" — |I]) = e(C"), so

Uy (E(Newt(f),)) = Z (—1)tm =gy, Z [~ (w)]
ey, weBoxg/,
(Unb(C"))=RL,
e(C")=0

Consider C" € A, such that RL; C (Unb(C”)). We define a bijection ¢: Boxcr — Boxg:, as follows.
Write Gen(C') = {wi,...,wr} U{e; =i € I} Ifw = >0 Nwy + >, pie; € Boxer, then ¢(w) =
i1 Aipry(w;). Observe that ¢ (w) = ¢ (¢(w)). We deduce that

(12) Y [Fvwl= Y [Fws(w)

weBox o/ wEBox(cz)J

Substituting (12) into the above equation gives

Wy (E(Newt(f))) = S (i@, S [—y(w)]
c'en)y, wEBoOX o/
(Unb(C"))=R%,
e(C")=0

When Aj s is empty, we have seen that U (E(Newt(f)s)) = 0, so the above formula holds then as well.
Let C' € A’ and assume that Wy, ([—¢(w)]) # 0 for some w € Boxer. By Lemma 3.2.7, every cone in A
containing C” lies in Ay, and so every cone in A’ containing C’ lies in A/y,.
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Putting this all together, we compute

U [ D () VEWE,) > (o (E(Newt(£) )

AlCXy AlCXy
— Z (_1)n—1—|1| Z (_1)dimc/+m+1‘I’M Z [_Z/J(w)]
AICXf ClEAljw ’LUEBOXC«/
(Unb(C"))=R%,
e(C")=0
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Here the final equality follows from (8). O

3.3. An existence result for nearby eigenvalues of monodromy. We use Theorem 1.4.5, a vanishing
result for the local h-polynomial, and Theorem 3.2.1 to study nearby eigenvalues of monodromy.

Let A’ be a simplicial fan refining A. Assume that every ray of A’ A intersects the boundary of Newt(f)
at a lattice point. Let C’ be a cone in A’ with Gen(C") = {ws,...,w,}. We consider the function

boxcr: span(C’') NZ" — Boxer defined by boxcr <Z )\iwi> = Z{)‘i}wi’
i=1 i=1
where \; € Q and {\;} denotes the fractional part of \;.

Throughout this section, let G be a lattice simplex contained in d Newt(f) such that 1 € span(G) and
Cg € A'. Let ¢ be the unique linear function on span(G) with value 1 on G. Equivalently, 1¢ is determined
by the condition that Yclc, = ¥[ce. Let a = —¢g(1). Then a is the candidate pole associated to any
proper face F of Newt(f) containing G.

Definition 3.3.1. The essential face of G is the unique face E C G such that boxc, (1) is in Boxg, .

Equivalently, one may verify that if {ws,...,w,} are the vertices of G and we write 1 = Y|, \;w; for
some \; € Q, then E is the unique face of G with Gen(Cg) = {w; : \; ¢ Z}. Note that, for any lattice point
w € span(Cq) NZL, [Ya(w)] = [¢(boxc, (w))] in Q/Z. We deduce that

(13) [a] = [=¢(boxgs(1))] in Q/Z.
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We deduce the following corollary of Theorem 3.2.1. When Newt(f) is simplicial and we set A’ = A, this
is equivalent to Corollary 1.4.4.

Corollary 3.3.2. Let o € Q, and let M = D(«). Let A’ be a simplicial fan refining A. Assume that every
ray of A" A intersects the boundary of Newt(f) at a lattice point, and Unb(C’) = Unb(7(C")) for all C’
in A, Let G be a lattice simplex contained in O Newt(f) such that 1 € span(G) and Cq € A/, and let E
be the essential face of G. Assume that o = —(1). If L(A’, Cg;t) is nonzero, then the coefficient of [a] in
E(]—}I) is monzero at a general point ¥ of some coordinate subspace AT C X ;.

Proof. By definition, ¥p4)([a]) = [a]. By (13), £(A’,CE;1)[a] is a term in the right-hand side of (9). The
result now follows from the nonnegativity of the local hA-polynomial. O

Extending Definition 1.4.3, we may define the notion of G being UB; exactly as for (compact) faces of
Newt(f). Explicitly, a vertex A of G is an apex with base direction e} if (ej, A) > 0, and (e}, V) = 0 for all
V € Gen(Cg) with V # A, i.e., for all vertices of G not equal to A. Then G is UB; if there exists an apex
A in G with a unique choice of base direction e}, and (e;, A) = 1.

The following definition is a special case of Definition 4.1.1. We say that Cs \ Cg in lka/(Cg) is a
U-pyramid if there exists an apex A in G with a unique choice of base direction e}, and A ¢ Gen(CEg).

Lemma 3.3.3. With the notation above, G is UBy if and only if Co ~ Cg in lka/(Cg) is a U-pyramid.

Proof. Let Gen(Cg) = {wy,...,w,}, and uniquely write 1 = >, \;w; for some \; € Q. Let w; be an apex
with a base direction €j. Let h = (e}, w;) € Zso. Then 1 = (e}, 1) = (e}, > i Nwi) = D1, Nilef,w;) =
Ajle;,w;) = A\jh, and we deduce that A\; = 1/h € Qs. The result then follows since

w; ¢ Cp < N\, €Z < h=1 O

Let Ag be the set of apices of G which are not in E. For a face G’ of G, let 0(G’) be the smallest face
of RZ, containing G’. Let Bg = {¢ € [n] : there exists A € Ag with base direction e} }. Below, we identify
faces of RZ, with their corresponding subsets of [n] and identify simplices with their set of vertices.

The following definition is a special case of Definition 4.1.2. Below, by associating faces of G with their
corresponding cones in A’, we may view faces of G \ E as faces in lka/(Cg). A full partition of G\ E is a
decomposition

GNE=G UG UAg
such that
(1) o(GiUAgUE) = [n],
(2) 0(G2 U FE) =[n]\ Bg.

Lemma 3.3.4. With the notation above, G \ E admits a full partition.
Proof. Let Gen(Cg) = {w, ..., w,}, and uniquely write 1 = >"'_, A\;w; for some \; € Q. We have
(14) G\E:G1UG2UAG,

where G1 = {U)z LWy ¢ .Ag,)\i S Z>Q}7 and Gy = {wz N\ € Zgo}. Note that w; € .AG implies that \; = 1.
We claim that (14) is a full partition.
For each w; in Gen(Cg), write (w;)¢ € Z>o for the ¢th coordinate of w;. For each coordinate ¢ € [n],

(15) 1= i)\i(wi)e'

If £ ¢ o(Ag U Gy U E), then the right-hand side of (15) is a sum of nonpositive terms, a contradiction. We
conclude that o(Ag UGy U E) = [n].
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It remains to show that o(G2 U E) = [n] \ Bg. It follows from the definitions that o(G2 U E) C [n] \ Bg.
It remains to prove that [n] \ 0(G2 U E) C Bg. Suppose that £ € [n] \ 0(G2 U E). Then all terms on the
right-hand side of (15) are nonnegative integers, and we deduce that there is a unique index & such that
Ak = (wg)e = 1 and A\;(w;)e = 0 for i # k. If (w;)e # 0 for some ¢ # k, then \; = 0 and hence £ € o(Gs), a
contradiction. We deduce that w; € Ag has base direction e;. That is, £ € Bg. O

The following corollary is immediate from Theorem 1.4.5, together with Lemma 3.3.3 and Lemma 3.3.4.
Here Theorem 1.4.5 is a consequence of Theorem 4.1.3, whose proof is the subject of Section 4.

Corollary 3.3.5. With the notation above, if {(A’,Cg;t) =0, then G is UB;.

3.4. Existence of simplicial refinements. We now give a criterion for the existence of a simplicial refine-
ment of A that satisfies the hypotheses of Corollary 3.3.2 and allows us to prove our strongest result on the
existence of eigenvalues. We will obtain Theorem 1.4.6 as a consequence.

We first introduce a combinatorial condition on the unbounded faces of Newt(f).

Definition 3.4.1. Say that a cone C in A has good projection if for any face C' of C' such that C'NUnb(C) =
#, dim(C’ + (Unb(C))) = dim C’ + | Unb(C)|. Equivalently, for any face C' of C disjoint from Unb(C), the
images of the elements of Unb(C) are linearly independent in R™/span(C”).

We say that Newt(f) has good projection if all cones in A have good projection. Let M € Z~q. Then
Newt(f) has M-good projection if every mazimal cone C in A such that M divides pc has good projection.

Observe that A has M-good projection if and only if all cones in Ajp; have good projection. Clearly,
Newt(f) has good projection if and only if Newt(f) has M-good projection for M = 1 if and only if Newt(f)
has M-good projection for all M € Z~g. If all cones C' € A with Unb(C') # () are simplicial, then Newt(f) has
good projection. For example, when Newt(f) is simplicial or convenient, then Newt(f) has good projection.
Also, if | Unb(C)| <1 for all maximal cones C' in A, then Newt(f) has good projection.

Lemma 3.4.2. Let o € Q. If Newt(f) has D(a)-good projection, then Cg has good projection for all
F € Contrib(«).

Proof. By definition, a = i/pc,. for some i € Z, and hence D(«) divides pc,.. Since Newt(f) has D(«)-good
projection, it follows that C'r has good projection. O

If Newt(f) has D(«a)-good projection, then we will be able to apply Theorem 3.2.1 to deduce that
exp(2mia) is a nearby eigenvalue of monodromy if a certain local h-polynomial does not vanish. The con-
dition that Newt(f) has D(«)-good projection is inspired in part by a stricter condition in Saito [Sail9,
Definition 3.12], that itself follows ideas from [TT16]. In the language of our paper, they consider the
condition on Newt(f) that every maximal cone C' in A such that D(«) divides p¢ satisfies Unb(C) = ).

We now formulate the condition on Newt(f) that will allow us to apply Corollary 3.3.5. Let F be a face
of Newt(f) such that Cr € A. Let F denote the image of F under the projection R" — R"/(Unb(CF)).

Definition 3.4.3. Let F be a face oiNewt(f) such that Cr € A. Assume that Cr has good projection.
Then F is pseudo-UBy if every (dim F)-dimensional lattice simplex contained in F is UBj.

If Newt(f) is simplicial, then all pseudo-UB; faces are UB;. The Ba-facets of [ELT22, Definition 3.9] are
examples of pseudo-UB; faces which are not UB;.

Remark 3.4.4. Suppose that C' in A has good projection. Then ¥ = {C; + C2 : C; C C,Unb(Cy) =
(,Cs C (Unb(C))} is a fan refining C. Consider I C [n] such that RIZO = (Unb(C)). Let J = [n] ~ I and

consider the projection pr; : R® — R7. Then
Stary:((Unb(C))) := {pr,;(C’) : (Unb(C)) Cc C" € £} = {pr,;(C;) : C; € C,Unb(C4) = 0}
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is a refinement of pr;(C) [CLS11, Exercise 3.4.8]. Let F' be a face of Newt(f) such that C' = Cr has good
projection. Then it follows that F is UB; if and only if F = pr;(F) is UB;.

Lemma 3.4.5. Let F be a face of Newt(f) such that Cr € A and Cr has good projection. If F is UBj,
then F' is pseudo-UB;.

Proof. Using Remark 3.4.4, we reduce to the case when F' is compact. In that case, suppose F' has an
apex A with unique base direction e}, and (ej, A) = 1. Let G be a lattice simplex contained in F' with
dimG = dim F'. Then A is an apex of G with base direction ej. Suppose €] is a base direction of A in G. If
V # Ais a vertex of F, then V' € span(F N {ej = 0}) = span(G N {e; = 0}) = span(G N {e; = 0}). Hence
e; is a base direction of A in F', and j = . We conclude that G is UBi, as desired. O

We now state our strongest result on the existence of eigenvalues of monodromy.

Theorem 3.4.6. Suppose [ is nondegenerate. Let o € Q. Assume that Newt(f) has D(«)-good projection.
Then either every face in Contrib(«) is pseudo-UB1, or exp(2mia) is a nearby eigenvalue of monodromy (for
reduced cohomology).

Before giving the proof, we present some applications and examples.

Proof of Theorem 1.4.6. Assume that Newt(f) is simplicial. Then Newt(f) has good projection, and a face
F of Newt(f) is pseudo-UB; if and only if it is UBy. The result now follows from Theorem 3.4.6. (]

Theorem 3.4.7. Let [ be a nondegenerate polynomial with Newt(f) = kP for some k > 2 and some Newton
polyhedron P. If Newt(f) has good projection, then every candidate eigenvalue is a nearby eigenvalue of
monodromy.

Proof. Note that none of the vertices of kP have any coordinate equal to one, so no face of kP is pseudo-UBj.
The result follows from Theorem 3.4.6. (|

Example 3.4.8. Suppose that Newt(f) is convenient. Then Newt(f) has good projection. In this case,
Theorem 3.4.6 states that either every face in Contrib(«) is pseudo-UBj, or exp(27mia) is a nearby eigenvalue
of monodromy (for reduced cohomology).

Example 3.4.9. In Example 2.2.4 and Example 3.2.4, consider the facet F' with candidate pole « = —6/5.
We have Contrib(a) = {F} and F is not UBj, although F is UB;. By Remark 3.4.4, Cr does not have
good projection. In particular, F' is not pseudo-UB;. By Lemma 3.4.2, Newt(f) does not have D(«a)-good
projection, so Theorem 3.4.6 does not apply.

Example 3.4.10. Consider the set up of Example 3.2.5 with F' the bounded facet with candidate pole
a = —1/3. We have Contrib(a)) = {F}, and F is not UB;. Consider the unbounded facet G of Newt(f)
defined by te = #<(4e3 + 13e5) = 1. Then Vert(Cg) = {w1, ws, ws} and Unb(Cg) = {e1,e4}. In particular,
C¢ does not have good projection. Since D(a) = 3 divides po, = 78, we conclude that Newt(f) does not
have D(«)-good projection, so Theorem 3.4.6 does not apply.

Proof of Theorem 3.4.6. Let F be a face in Contrib(a)). Suppose there exists a (dim F')-dimensional lattice
simplex G contained in F that is not UB;. We need to show that exp(2mia) is a nearby eigenvalue of
monodromy (for reduced cohomology).

First assume that F is compact. Our first goal is to construct an appropriate simplicial fan A’ that
refines A and contains Cg as a cone. Let {iy,...,is} = {i € [n] : Al"} € X;}. Consider positive integers
0k« myy < <K m;,,and let fi=f+ ijl x?;] with corresponding Newton polyhedron Newt(f) and fan

over the faces A. Then A refines A and has the same rays as A. If C € A has good projection, then every
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cone in £|C is a sum of a cone C; with Unb(C7) = 0) and a cone spanned by a subset of Unb(C). Using, for
example, a pulling triangulation [DLRS10, Section 4.3.2], one can construct a simplicial refinement A’ of A
such that Cg is a cone in A’, and the rays of A’ are the union of the rays of A and the rays of Cg.

Given C’ € A, recall that 7(C") denotes the smallest face of A containing C’, and Unb(C’) C Unb(7(C")).
If C' € A has good projection, then every cone in A’|¢ is a sum of a cone Cy € A’|¢ with Unb(Cy) = 0 and
a cone spanned by a subset of Unb(C'). In particular, if C' € A’|¢, then Unb(C’) = Unb(7(C")).

By Corollary 3.3.2 and Corollary 3.3.5, the coefficient of [a] in E(F,,) is nonzero at a general point z; of
some coordinate subspace Al C X ¥

Now consider the case when F is not necessarily compact. Consider I C [n] such that RL, = (Unb(Cp)).
Let J = [n] ~ I and consider the projection pr; : R — R’ and Newt(f), := pr,(Newt(f)) C R7. Let A,
be the fan over the faces of Newt(f);. The maximal cones of Newt(f); are precisely the cones of the form
pr;(C), where C is a maximal cone of A such that RL, € (Unb(C)). For any such cone C, pc = ppr,(c)
and if C has good projection, then pr;(C) has good projection. We deduce that Newt(f); has D(«a)-good
projection. Also, F' = pr;(F) has candidate pole .

Let g be a nondegenerate polynomial with Newton polyhedron Newt(f); and Milnor fiber ﬁo at the
origin. By the compact case above, we deduce that the coefficient of [o] in E(}'yi) is nonzero at a general
point y; of some coordinate subspace Al X, with IcJ Let I'=TUT and J' = [n] ~ I'. Applying (11)
to both E(,FJL.I,) and E(]:yf) yields the equality E(]—"xl,) = E(Newt(f) ;) = E(]—"yf). We conclude that the
coefficient of [a] in E(}"xl,) is nonzero. O

Finally, as a corollary of the proof above, we may extend the result of Budur and van der Veer [BvdV22,
Theorem 1.10] on dilates of Newton polyhedron by removing the convenient hypothesis.

Proposition 3.4.11. Fiz a Newton polyhedron P. Let f be a nondegenerate polynomial with Newt(f) = kP
for some k € Z~qy chosen sufficiently large. Then every candidate eigenvalue is a nearby eigenvalue of
monodromy.

Proof. Let F be a facet of P and let « be the corresponding candidate pole. Then «/k is the corresponding
candidate pole associated to the facet kF of kP. After possibly replacing F by F, we reduce to the case when
F is compact. Then the proof of [BvdV22, Theorem 1.10] applies. Explicitly, assume that F' is compact and
let ¢, € Z denote the coefficient of [a/k] in E(kP). Then Varchenko’s Theorem (see (10) above) implies that

(16) Jim /K" = (=1)" > Vol(F"),
T

where F’ varies over all facets of P such that D(«) divides pps. Since F’ = F appears in the sum on the
right-hand side of (16), we deduce that the left-hand side of (16) is nonzero, and the result follows. O

4. A NECESSARY CONDITION FOR THE VANISHING OF THE LOCAL h-POLYNOMIAL

4.1. Overview. In this section, we prove a necessary condition for the vanishing of the local h-polynomial
of a geometric triangulation of a simplex. The section is self-contained and combinatorial in nature. As
such, the notation used is independent from the rest of the paper.

Let 0: S — 2[" be a geometric triangulation of a simplex. A face G of S is interior if o(G) = [n]. Let E
be a face of S, and let F' € Iks(E) be a face. Then F is a pyramid with apex A € F if FU E is interior and
(FUE)~ A is not interior. Let

Ap:={A € F: F is a pyramid with apex A}, and V4 =Vu(F):=[n|No((FUE)\ A)

for A € Ap. In what follows, we identify simplices with their sets of vertices.
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Definition 4.1.1. We say that F is a U-pyramid if |V4| =1 for some A € Ap.

Definition 4.1.2. A full partition of F' is a decomposition
F=FUFUAr
such that F1 U Ap U E is interior and o(Fp UE) = [n] N U, Va-

Recall that ¢(S, E;t) denotes the corresponding local h-polynomial. See Definition 3.1.1. Our goal is to
prove the following theorem.

Theorem 4.1.3. Let 0: S — 21" be a geometric triangulation of a simplex, and fix a face E € S. Let
F € lks(E) be a face that admits a full partition F = Fy U Fy U Ap. If the coefficient of t/F11+IAr] jn
U(S, E;t) is zero, then F is a U-pyramid.

Our strategy is as follows: assume that F' admits a full partition and is not a U-pyramid. We argue
that the nonvanishing of the local h-polynomial is implied by the nonvanishing of a specific element in the
cohomology of a (possibly non-compact) toric variety. We verify this nonvanishing by reducing to a result
in [LPS23].

4.2. The commutative algebra of local h-polynomials. Let A be a rational simplicial fan in R™ with
support RY,. For each ray of A, choose a rational, nonzero point v. Consider the unique piecewise Q-linear
function ¢: RY; — R defined by ¢(v) = 1 for all such v, and let S = {z € RY; : ¢(¥) = 1}. Then S is

a simplicial complex with vertices {v}, and § induces a geometric triangulation o: & — 2" of a simplex
by projecting onto a transverse hyperplane. The combinatorial type of this triangulation is independent of
both the choice of {v} and the choice of transverse hyperplane. Explicitly, if F is a face of S, then R is
the smallest coordinate hyperplane containing F. Conversely, given a geometric triangulation of a simplex,
we may deform the vertices without changing the combinatorial type to assume that the triangulation is
rational, and then the triangulation is realized by some such S.

If F is a face of S, let Cr denote the cone over F. For example, when F = (), then Cr = {0}.
Then A = {Cr : F € S§}. Fix a face F of S. Then the collection of cones Ag given by the images of
{CF : F € lks(E)} in R"/span(Cg) forms a fan. For example, Ay = A, and Ag is complete if and only
if F' is an interior face of S. Consider the standard lattice Z™ C R"”, and let Xp denote the toric variety
associated to Ag. The torus orbits in Xg are in inclusion-reversing bijection with the faces in lkg(FE). If
E C E', then X g is the closure in Xg of the torus orbit corresponding to the face E' \ E of lkg(F).

Given a finite simplicial complex T, let Q[T] denote the face ring of T over Q, i.e., the quotient of
the polynomial ring over Q with variables corresponding to the vertices of T by the ideal generated by
monomials corresponding to non-faces. For a face F' € T, let xf" € Q[T] denote the product of the variables
corresponding to the vertices of F'. Note that Q[7] is graded by degree. We write |G| for the number of
vertices in a face G. In particular, z" is a squarefree monomial of degree |F|.

A linear system of parameters (1.s.0.p.) for a finitely generated graded Q-algebra R of Krull dimension d
is a sequence of elements 61, ...,0, in Ry such that R/(61,...,60,) is a finite-dimensional Q-vector space. If
T has dimension d — 1, then Q[7] has Krull dimension d.

Let ¢ = n—|E|. Note that c is the Krull dimension of Q[lks(E)]. The support of an element 6 = > a,x? €
Q[lks(E)]y is supp(d) := {v : a, # 0}. A linear system of parameters 01, ...,0. for Q[lks(E)] is special, as
defined in [Sta92, Athl2al, if, for each vertex v € [n] \ o(E), there is an element 6, of the l.s.o.p. such that
supp(f,) consists of vertices w in lks(E) such that v € o(w), and such that 6, # 0, for v # v'.

Proposition 4.2.1. [Ath12a, Ath12b], see also [LPS23, Proof of Theorem 1.2] Let I be the ideal in Q[lks(FE)]
generated by {z¥' : FUE is interior}. Let L(S, E) be the image of I in Q[lks(E)]/(61,...,0.), wherefy, ..., 0,
is a special l.s.0.p. Then the Hilbert series of L(S, E) is £(S, E;t).
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We call L(S, E) the local face module. Note that the local face module depends on the choice of a special
l.s.o.p. In this paper, we will consider a particular special 1.s.0.p. that is defined in terms of A.

Below we view elements of (Q™/span(E))* — (Q™)* as Q-linear functions vanishing on span(F). For u €
(Q"/span(E))*, let 6y = 3 cpes(m) (U v)x" € Qlks(E)]. Consider the ideal Jg = (0. : u € (Q"/ span(E))”)
in Q[lks(E)]. Note that Jg is generated by a special 1.s.0.p., obtained by extending {e} : i € [n] \ o(E)} to
a basis for (Q"/span(FE))*.

Let H*(E) = Q[lks(F)]/Jg. Then H*(E) is isomorphic to the rational cohomology ring H*(Xg, Q) of
Xp. The ideal in H*(E) generated by {z¥ : F € lks(E), F U E interior} is L(S, E). We will show the
nonvanishing of £(S, F;t) by showing that a certain element of L(S, E) is nonzero. To achieve this, we
require three constructions.

First, if F C FE’ is an inclusion of faces in S, then there is a graded Q-algebra homomorphism (* =
g H*(E) — H*(E') corresponding to the pullback map on cohomology. The closed star Star(E’ \ E)
of E' \\ E is the subcomplex of lks(E) that consists of faces H such that H U (E’ \ E) is a face of lks(E).
Then ¢* may be characterized as follows: let v € lkg(F). Then

(1) *(a¥) =0if v ¢ Star(E’ \ E),

(2) *(z¥) = 2¥ if v € lkg(E).
Note that Star(E’ \ E) is the join of lks(E’") with E' N\ E. If v € E' \ E, then there exists a linear form wu,
in (Q™/span(E))* that takes value 1 on v and vanishes on all other v' € E’, and the above properties imply

that o*(z") = — Zv,elksw,)(uv,v’m”/.

Second, let j, = jg p.: H*(E') — H*(E) be defined by j.(z¢) = 2GzF>F for all G € lks(E'),
corresponding to the Gysin pushforward map on cohomology. It then follows from the characterization of +*
via (1) and (2), that j, o c*: H*(E) — H*(E) is multiplication by zZ >E.

Finally, we will make use of a nondegenerate bilinear form Bg: L(S,E) x L(S,E) — Q. In the case
E = (), this bilinear form was constructed in [Sta92, Corollary 4.19] using a description of the canonical
module of the face ring of a triangulation of a disk. We give an equivalent geometric description below.

Let A be the complete fan obtained by adding a ray p. spanned by (—1,...,—1) to A, and adding the
cone generated by p. and C for each cone C of A which is contained in the boundary of RZ,. Let S be the

simplicial complex of faces of A.

For each face I of A, let X be the toric variety whose fan is the image of the cones of A that contain
Cg in R"/span(Cg). Note that X is a proper simplicial toric variety, and so its cohomology ring H*(X ;)
is equipped with an isomorphism deg: H"~1#I(X ) — Q such that the Poincaré pairing, i.e., the induced
bilinear form H*(X ) x H" 1EI=*(X ;) — Q, is nondegenerate.

The cohomology ring H*(X ;) has a similar presentation to that of H*(Xg): it is the quotient of Q[lk¢ (£)]
by the linear forms corresponding to linear functions on R™/span(Cg). In particular, H*(Xp)/(z¢) =
H*(Xg). This implies that the restriction map H*(X ;) — H*(Xg) induces an isomorphism

(zF . F € Iks(E), F U E interior)

% L(S,E).
(xF : F € lks(F), F U FE interior) N (x°) = LS, B)

Lemma 4.2.2. The restriction of the Poincaré pairing to the ideal (x¥ : F € lks(E), F U E interior)
descends to a nondegenerate bilinear form on L(S, E).

Proof. We first show that (z¥ : F € lks(E), F U E interior) = ann(x¢). For each face F such that F U E

is interior, %" - 2¢ = 0 in Q[lkg(E)], so this also holds in H*(X ). This gives that (¢ : F € lks(E), F U
E interior) C ann(z). For the other inclusion, note that H*(Xz)/(z" : F € lks(E), F U E interior) is the



THE LOCAL MOTIVIC MONODROMY CONJECTURE FOR SIMPLICIAL NONDEGENERATE SINGULARITIES 31

cohomology of the toric divisor on X, corresponding to the ray p.. In particular, Poincaré duality holds for
H*(Xp)/(zF : F € Iks(E), F U E interior). Therefore, if there is some nonzero

u € ker (H*(Xz)/(2" : F € lks(E), F U E interior) — H*(Xz)/ ann(z®)) ,

then there is some v such that - v is nonzero and lies in the degree n — |E| — 1 part of H*(X)/(z" : F €
lIks(E), FLUE interior), which is 1-dimensional. This contradicts that H*(X )/ ann(z°) is nonzero in degree
n — |E| — 1, spanned by the image of any w € H" 1EI=1(X ;) such that 2° - w # 0.

For any ideal I in H*(X ), the kernel of the restriction of the Poincaré pairing to I is ann(I)NJI. Applying
this with I = ann(z°) and using that ann(ann(z¢)) = (z¢) gives the result. O

Let Bg: L(S,E) x L(S, E) — Q be the induced nondegenerate bilinear form. If E C E’ is an inclusion of
faces, then the pullback map ¢* and Gysin pushforward j, are adjoints: for any u € L(S, E) and v € L(S, E’),
we have

Bg/(t*u,v) = Bg(u, j.v).

This follows from the construction of the bilinear forms and the corresponding fact on the complete toric
varieties X and Xp,.

4.3. Proof of nonvanishing. We will prove Theorem 4.1.3 by reducing to a special case which was proved
in [LPS23]. Because the Hilbert series of L(S, E) is ¢(S, E;t), the following result is a strengthening of the
case of Theorem 4.1.3 when F| = I, = ().

Proposition 4.3.1. [LPS23, Remark 3.2] Let F € lks(E) be a face such that FUE is interior and Ap = F.
If 227 =0 in L(S, E), then F is a U-pyramid.

Proposition 4.3.1 is proved by computing a resolution of L(S, F). This gives a description of the kernel
of the map (2f : F € Iks(E), F U E interior) — L(S, E). From this description, it is clear that if the kernel
contains z47 | then F must be a U-pyramid.

Proof of Theorem 4.1.8. Suppose we have a full partition F' = F; Ll F5 U Ap and F' is not a U-pyramid. We
claim that z™Y4Ar ¢ (S, E) is nonzero; note that this makes sense because Fy LI Ap U E is interior. To
see this, it suffices to prove that it is nonzero after restriction to L(S, Fy U E). Consider the Gysin map
Ju: L(S,FLUFy UE) = L(S, F, U E). Then 2M1YAr = j, (247) € L(S, F, U E). By Proposition 4.3.1, x4#
is nonzero in L(S, F; U Fy U E).

The Gysin map j. is adjoint to the pullback map ¢*: L(S,Fo U E) — L(S,Fy U F5 U E). Because
o(F UE) = o(F1 U Fy U E), this pullback map is surjective (cf. the proof of [LPS23, Theorem 1.6]).
Explicitly, if G € lks(F; U Fo U E) and G U Fy U F, U E is interior, then G U Fy U E is interior and
t*(x%) = 2%, This implies that j, is injective, giving the desired nonvanishing. O

Remark 4.3.2. In [LPS23], Proposition 4.3.1 is proved in the setting of quasi-geometric homology trian-
gulations of simplices, a much more general class of triangulations of simplices. The proof of Theorem 4.1.3
can be adapted to work in this setting.

Remark 4.3.3. In a previous version of this article [LPS22], Theorem 4.1.3 is proved in a different way.
Using the language above, the proof there constructs a face G with G U E interior and checks, via a lengthy
computation, that By (215 Ar £&) £ 0. The proof shows that, up to a simple normalization factor and an
explicit sign, Bg(xf194r7 2F) is equal to 1.
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5. THE LOCAL FORMAL ZETA FUNCTION AND ITS CANDIDATE POLES

5.1. Overview. In this section, we introduce the local formal zeta function (Definition 5.3.1) and develop
its fundamental properties. In Section 5.2, we recall the formula for Zy,0+(7T) in [BN20, Theorem 8.3.5]. In
Section 5.3, we define the local formal zeta function and discuss its candidate poles. In Section 5.4, we prove
a relation that the local formal zeta function satisfies that will be a crucial tool in the proof of Theorem 1.4.7.

We first introduce some notation for use in this section and in Section 6. We use capital letters to denote
elements of the vector space containing Newt(f) and use lowercase letters to denote elements of the dual
space. Let I be the union of the proper interior faces of Newt(f) and their subfaces. That is, I" is the union
of faces F' of Newt(f) that are visible from the origin in the sense that for every W € F, the intersection of
Newt(f) with the interval from the origin to W equals {W}. Let ¥ = X be the dual fan of Newt(f). For
each face F' of Newt(f), let o be the cone of ¥ dual to F.

5.2. Formula for the local motivic zeta function. We now recall the formula of Bultot and Nicaise for
the local motivic zeta function of a nondegenerate polynomial f.

Consider a nonempty compact face K of I'. Following [BN20], we associate two classes in M#" to K.
For i € {0,1}, let Yk (i) be the closed subscheme of Speck[span(K) N Z"] cut out by fx = i. When
i = 0, we endow Yz (0) with the trivial fi-action and obtain a class [Yx(0)] € M#. We define a fi-action
on Yx(1) as follows. Let px be the lattice distance of K to the origin, and let w = wg = pryx €
Hom(span(K) NZ™,7Z). Then w determines a cocharacter Speck[Z] — Speck[span(K) N Z"], which we can
restrict via Speck[T]/(T” — 1) — Speck|Z] to determine a p,-action on Speck[span(K) NZ"]. This induces
an action of u, on Yx(1). Explicitly, choose a basis for span(K) N Z™ and write w = (w1,...,w,) and
[ = wczr Aaz®. Then for each a = (a1, ...,a,) with A, # 0, >, a;w; is divisible by p, and the action is

C : (151, s 7x7’) = (CWlea . '7Cw’rkx’f’)'

This gives a class [Yx(1)] in M”. When K is the empty compact face of I', span(K) NZ" = {0}, and we let
Y (0) be the point Speck[span(K) NZ"] and let Yi (1) = 0. Then [Yx(0)] =1 and [Yx(1)] = 0.

Remark 5.2.1. The above construction differs slightly from that in [BN20]. Explicitly, for i € {0, 1}, [BN20]
let Xk (i) be the closed subscheme of Speck[Z"] cut out by fx = i. Consider X (0) with the trivial ji-action.
Let w be any linear function in Z" that restricts to pyx, and, as above, consider the corresponding p,-action
on Xk (1) C Speck[Z"]. They consider the classes [X (i)] in M#. It follows from [BN20, Proposition 7.1.1]
that [Xg(i)] = [V (i)(L — 1)n—1-dim K,

The following lemma will be important in the proof of Theorem 6.1.2.

Lemma 5.2.2. Let G C F be an inclusion of compact faces of I'. Suppose there exists a vertex A of F such
that F = Conv {G, A} and span(F)NZ" = span(G)NZ" +Z - A. Then for i € {0,1}, [Ya(9)] + [Yr(9)] =
(L — 1)dim & e pmEe,

Proof. Let r = dim F. Let pg and pg be the smallest positive integers such that wg = patg and wp = ppp
lie in Hom(span(G) NZ",Z) and Hom(span(F') NZ",Z) respectively.

Then, we may choose coordinates such that Yz (i) is defined by {fr(zo,...,2,) =i} in Speck[span(F) N
Z"], Y (i) is defined by { fa(z1,...,z,) =i} in Speck[span(G)NZ"], and fr(xo,...,z,) = zo+fa(x1, ..., Tr).
Also, we may set p = pp = pg and write wg = (w1, ..., w,) and wp = (1, w1, ..., w,). As above, wg and wg
induce pp-actions on Speck[span(G)NZ"] and Speck[span(F)NZ"] respectively. Consider the p,-equivariant
map

¢: Speck[span(G) NZ"] \ Y (i) — Yr (i),

(b(l'l,. "7x7“) = (Z - fG(xla"'axT)7x17"' axT)'
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Then ¢ is an isomorphism, with inverse ¢~1(x¢,1,...,2,) = (21,...,2,). By [BN20, Lemma 7.1.1], the
class of any r-dimensional torus in M#* is (L — 1)", and the result follows. O

Example 5.2.3. Let A be a primitive vertex of I. Then Lemma 5.2.2, with F = {A} and G = (), implies
that [Y4(0)] = 0 and [Y4(1)] = 1.

Example 5.2.4. Let F' be a compact B;-face of I' with nonempty base G. Then Lemma 5.2.2 implies that
-1 —1 _1\dim F
Ya(O)l 257 + Ya ()] + Yp(0)) =ty + [Yr (D)) = S

We now discuss two results on lattice point enumeration. The first result is standard. Let C' be a nonzero

rational simplicial polyhedral cone in RY, with rays spanned by primitive integer vectors ui,...,u,. Let
Boxt(C)={ueN":u=>_, \u; for some 0 < \; < 1}. Then
./L"U,
(17) Z x“zMEZﬂxl,...wnﬂ.
weC°NN" Hi:l(l - 7’)

We also need the following lemma.

Lemma 5.2.5. Let C be a rational polyhedral cone of dimension d contained in RY,, and let Y be a Z-linear
function that takes nonnegative values on C and is not identically zero on C. Let uy,...,u, be the primitive
generators of the rays of C. Let I = {i € [r] : (u;,Y) # 0}. Assume that (uj, 1) =1 for j &€ I. Then

(L _ 1)d—1 Z L—{u,l)T(u,Y)
ueC°NN"

lies in the subring
1

1— L (w ) {usy)

gl | cazmwT

iel
Proof. This is essentially [BN20, Lemma 5.1.1]; the point is that we may reduce to the case when C is
simplicial and then apply (17). The 1/(1 — L™!) terms that arise from j & I are cancelled by the (L — 1)4~1
factor. ]

Define a piecewise linear function N on X by
N(u) = min{(u, W) : W € Newt(f)}.

Remark 5.2.6. If u is a primitive generator of a ray in the dual fan, corresponding to a facet F' of Newt(f),
then N(u) is the lattice distance of F' to the origin. If N(u) =0, then u = e} for some 1 <4 <n, and hence
(u,1) = 1.

Lemma 5.2.7. [BN20, proof of Theorem 8.3.5] Let uy,...,u, be the primitive generators of the rays of ok .
The element

(L _ l)nfdimK Z L7<u’1>TN(u)

u€og NN"

lies in the subring Z[L, L1, T) { of ZIL][L~1,T].

1
1—L’<“"‘”T’V‘“”}{z‘e[r]:Mui#O}
Proof. Observe that the restriction of N to ox is a nonnegative linear function. The result follows from
Lemma 5.2.5 and Remark 5.2.6. |

In [BN20], they define
(]L _ l)nfdimK Z L7<u’1>TN(u) c MﬂHTﬂ

u€o g NN"
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to be the image of the expression in Lemma 5.2.7 under the specialization map Z[L, L~!][T] — M*”[T] that
sends L to L.

Theorem 5.2.8. [BN20, Theorem 8.3.5] Suppose f is nondegenerate. Then

(18)  Zmot(T) = Z ([YK(O)]ELZCT + [YK(l)]> ((]L — 1)77«—dian Z L—(u,l):pN(u)) c Mﬂ[[T}L

K u€o g NN™
where the sum is over nonempty compact faces K € T'.

Remark 5.2.9. There is an extra factor of (L — 1) in (18) that does not appear in [BN20, Theorem 8.3.5]
for consistency with our choice of normalization of the local motivic zeta function, cf. Remark 1.2.6.

5.3. The local formal zeta function. We now introduce the local formal zeta function of f, denoted
Ztor(T), which is a power series over a polynomial ring that specializes to Zyot(T'). The key advantage of
Ztor(T) is that it lies in a power series ring over an integral domain, so it is easier to understand sets of
candidate poles of Zgo, (T'). Also, Zto,(T) depends only on Newt(f), as opposed to Zyot(T) which depends

on f.
Let D be a ring containing Z[L, L™, T, ﬁ] as a subring. Let
Rp =D[Yk : 0 # K € I', K compact]/(Z; + Zz), where
7, = (Yy — 1: V primitive vertex of T"), and
(L _ 1)dim F
1—-L-1T
When D = Z[L, L7|[T], we write R := Rp. It follows from Example 5.2.3 and Example 5.2.4 that we have
a well-defined Z[T]-algebra homomorphism

o= Yo+ Yr — : F compact Bj-face with nonempty base G).

L-iT

sp: R — ./\/lﬂ[[T]]7 given by sp(L) =L, sp(Yk) = [YK(O)]m + [

Y (1))
Definition 5.3.1. With the notation above,

Ztor(T) = Z Yi ((Ll)ndimK Z L<u,1>TN(u)> cR.

0#£Kel u€oy NN
K compact

Above, the fact that the right-hand side lies in R follows from Lemma 5.2.7. By Theorem 5.2.8,
Sp(Zfor(T)) = Zmot(T)~

Lemma 5.3.2. The ring Rp 1is isomorphic to a polynomial ring over D. Moreover, if D is a subring of D',
then Rp is naturally a subring of Rp:.

Proof. Consider the following change of variables. If K is a nonempty compact face of T', then let

i n—dim K—1
i (L— l)dlmK-i-l ;
Zic = (~1)° K<YK—1_L-1T 2, -1y
=0

Then Rp = D[Zk : 0 # K € ', K compact]/(Z; + Z3), where
L-1 n—1 )
L =Zv -1+ 1-I-iT ;(1 — L)* : V primitive vertex of T'),

Iy = (Zg — Zp : F compact Bj-face with nonempty base G).
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Consider the equivalence relation on nonempty compact faces in I' generated by G ~ F whenever F' is a
compact Bi-face with nonempty base G. Then R is isomorphic to a polynomial ring over D with variables
indexed by all equivalence classes that do not contain a primitive vertex of I". If D is a subring of D', then
Rp: is a polynomial ring over D’ in the same variables as above. It follows that the natural map Rp — Rpr
is injective. |

When D = Z[L][L~",T], we let R := Rp. By Lemma 5.3.2, R is a subring of R. In what follows,
we will freely view Zgo:(T) as an element of R, in order to ensure relevant infinite sums in L~! and T are
well-defined.

We next define the notion of a set of candidate poles for the local formal zeta function. Let P be a finite

set of rational numbers containing —1. Then P is a set of candidate poles for some power series Z(T) € R
if Z(T) belongs to the subring Rp of R, where

=
1 — LeT? (a,b)GZXZ>0,a/b€P.
By Lemma 5.2.7, {a € Q : Contrib(a) # 0} U {—1} is a set of candidate poles for Zs, (T).

Remark 5.3.3. Since sp(Zior(T)) = Zmot(T), any set of candidate poles for Zg,, (T) is a set of candidate
poles for Z,04(T).

Remark 5.3.4. Let P; and P, be sets of candidate poles for elements Z;(T) and Z(T) in R respectively.
It follows from the definition that P; U P, is a set of candidate poles for Z1(T) + Z(T).

D= Z[L,L‘l,T][

The main benefit of working with candidate poles of Z,,(T) is that they satisfy the following lemma.
Lemma 5.3.5. Let Py and Py be sets of candidate poles for Z(T) € R. Then Py NPy is a set of candidate

poles for Z(T).
Proof. Let D' = Z[L, L™, T, =] and R’ = Rp/. We can write Z(T) = g((j);)) for i € {1,2} for some
Fy(T) € R and some G;(t) a finite product of terms of the form {1 — L%T? : (a,b) € Z X Zwq,a/b € P;}.
Suppose that G1(T) = (1 — L°T%)G(T) for some (c,d) € Z x Z=g,c/d € Py ~ P2. By induction on
deg(G1(T)), the result will follow if we can show that Fy(T) = (1 — LT F|(T) for some F|(T) € R'.
Since the leading coefficient of 1 — LT is a unit in R’, we may apply the division algorithm to write
F(T) = (1 = LTHF|(T) 4+ F(T) for some F|(T),F(T) € R/, with deg F}(T) < d. The equality
Fi(T)Go(T) = Fo(T)(1 — LTHG(T) in R’ implies that 1— L¢T? divides F} (T)Go(T). Over an appropriate
choice of ring Rp containing R as a subring, 1 — L¢T'? has roots {exp(%)[ﬁc/d : 0 < j < d}. Similarly,
G>(T) has roots contained in {exp(352)L~%*: 0 < j < b, (a,b) € Z x Z=g,a/b € P2}. Since ¢/d ¢ P and

deg Fy(T) < d, we deduce that F}(T) =0, and Z(T) = %, as desired. O

Remark 5.3.6. By Lemma 5.3.5, if Z(T') € R admits a set of candidate poles, then there exists a minimal
set of candidate poles. In particular, there exists a minimal set of candidate poles of Zg., (7).

5.4. Simplifying the local formal zeta function. We now develop some tools to manipulate the local
formal zeta function. Given a subset C' C R%, we write

(19) Zin(D)lc = > YK<(L—1)"-dimK > L<“’1>TN(“)>€R.

Pp#£Kel u€oNCNN"
K compact

We call Zs, (T)|c the contribution of C' to Zgo (T).
We will now prove a key technical tool we will use to manipulate Zs,, (7). Lemma 5.4.1 is analogous to
[ELT22, Lemma 3.3].
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Lemma 5.4.1. Let F be a compact By-face with nonempty base G and apex A in the direction ej. Let C’
be a nonzero rational polyhedral cone with (C")° C 0%, and let C' C o be the convex hull of C" and R>qej.
Then

amajwﬂmmﬂ(L1w< > LW”TWAveiR
we(CoU(C?)°)NNn

Proof. A simplicial refinement of C’ induces a simplicial refinement of C, so we may reduce to the case that C’
is simplicial. Let w1, ..., u, be the primitive integer vectors spanning the rays of C’. Then ug = €}, u1,...,u,
are the primitive integer vectors spanning the rays of C'. With the notation of (17), Box" (C’) = {u € N :
w=3"_, \u; for some 0 < \; < 1} and Box™(C) = {u € N" : y = o Aiu; for some 0 < \; < 1}, We
claim that Box™ (C) = {u+ ¢} : u € Box"(C")}.

Clearly, {u+ej : u € Box*(C")} C Box*(C). Conversely, consider an element u’ = >;_, \u; € Box™ (C)
for some 0 < A\; < 1. Let X be a point in G. For 1 < i <r, since u; € o, we have (u;, A — X) = 0. Also,
N(ep) = (ej, X) =0 and (e, A) = 1. We compute:

(W, A= X) =X+ > Ni{ui, A= X) =X € Z.
i=1
Hence A\g € Z N (0,1] = {1}. Then v’ = >, \ju; + e} € {u+ e} : u € Box" (C")}, which proves the claim.
Observe that if u € Box™(C"), then N(u +€}) = N(u) = (u, A) and (u + e},1) = (u,1) + 1. Also,
N(u;) = (u;, A) for 1 < ¢ <r. Then using (17) and the relations in Z,, we compute the left-hand side of the
equality in Lemma 5.4.1:

Zu€B0x+(C’) L~ (uw,1) N (u)

H;=1 (1 — L7<“i-,1>TN(ui))

- - L1
L—1 Ye(L—1 n_l_dlmF+YG L—1 n—1—dim G
1- L1

_ E=-n" > _ueBox*(C") L= pluwd)
1= LT [, (1 — L (e 7w A))

Similarly, using (17), we compute the right-hand side of the equality in Lemma 5.4.1:
L—lT u ox , L_<u11>T<u7A>
(L-1)"(1+ ZfB+w>
1—L7'T ) [[i_,(1 — L= (w7 {ui,A))
The result follows. |

Remark 5.4.2. We note that a version of Lemma 5.4.1 holds when G is empty, i.e., F = {A} is a vertex
with some coordinate 1. Then A is a primitive vertex, so the relations in Z; imply that for C' C 09,

%ﬁnb_u;4w< Z:L<“WWM>6R

ueCNN™

6. FAKE POLES FOR THE LOCAL FORMAL ZETA FUNCTION

6.1. Overview. In this section, we prove Theorem 1.4.7. We first introduce some notation before stating a
strengthening of Theorem 1.4.7 and outlining its proof.

We let Vert(F') denote the set of vertices of F'. Recall from Section 5 that I' is the union of the proper
interior faces of Newt(f) and their subfaces. Given a face F of T, recall that C is the closure of the cone over
F, with distinguished generators Gen(Cp). Then span(F') = span(Cr) and Gen(Cr) = Vert(F)UUnb(CF).
Given an inclusion of faces M C F, let Gen(Cr ~\ Cyy) = Gen(Cr) \ Gen(Cyps). Recall that a face F of
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Newt(f) is By if it has an apex A with base direction e}, and (e}, A) = 1. Given a B;-face F, let Ap be the
set of all choices of such an apex A.

Definition 6.1.1. We say that the Newton polyhedron Newt(f) is a-simplicial if for any minimal element
M in Contrib() and any face F D> M, dim Cr = dim Cy; + | Gen(Cr ~ Cpr)|. Fquivalently, the images of
the elements of Gen(Cr ~ Cyr) are linearly independent in R™/span(Cyy).

For example, if Newt(f) is simplicial, then it is a-simplicial. If all minimal elements in Contrib(«) are
facets, then Newt(f) is a-simplicial. One key property of a-simplicial Newton polyhedra is that every face of
Contrib(«) contains a unique minimal face of Contrib(«) (Lemma 6.2.4). We now state our main theorem.

Theorem 6.1.2. Suppose f is nondegenerate. Let
P ={a € Q: Contrib(a) # 0} U{—1}, and
P ={a€P:a¢Z,every face in Contrib(c) is UB; and Newt(f) is a-simplicial}.
Then P P is a set of candidate poles for Zyot(T).

Our strategy to prove Theorem 6.1.2 involves repeatedly applying Lemma 5.4.1, which will require us to
choose apices and base directions for various By-faces. We will require the following compatibility condition.

Definition 6.1.3. A locally unique labeling of Contrib(«) is a choice of an apex Ar and a base direction
e} for each F € Contrib(a) such that:

(*) whenever F C F' and Ap = Aps, we have e} = e}.
If every face of Contrib(«) is UBy, then Contrib(«) has a locally unique labeling (Lemma 6.2.1).

We now summarize the rest of the proof of Theorem 6.1.2. We first establish some notation and basic
results in Section 6.2. Then, using Lemma 5.3.5, we reduce to showing that for each candidate pole o & Z
that is contributed only by UBj-faces and such that Newt(f) is a-simplicial, there is a set of candidate poles
for Ztor(T') not containing «. Fix such an a.

Because Newt( f) is a-simplicial, every face of Contrib(«) contains a unique minimal face M of Contrib(a).
In Section 6.3, we develop the tools to argue that we can consider each minimal face M separately. We
construct a neighborhood Njs <s of op. In Lemma 6.3.12, we show that if Zfor(T)|N1<\>/Il<6 admits a set of
candidate poles not containing « for each minimal face M, then the theorem follows.

To analyze Zgor(T)|n¢, _,, our strategy is to construct a complete fan ¥z where each maximal cone is

labeled by a face containing M, which necessarily lies in Contrib(«). We construct ¥z as the normal fan
of a polytope where each vertex is labeled by a face containing M. This polytope is determined by an
a-compatible pair (see Definition 6.4.11).

Because we have fixed a locally unique labeling, we may associate to each maximal cone of ¥z, which
corresponds to a face F' containing M, a pair (Ap, e}.) consisting of an apex and a base direction. We then
associate a face containing M and a pair (A4, e}) to all cones in the fan ¥z N Ny <5. See Definition 6.4.3.
Consider a nonzero cone C' in the fan ¥z N Njs <5 and an associated pair (A4,e;). We arrange that for
any face F' containing M, if the dual cone of F' intersects C, then F' is a Bj-face with apex A and base
direction ej. By repeatedly applying Lemma 5.4.1, we show that the contribution of C° to Zg,, (T') is equal to
(L=1)"> cconnn L= 7A) i order to do this, we need to show that C is locally defined by elements
“orthogonal to e;”, see Lemma 6.4.8. Using an additional genericity condition (see Definition 6.4.11), we
deduce that the contribution Zg., (T')|ce admits a set of candidate poles not containing «. Using this strategy,
in Section 6.4 we prove that the existence of an a-compatible pair implies Theorem 6.1.2.

In Section 6.5, we show that the existence of an a-compatible pair is implied by the existence of a
restricted, weakly a-compatible pair (Definition 6.4.1, Definition 6.5.1). More precisely, we show that each
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FIGURE 1. A complete fan with maximal cones indexed by faces containing M and a cor-
responding deformation. We show the intersection of span(cys) with an affine hyperplane.
The cone oy is shown in black and grey, while the codimension 1 cones of the complete fan
appear in red, with their maximal cones labeled in red.

restricted, weakly a-compatible pair can be “deformed” into an a-compatible pair. In Section 6.6, we give
an explicit construction of a restricted, weakly a-compatible pair, which is where we use the locally unique
condition. Figure 1 shows an example of a fan corresponding to a restricted, weakly a-compatible pair, and
a corresponding deformation.

6.2. Combinatorial preliminaries. In this section, we prepare for the constructions that will take the
rest of the section. Recall from Definition 1.4.3 that a face G of Newt(f) is UB; if there exists an apex A in
G with a unique choice of base direction e}, and (e}, A) = 1.

Lemma 6.2.1. If every face in Contrib(«) is UBj, then Contrib(«) admits a locally unique labeling.

Proof. Suppose that every face F' in Contrib(«) is UB;. Then it has an apex Ap with a unique choice of base
direction e},. We may choose one such apex, and label F' by (Ap, e}.) to get a locally unique labeling. Indeed,
if F C F' and Ap = Ap/, then e}, is a base direction for F' with apex Ap. We deduce that e}, =e},. O

Given an element V € T, we say that u € R™ is critical with respect to (o, V) if a(u,V) + (u,1) = 0.
Recall that we have a piecewise linear function N(u) = min{(u, W) : W € Newt(f)}. We say that u € RZ,
is critical with respect to a if aN(u) + (u,1) = 0. Equivalently, for some/any G € T' such that u € og, and
some/any element V € G, u is critical with respect to (o, V). A set is critical with respect to « (or (o, V))
if every element of the set is critical with respect to a (or (o, V)).

Remark 6.2.2. Unless V = —(1/a)1, the points u € R™ critical with respect to (o, V') form a hyperplane.
A special case of this observation is [ELT22, Lemma 3.4].

We conclude this section with three combinatorial observations.

Lemma 6.2.3. Let M be an element of Contrib(«), and assume that every face of Contrib(a) is UBj.
Assume that « # —| Vert(M)| € Z. Then there exists a vertex Vi of M such that M is not a By-face with
apex V.

Proof. Suppose every vertex of M is an apex. Since 1 € span(M), it follows that I_ZVGVcrt(M) V is a linear
combination of the unbounded directions of M, and hence o = —pp;(1) = —| Vert(M)], a contradiction. O

Lemma 6.2.4. Assume that Newt(f) is a-simplicial. If My, Ms are distinct minimal elements in Contrib(«),
then opr, Nop, = {0},
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Proof. We argue by contradiction. Suppose o, Noag, 7 {0}. Then there exists a facet F' in 0 Newt(f) such
that op C oar, Mo, Note that F' is interior and hence F' € I'. Equivalently, M, Ms are common faces
of F. In particular, My N Ms is a (possibly empty) face of F, and Cuy,nn, = Car, N Chy,. Let Gen(Chy,
Cumynm,) = {Wh, ..., Ws} and Gen(Chy, N Caynm,) = {W1, ..., W, }. By Definition 6.1.1 applied to My C
F, Gen(Cu, ~ Cawynns,) is linearly independent in R™/ span(Chy,). By Definition 6.1.1 applied to My C F,
Gen(Cha, ~ Carynas,) is linearly independent in R/ span(Cay, ). We claim that Wy, ..., W, W{,..., W/, are
linearly independent in R™/span(Cas, s, ). Indeed, if 37, a; Wi + 37, b;W) = 0 in R/ span(Car, nar, ), then
the corresponding equation in R™/span(Ch, ) implies that b; = 0 for all j, and the corresponding equation
in R"/span(Cyy,) implies that a; = 0 for all s.

By assumption, 1 = a; Wy + -+ + a;Ws € R™/span(Cr,nar, ) for some ayq,...,a; € Ry and 1 = o) W] +
-+ al, W/, € R"/span(Ch,nns,) for some af,...,al, € R. Subtracting one equation from the other, and
using the linear independence of W1, ..., Ws, Wi, ..., W[, in R"/span(Chs,nn, ), we deduce that a; = a); = 0

for all 4,j. Hence 1 € span(Ca,nas, ), and My N My € Contrib(a). This contradicts the minimality of M
and Ms. O

Remark 6.2.5. If e} is a base direction of F' with apex A, then e, ¢ Unb(CFr). Indeed, if e; € Unb(Cp),
then it follows from Definition 1.4.2 that (e}, e;) = 0.

Assumptions and notation. For the remainder, we will assume that o & Z, Newt(f) is a-simplicial, and that
all faces of Contrib(a) are UB;y. Let M be a minimal element of Contrib(c). Recall that we have chosen a
locally unique labeling (Ap, €},) of Contrib(c). By Lemma 6.2.3, we may fix a vertex Vs of M which is not
an apex, and hence satisfies

(20) (€p,Var) =0 for all F > M.

We also fix a point Wy, in the relative interior of M. Given a nonzero point W and € € R, let Hyy = {u :
(u, W) = €}, and consider the associated half-spaces Hy >¢, Hw >e, Hw <¢, Hw <. We let Hyy := Hyyg. Let
S ={ueR": (u,1) =1}, and let S = Conv {e],...,e:} C S’ be the standard (n — 1)-dimensional simplex.

6.3. Covering the critical locus. The goal of this section is to build small neighborhoods covering the
locus of u € R, that is critical with respect to a. This will allow us to concentrate our attention on a single
minimal face in Contrib(a).

Definition 6.3.1. Let M be a minimal element of Contrib(a) and let § € Q>¢. We define Ny <5 to be the
cone over {u € S : (u, Wpr) — N(u) < d}.

Similarly, we let Nas <5, Nu,s and Nag,>5 be the cones over {u € S : (u, Wy) — N(u) < 6}, {u € S:
(u,War) — N(u) =6} and {u € S : (u, W) — N(u) > §} respectively.

Here (u, War) — N (u) is a nonnegative function on RZ, that is piecewise linear with respect to . Because
N (u) is the support function of a polyhedron and hence convex, N M,<s is convex. It follows that Nas <5 is
a rational polyhedral cone of dimension n. Note that ops is the cone over {u € S : (u, Wys) — N(u) = 0},
and hence oy C Nps<s5. We can equivalently write Ny <5 = {u € R% : (u, War) — N(u) < 6{u,1)}. Also,
NXLS(S = Nu<s NRY,.

Lemma 6.3.2. Let C C RY, be a closed cone such that C Noy = {0}. Then C' N Nur<s = {0} for o
sufficiently small. B

Proof. We may assume that C'NS # (. Since CN S is compact, we may consider the minimal element b > 0
of {{u,War) = N(u) :u € CNS}. Then CNNpr<sNS =0 for § <b. O

Lemma 6.3.3. Let K be a face of O Newt(f) and suppose that K ¢ T'. Let M be a minimal element in
Contrib(a). Then ox N Nar,<s5 = {0} for § sufficiently small.
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Proof. By Lemma 6.3.2, it is enough to show that ox Noay = {0}. Suppose that ox Nop # {0}. Then
ok Noy = ok for some face K’ of d Newt(f) containing both K and M. Since M C K', K’ € Contrib(«).
Since K C K’ € I', we deduce that K € I', a contradiction. O

The following lemma is immediate from Lemma 6.2.4 and Lemma 6.3.2.

Lemma 6.3.4. If My, My are distinct minimal elements in Contrib(e), then Nas <5 N Nag,,<s = {0} for é
sufficiently small.

Lemma 6.3.5. For § sufficiently small, if u € Nas <5 ~ {0}, then N(u) > 0.

Proof. After scaling, we may assume that uw € Njr<s N S. Since S is compact, we may consider b =
min{(u, War) : u € S}. Since M is interior, Wy ¢ OR%, and hence b > 0. For § < b and u € Nas,<5 N S,
N(u) = (u, War) — ({(u, Wpr) — N(u)) > (u,Wp) =6 >b—46 > 0. O

Let ¥/ be a fan supported on RY, that refines ¥. We may consider the fan ¥/ N Nas<s supported on
Nu,<s given by all cones of the form {CNC’ : C € ¥',C" is a face of Ny <s}. The lemma below gives a
more explicit description.

Lemma 6.3.6. Let ¥’ be a fan supported on RZ that refines ¥. Let C € ¥/, and fix § sufficiently small.
Then -
(1) If C oy = {0}, then CN Nap<s = {0}.
(2) If C C on, then C is a cone in &' N N <s.
(3) If Cnoy # {0} and C ¢ oy, then dim(CNNys <5) = dim C. Moreover, dim(CNNyzs) = dim C—1,
and C N Ny s is the only proper face of C N Ny <5 that is not contained in a proper face of C.

Proof. If C Moy = {0}, then C N Ny <5 = {0} by Lemma 6.3.2. If C' C oy, then since opr C N <s,
C' N Nyr,<s = C. This establishes the first two properties. Assume that C' Noar # {0} and C ¢ opr. Since
Y refines X, C' C ok for some face K of dNewt(f). Fix a vertex V of K, and let P = C' N S. Then
PN Ny<s = PNHw, _v<s. For any § > 0, the relative interior of P intersects both Hy,,_v >0 and
Hy,,—v,<s because P ¢ op and PNopy # 0. It follows that for § sufficiently small, Hy,, v s intersects
the relative interior of P. We deduce that P N Nj; <s has dimension dim P, and that the only proper face
of PN Ny <s that is not contained in a proper face of P is P N Hyy,,_v,s, which has dimension dim P — 1.
This establishes the result. O

The following two remarks are corollaries of the Lemma 6.3.6 and its proof.

Remark 6.3.7. Let C be a rational polyhedral cone such that C' C ok for some face K of 9 Newt(f). Then
for ¢ sufficiently small, C° N Ny <5 = (C N Nar<5)°, and C° N Nag>s = (CN Nag>6)° U (C N Nags)©.

Remark 6.3.8. Let K be a nonempty face of d Newt(f), and let 6x = ox N (N;Nas,,>5). Assume that §
is chosen sufficiently small. If K € Contrib(«), then M; C K for some 1 <4 <, and hence ox C Ny, <6,
and 6 = (). Assume that K ¢ Contrib(«). By Lemma 6.3.4 and Lemma 6.3.6, 5 is a rational polyhedral
cone of dimension dimog, and 0% N (N; Ny, >5) = 5% U (Ui(Gx N Nag, 5)°)-

Lemma 6.3.9. Let ¥’ be a fan supported on RZ, that refines X. Let v be a ray of the fan ¥’ N Nas<s
such that v ¢ o, for some & chosen sufficiently small. Let C be the smallest cone in X' containing v. The
following properties hold:
(1) CNon # {0},
(2) the smallest cone in ¥ containing C has the form ok for some K in T,
(3) if v is critical with respect to (a, V'), for some vertex V of either K or M, then C is critical with
respect to (a, V).
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Proof. Tt follows from Lemma 6.3.6 that v = C N Ny s, CNoy # {0}, and dim(C' N Nyp<5) = dim C = 2.
This establishes (1). Lemma 6.3.3 implies (2). Since ox Nopy # {0}, ox Nopy = o for some K’ in
I' containing both M and K. Fix any vertex V of K’. Since M € Contrib(«), we have oxr C Hyy 1.
Let o' # « be the other ray spanning C' N Nps<5. Then v/ C o C Hay41. Hence, if v C Hyy 1, then
span(C) = span(C N Nas,<s) = Ry + Ry C Hyv 41, and C C Hyy4q. This establishes (3). O

Lemma 6.3.10. Let v be a ray of the fan X N Npr<s such that v ¢ onr, for some § chosen sufficiently
small. Then ~ is not critical with respect to «.

Proof. By Lemma 6.3.9, there exists K € I' such that ok is the smallest cone in ¥ containing . Suppose
that v is critical with respect to a. Then « is critical with respect to (a, V') for any vertex V of K. By
Lemma 6.3.9, ok is critical with respect to (a, V), and hence K € Contrib(a). Since ox N Nar<s # {0},
Lemma 6.3.4 implies that M C K, and hence v C oy, a contradiction. O

Lemma 6.3.11. Let My,..., M, be the minimal elements in Contrib(a), and let K be a nonempty face of
ONewt(f). Then for § sufficiently small, (L — 1)7~dimE 3~ L= TN Jies in R and
admits a set of candidate poles not containing o.

u€ayN(NiNar;, >5)NN"

Proof. Let 65 = ok N (NiNag,,>5). By Remark 6.3.8, if K € Contrib(a), then 5x = 0. Assume that
K ¢ Contrib(c). By Remark 6.3.8, 6 is a rational polyhedral cone of dimension dimog, and o9 N
(MiNu, >5) = 6% U (Ui(6x N Nag, 5)°). By Lemma 6.3.2, the rays of 6x are the union of the rays of ox
that are not critical with respect to «, and the rays of ox N Npy, <5 that do not lie in opy, for 1 <¢ <r. By
Lemma 6.3.10, none of the rays of 6 are critical with respect to a. By Remark 5.2.6 and Lemma 6.3.5, if u
is a primitive generator of a ray of 5 and N(u) = 0, then u = e for some 1 <4 < n, and hence (u,1) = 1.
Since the restriction of N to & C o is linear, Lemma 5.2.5 implies that the following elements of R lie in
R and admit sets of candidate poles not containing

(L o 1)n7dimK Z L7<u’1>TN(u), and (L _ 1)n7dimK Z L7<u’1>TN(u)
uEﬁ‘%ﬂN" uE(&KﬁNMi,a)OﬁN"
for 1 < i < r. The result now follows from Remark 5.3.4. O

The lemma below follows immediately from Definition 5.3.1 and Lemma 6.3.11 and will allow us to reduce
our study of Zg,(T') to the study of Zs,, (T) when M is a minimal element of Contrib(a).

|NM,<57

Lemma 6.3.12. Let My,..., M, be the minimal elements in Contrib(a). Then for ¢ sufficiently small,
Ztor (T) NiNu,, > lies in R and admits a set of candidate poles not containing .

6.4. Establishing fake poles using a-compatible sets. The goal of this section is to show that the
existence of a fan with certain properties implies that there is a set of candidate poles for the local formal
zeta function not containing a.

From this point on, we fix a minimal element M in Contrib(«). Let Contrib(a)s := {F € Contrib(a) :
F D M}. Fix a nonempty finite set S. Given a finite collection Z = (Z;)ses of elements in Q™ indexed by
S, we let Qz denote the convex hull of Z, and let Y.z be the corresponding (rational) dual fan supported
on R”. Given a nonempty face J of QQz, we write 7; for the corresponding cone in ¥ z. Given an element
s € 8, we write Jz, for the smallest face of @z containing Zs, and we write 7z, = 7, . Explicitly,
Tz, = {u € R": (u, Zs) < (u,Zy), for all ' € S}. Observe that 7; = Nz es7z,. Also, note that we do not
require the elements of Z to be distinct, and that 7z, may equal 7z, even if s # s’.

Before defining a-compatible pairs (Definition 6.4.11), we introduce a weaker notion, which satisfies all of
the properties of a-compatible pairs with the exception of a genericity condition.
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Definition 6.4.1. Consider a pair (Z,F), where Z = (Zs)ses and F = (Fs)ses are collections of elements
of Q™ and Contrib(«) s respectively. Then (Z, F) is weakly a-compatible if it satisfies the following property:
Whenever o3 N7z, N7z, #0 for some K € Contrib(a)y and s,s" € S, with possibly s = s', then
(1) K C F,
(2) either Fs C Fy or Fyy C Fy, and
(3) €k, Zs) = (€k,, Zs') = 0.

Conditions (1) and (2) are used below to associate a face in Contrib(«) s to every cone of ¥z with nonzero
interection with ops. See Definition 6.4.3. Condition (3) is used to control the structure of cones in Yz in a
way that will allow us to apply Lemma 5.4.1. See Lemma 6.4.8.

Lemma 6.4.2. Let (Z,F) be a weakly a-compatible pair, and let J be a nonempty face of Qz such that
om N7y #{0}. Then {Fs: Zs € J} is the set of elements of a chain of faces in I'. Moreover, if o9 N1y # )
for some K € Contrib(a) s, then K C Fy for all s € S such that Zs € J.

Proof. There exists K € Contrib(a)as such that o9 N7, # 0. Hence, for any s,s’ € S such that Z,;, Zy € J,
ox N1z, N7z, # (. By property (2) of Definition 6.4.1, Fs and F, are comparable under inclusion. Hence
if we consider the set {Fs : Z; € J} as a poset under inclusion, then all elements are comparable, and the
poset is a chain. The second statement follows from property (1) of Definition 6.4.1. O

Definition 6.4.3. Let (Z,F) be a weakly a-compatible pair, and let J be a nonempty face of Qz such that
om N7y #{0}. Then set Fy:=max{Fs: Zs € J}.

Lemma 6.4.2 implies that the above is well-defined. Also, it follows from Lemma 6.3.2 that we can replace
the condition o N7y # {0} with the condition that 7; N Nps <5 # {0} for some ¢ chosen sufficiently small.

Remark 6.4.4. Let J be a nonempty face of Qz and K € Contrib(a)ys such that o N7y # . Then
Lemma 6.4.2 implies that K C F)j.

Remark 6.4.5. If J C J’ is an inclusion of nonempty faces of Qz and oy N7y # {0}, then opy N7y # {0}
and Fy C Fy.

Lemma 6.4.6. Let (£, F) be a weakly a-compatible pair, and let J be a nonempty face of Qz and K € T
such that o N7; N Nag<s # {0} for some 6 sufficiently small. Then K C F.

Proof. Since ox N 75 N Nuy<s # {0}, Lemma 6.3.2 implies that ox N7y Noa # {0}. In particular, F;
is well-defined. Since ox Moy # {0}, we have that ox N oy = o for some K’ € Contrib(a)as. Since
ox N7y # {0}, there exists K’ C K" € Contrib(«)as such that 0%, N7y # 0. By Remark 6.4.4, K" C F).
Since K C K’ c K", the result follows. |

Let X4, 39 be fans in R™ dual to polyhedra P;, P> in R™ respectively. Then the Minkowski sum P; + P» is
dual to the intersection 1NYs of X1 and 3y, where X1 N is the fan consisting of all cones {o1No3 : 0; € ;}.
All faces of P; + P, have the form J; + J for some faces J; of P; for i = 1,2. If J; is dual to o; in X;
for i = 1,2, then a face of the form J; 4+ J; is dual to o1 N gs. Conversely, every cone C in 31 N Xy has
the form C' = o1 N g9, where o; is the smallest face of ¥; containing C for ¢ = 1,2. Then C° = o] N o3,
span(C) = span(o1) Nspan(os), and if o; is dual to a face J; of P; for i = 1,2, then C is dual to J; + Js.
We will be interested in the polyhedron Newt(f)z := Newt(f) + Qz dual to ¥ NXz.

Definition 6.4.7. Let (Z,F) be a weakly a-compatible pair, let J be a nonempty face of Qz, and let C' be
a cone in XN Xgz. Assume that C C 75 and C N Npr<5 # {0} for some & chosen sufficiently small. Let
D(C,J) = D(C,J,M,d) == (CNoa,, N Nu,<s) +Rxoep, .
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The following lemma will allow us to replace contributions to Z., (T') from certain cones C by contributions
from cones D(C, J), whose structure will allow us to apply Lemma 5.4.1.

Lemma 6.4.8. Let (£, F) be a weakly a-compatible pair, let J be a nonempty face of Qz, and let C be a
cone in XNXz. Assume that C C 75 and that C N Nas<s # {0} for some & chosen sufficiently small. Then
C is dual to a face K+ J' of Newt(f)z, for some face K € T such that K C Fy C Fy, and for some face J'
of Qz such that J C J'. Suppose that C ¢ oAy, Then CN Ny <5 = D(C,J)N Nas,<s, and ef,, € span(C).

Proof. By Lemma 6.3.3, C is dual to a face of Newt(f)z of the form K + J’, for some K € T, and
some nonempty face J' of Qz. Here C = ox N7y and 7; is the smallest cone in Xz containing C. In
particular, 7, C 77 and J C J'. By Lemma 6.3.2, opy N7 # {0}, and F;, F;, are well-defined. Also,
{0} # ox N7y N Nps<s5. Then Lemma 6.4.6 implies that K C F;. By Remark 6.4.5, Fy C Fy.

Fix a vertex V of K. Then

(21) o = ( N HV/V) m( N HV,V,>O) m( N HW) N <WG{61,_ N HW,>0>,

V#AV'eEK V'¢K WeUnb(Ck) Len }NUnb(Ck)

where V' varies over vertices in I'. Let § € S such that Z; € J and F; = F;. Then Z; € J' and

(22) Ty = ( ﬂ HZSZ§> m( ﬂ HZSZ§’>0>'

§#£s€S ses
Z,eJ’' Zs¢J'
It follows that we may choose a finite collection of nonzero elements Po = {W} C Q™ \ {0} such that each
W € Pc is of the form
(1) W =Z,— Z; for some s € S,
(2) W =V’'—V for some vertex V' in T, or
(3) W e {61,...,6n},
and C = ok N7y is the intersection of half-spaces of the form Hyy >o or hyperplanes of the form Hy, for
various W € Pg.

Suppose that C' ¢ o4, . Note that C' ¢ o4, if and only if o ¢ 04, , if and only if Ap, ¢ K.
Let & be the intersection of all such half-spaces and hyperplanes appearing in the description (21) of ox
such that the W € Pg that defines the hyperplane or half-space has C' N Np; <5 N Hy # {0}, and W
doesn’t have the form W = V' — V with V' = Ap,. Similarly, let 7 be the intersection of all such half-
spaces and hyperplanes appearing in the description (22) of 7, such that C'N Ny <s N Hy # {0}. Let
C =& N7. Then, by construction, there exists a cone U over a small open neighborhood of Ny <5 N S’ in
S ={u € R": (u,1) = 1} such that

(23) CNU=CnHa,, vzoNU.

We claim that Rey. C C. Let Hyw, >0 or Hy be a defining half-space or hyperplane of C. We need to show
that ez, € Hw. Equivalently, we need to show that <e}‘],W) = 0. By assumption, C' N Nas,<s N Hy # {0}.
By Lemma 6.3.2, C' N oy N Hy # {0}.

First, assume that W = V' — V for some vertex V' # Ap, in I'. Then {0} # C N Ny <s NHw C
oy’ N7y N Nar<s, and Lemma 6.4.6 implies that V/ € F;. Then V',V are vertices of F; that are not equal
to Ar,, and hence (e}, V') = (e}, V) =0, so (e}, W) = 0.

Second, assume that W = Z; — Z; for some s in §. Since C' C 7/, we have {0} # CNoy NHy C
Ty Noy NHy C oy N7z, N7z, Hence, there exists K’ € Contrib(a) s such that 09, N7z, N7z, # 0. By
(3) in Definition 6.4.1, (e}, , Zs) = (e}.,, Zz) = 0, so (e}, W) = 0.
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Finally, assume W € {e1,...,e,}. Then {0} # C N Ny <s "Hw C ox N7y N Ny<s N Hy. By
Lemma 6.3.2, ox N 77 Nopy NHy # {0}. Tt follows that there exists K’ € Contrib(«) s such that K C K’
and 0% N7y NHy # {0}. By Remark 6.4.4, K’ C F;. Then W € Unb(Cks) C Unb(CF,), and hence
(ef,, W) = 0 by Remark 6.2.5.

We conclude that Rez., C C. Next, we claim that
(24) CNHap, —v,>0N Nar<s = (CNHap,, v N Nar<s) + Rsoeh,) N Nag <5

By (23), the left-hand side of (24) is C'N Nys.<s. Let u € C'N Hap, —v,>0 N Nar,<5. We aim to show that
u lies in the right-hand side of (24). It is enough to consider the case when (u, 1) = 1. Consider the function

¢: R>y = S € R", defined by ¢(A) = Au+ (1 — NeF, .

Since Rej, C C, the image of ¢ is contained in C. It is enough to show that ¢_1(HAFJ_V N Nag<s) # 0,
since if A € QS’l(HAFJ,V N Nias,<s), then

(25) u= (1/N)(@A) + (A= 1ek,),

and u lies in the right-hand side of (24). Moreover, if we choose u € C°, then u ¢ 04, and hence A > 1 in
(25). Then e}, = (1/(A = 1))(Au — ¢())) € span(C), which establishes the last statement of the lemma.

Consider the linear function

) = (6(N), Wy = V).

Since u € S'NNyr <5, f(1) < 6. Since (e}, V) = 0, we compute: f'(\) = f(1)—(ef,, War) < d—(ef,, W) <
0. The last inequality follows since M is interior implies that (e} ,Was) > 0 and ¢ is chosen sufficiently
small. In particular, the image of f is unbounded because it is a non-constant linear function. Hence the
image of ¢ is unbounded and so ¢~ 1 (U \ Nys <s) # 0.

We claim that qS_l(HAFJ,V’ZO NU) C ¢~ (Npr<s). Indeed, if ¢(N) € Hap, —v,>0 MU, then ¢(A) € C by
(23). Then (p(A), War) — N(op(N)) = f(N) < f(1) < 4. Since (¢(N),1) = 1, we deduce that ¢(A) € Nas <.

It follows that 0 # ¢~ (U \ Nar,<5) C ¢~ (Ha,, —v,<o NU). Since 1 € ¢~ (Ha, —v,>0 NU), we deduce
that ¢~'(Ha, v N Nar<s) = ¢~ (Hap, v NU) # 0, so the left-hand side is contained in the right-hand
side of (24).

Conversely, since Ref, C C and ey, € Ha, —v,>0, the right-hand side of (24) is contained in cn
Ha, —v,>0 N Nar,<s. This establishes (24). By (23),

CNHap,—v N Nar<s = (CNHa, —v,>0 N Nar<s) Noa,, = (CN Nar<s) N0y,
Substituting this expression into the right-hand side of (24) and combining with (23), we deduce that
CNNu<s =CNHap, —vi>0NNu<s = (CNoag, N Nar<s) + Roek,) N Ny <s. O
The following lemma is a corollary of the proof of Lemma 6.4.8.

Lemma 6.4.9. Let (Z,F) be a weakly a-compatible pair, and let J be a nonempty face of Qz such that
Ty N Nar<s # {0} for some § chosen sufficiently small. Then no ray of 7; N Nas<s is contained in op.

Proof. The proof of Lemma 6.4.8, with ok replaced by RY, and 7, replaced by 7, shows that there exists
a polyhedral cone 7" and a cone U over a small open neighborhood of Ny; <5 NS’ in S’ such that

(1) Rep, C 7/, and

(2) REgNnmynU=7nNU.
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Let u be a generator of a ray in 7y NNy <s. We may assume that (u, 1) = 1. Suppose that (u, W) —N(u) <
6. Fix 0 <e< 1andlet Le = {u+ Aep, : [\ <e}. Then L C 7' NU =RL,N7;NU. It follows that
L. C 77N Ny <5, contradicting the assumption that u generates a ray. We deduce that (u, W) — N (u) = 6.
In particular, u & opy. O

Definition 6.4.10. Let (Z,F) be a weakly a-compatible pair, let J be a nonempty face of Qz, and let C be
a cone in XN Xz. Then we say (C,J) is a-critical if the following properties hold:

(1) Cnon # {0},
(2) C Coap, N7y, and
(8) C is critical with respect to (o, Ar,).

Definition 6.4.11. We say a weakly a-compatible pair (Z,F) is a-compatible if for every a-critical pair
(C, J), C Copn.

Note that the notion of an a-compatible pair depends on the choice of a minimal face M. The main
technical result required to prove Theorem 6.1.2 is following result on the existence of a-compatible pairs.

Theorem 6.4.12. Let o € Z, and assume that all faces of Contrib(«) are UBy and Newt(f) is a-simplicial.
Then for any minimal face M € Contrib(«), there exists an «-compatible pair.

Lemma 6.4.13. Consider an a-compatible pair (Z,F). Let~y be a ray of ENEzN Ny <s for some § chosen
sufficiently small. Assume that v ¢ opr. Then 7y is not critical with respect to «. Moreover, if v C 1y for
some face J of Qz, then v is not critical with respect to («, Ar,).

Proof. There is a unique face J' of @z such that v C 75,. If ¥ C 7, then it follows that J C J'. Let C be the
smallest cone in ¥ N Xz containing v. Then 7, is the smallest cone of ¥z containing C'. By Lemma 6.4.8,
C' is dual to a face K + J' of Newt(f)z, where K € I' such that K C Fj. Assume that 7 is critical with
respect to (a, W) for some vertex W of either K or M. Note that one possible choice for W is Ap,, since
Ap, € M. Then Lemma 6.3.9 implies that C is critical with respect to (a, W), and C'Nops # {0}.

First, assume that v C 04, . Then C C o4, . W = Ap,, then (C, J) is a-critical, and Definition 6.4.11
implies that v C C C opr, a contradiction. We conclude that W # Ap,. That is, v is not critical with
respect to (o, Ar,). Equivalently, in this case, 7 is not critical with respect to «.

Second, assume that v ¢ 04, . Then C' ¢ 04, . Equivalently, Ap, ¢ K. By Lemma 6.4.8, e}, €
span(C). Let V be a vertex of K C Fy. Since V # Ap,, (e}, V) = 0, and hence (e} ,aV +1) =1 # 0.
We deduce that C is not critical with respect to («, V). Hence W # V| and + is not critical with respect to
. Similarly, since v # —1 by assumption, (e} ,aAr, +1) = a+ 1 # 0, and hence C is not critical with
respect to (a, Ap,). Therefore W # Ap,, and + is not critical with respect to (o, Ag,). O

Proof of Theorem 6.1.2. Let a ¢ Z, and assume that all faces of Contrib(a) are UB; and Newt(f) is a-
simplicial. By Remark 5.3.3 and Remark 5.3.6, it is enough to show that there exists a set of candidate
poles for Zg, (T') not containing a. Let My, ..., M, be the minimal elements in Contrib(a). Assume that ¢
is chosen sufficiently small. By Lemma 6.3.4,

r
NiNu, >s T Z ZfOT(T)|N]\4i,<6'

i=1

Zsor (T) = Zsor (T)

By Lemma 6.3.12, Zfor(T)|ﬂiNM_725 lies in R and admits a set of candidate poles not containing «. Choose a
minimal face M € Contrib(«). By Theorem 6.4.12, we may fix an a-compatible pair (Z,F). By definition,
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Zfor(T)|aRg0 = 0. Recall that Ny, .5 = Nar,<s NRZ,. We have

Zfor(T)|NM,<,5 = Zfor(T)‘NﬁLsé - Z Zfor(T)‘TjﬁNl‘\)Jéé'
0#AJCQz
TINNR <570

Let J be a nonempty face of Qz such that 7, N Ny, 5 # (). By Remark 5.3.4, to show that Zg,(T) lies
in R and admits a set of candidate poles not containing; a, it is enough to show that Zfor(T)|7-3m N s lies
in R and admits a set of candidate poles not containing « for every J.

Let C be a cone in ¥ N Xz such that C° C 7§ and C' N Ny, .5 # 0. By Lemma 6.4.8, C' = oG N 77 and
C° =o0g N 75 for some face G € I' with G C F);. Since C' ¢ 3R’>TO, G is compact.

Suppose that C' ¢ 04, . Then Ap, ¢ G, and G is contained in the base of the (possibly unbounded)
Bj-face Fy. Since Fj is a By-face, we may consider the face F' = Conv {G, Ap,} of Fy. Then F is a compact
Bi-face with apex Ap, and base G in the direction €r, - Consider the face ¢’ = C'nN OAp, N Nir<s of
C N Ny <s. Note that ' ¢ C'N 0ap, Cop. By Lemma 6.4.8,

(26) CQNM’S(; =DNNy<s,

where D = D(C,J) = C" + Rxpe}, C 0g. By Lemma 6.4.13, the rays of C'N Ny <5 that are critical with
respect to either « or (o, Af,) are contained op. If V' is a vertex of G, then (e} ,V) = 0, and hence
(ep,,aV +1) =1 # 0. Also, (e},,aAr, +1) = a+ 1 # 0, by assumption. We deduce that e}, is not
critical with respect to « or (e, Ap,). This implies that no ray of D N Ny > is critical with respect to « or
(a, Ap,). Since 0g, 0% C RZ,, Remark 6.3.7 gives the following equalities:

(CNoag, )’ NNip<s = (C)°,
c°n NJ<\)47S§ = (C N NM,S(;)O = (D n NM)SCs)O =D°N NJCCLS(S’ and
D°nN Nyr>5 = (DN NME(;)O u(Dn NM,g)O.

Since the restriction of N to o is linear, Lemma 5.2.5 and Lemma 6.3.5, imply that the following elements
of R lie in R and admit sets of candidate poles not containing «:

(L o 1)n7dimG Z L7<u’1>TN(u), and (L o 1)77, Z L7<u,1>T<u,AFJ>.
UGDOQNM,E(;PIN" UEDOﬂNJ\LZ(;ﬁNn

We claim that (C')° C o%. We have (C')° C 0%, for some F' C F'. By Lemma 6.4.6, F/ C Fy. If
opr C ORZ, then (26) implies that C'N Nag<s C ORY, a contradiction. Hence F” is a compact face of F'y
containing Ap,. It follows that F’ is a Bj-face with apex Ar, and base G’ > G. Then (26) implies that
CNNy,<s Cogr. Then 0 # (CN Ny<5)° =C° N N3 <5 Cogr. Since C° C o, we conclude that G = G/,
and hence F' = F’, completing the proof of the claim. We may then apply Lemma 5.4.1 to obtain

Zsor(T)|(pou(enyey = (L = 1)”( > L<“’1>T<“’AFJ>> €R.
we(D°U(C)°)NNn
Since D° = (D° N Npz,>5) U (D° N NJ?LS(S)’ using the above calculations and Remark 5.3.4, we deduce that
. 1\ —(u,1)p(u,Ar,)
27)  Zin(D)l(Croay, youcoinng, ., — (L—1) ( 3 L) plwAr, )
ue(((crwAFJ)0UCO)nN;\’Lg)ml\In

lies in R and admits a set of candidate poles not containing c.
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Since ¥ N ¥z refines ¥z, we may consider the subfan ¥ N Xz N Ny <slr, of XNz N Ny <s. It follows
from the description of ¥ N ¥z N Njs,<s in Lemma 6.3.6 and the fact that 7, NRZ, # () that

(28) (TJQNM’S(s)O = U (CﬂNM,S(s)O = U COQNX/LS(; :T‘(;QNX/[’S(;.
cexnXz cexXnz
cocry cecrs
CNNRy <570 CNNRy <570

It follows from (26) that we may rewrite this as:

79N Nipes = (0%, NTINNy)U | (CNoa,,)°uC®) NNy <5
CexnNz
cecry
CNNRy <570
C¢UAFJ

We deduce from Remark 5.4.2 and (27) that

Zfor(T)|T~CJ)mN1C\)/I,§5 — (L — 1)”( Z L(u’1>T<UvAFJ>>

u€TINNY, sNN™

lies in R and admits a set of candidate poles not containing «. By Remark 5.3.4 and (28), it is enough to

show that
(L - 1)“( > L<“’1>T<“’AFJ>>
uwe(

TJﬂN]\/LS(;)OﬂN"
lies in R and admits a set of candidate poles not containing «. By Lemma 6.4.9 and Lemma 6.4.13, no

rays of 7; N Nas <5 are critical with respect to (o, Ap,). The result now follows from Lemma 5.2.5 and
Lemma 6.3.5. O

6.5. Existence of a-compatible sets. We continue with the notation of the previous section. Recall
that we consider pairs (Z,F), where Z = (Z;)ses and F = (F;)ses are collections of elements of Q" and
Contrib(a) s respectively.

Definition 6.5.1. Consider a pair (Z,F). Then (Z,F) is restricted if Zs € span({Vy }UGen(Cr, ~ Car)U
Anr) for every s € S.

Our goal is to reduce the existence of an a-compatible set to the existence of a restricted, weakly a-
compatible set. We will consider sets € = {es}ses € RS; note that we allow €, to be negative. We say
that € is chosen to be sufficiently small if |e;| is chosen to be sufficiently small for all s € S. Explicitly, a
property holds for e sufficiently small if there exists > 0 such that the property holds for all e such that
les| < 0 for all s € S. Given a sequence of sets {€,, }mez.,, where €, = {€mn s}ses, for some €, ; € R, we
write limy, oo € = 0 if limy, o0 €, s = 0 for all s € S. Given a set Z = {Zs}ses of elements in R™, we let
Zs(es) == Zs + €V, and let Z(€) := {Z(es)}ses. Then Qz() is the convex hull of the elements of Z(e),
and is dual to the fan X z(). Also, Newt(f)z) = Newt(f) + Qz() is dual to XN Xz (.

Lemma 6.5.2. Consider a pair (Z,F). For e € Q° sufficiently small, (Z(¢),F) is restricted if (Z,F) is
restricted, and (Z(¢€), F) is weakly c-compatible if (£, F) is weakly a-compatible.

Proof. Assume that (Z,F) is restricted. Since Z,(e,) is a linear combination of Zs; and Vi, it follows that
(Z(e), F) is restricted.

Assume that (2, F) is weakly a-compatible. We want to show that (Z(e), F) is weakly a-compatible. Fix
a face K € Contrib(a)ys and s,s” € S. There is nothing to show if, after possibly shrinking €, 03 N7z s N
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TZ(e),s' = (). Hence we may assume that there exists a sequence of sets {Em}mEZZo such that lim,, ,o €, =0
and 0% N Tz(c,.),s N Tz(c,),s 7 0. Then Bolzano-Weierstrass implies that ox N7z, N7z ¢ # {0}. Hence
there exists K C K’ such that 0% N7z N7z s # 0. Since Z is weakly a-compatible, we deduce that
K' C Fi, either Fyy C Fs or Fs C Fy, and (e}, ,Z,) = (e}, Zy) = 0. Then K C K' C F,. By (20),
(€., Zs(€s)) = (€5, Zs) = 0 and (e}, Zy(e5)) = (€}, Zsr) = 0. O

Before proceeding, we need a series of basic lemmas on deforming polyhedra. Let rec(P) denote the
recession cone of a polyhedron P. Let ¢V denote the dual cone to a cone o. Given a face K of P, let 7x
denote the corresponding cone in the dual fan to P. In particular, rec(K) is a face of rec(P), Trec(K) 1S @
face of rec(P)Y, and 7 C 7%, k-

Fix a nonempty finite set 7. Let P = Conv{V;:t € T} + 0 C R"™ be a polyhedron, for some V; € R",
and some pointed (polyhedral) recession cone o = rec(P). Let {P(e) = Conv {V;i(e) : t € T} + o} be a set
of polyhedra with the same recession fan indexed by ¢ € R’ for some ¢ > 1. Assume that V;(e) € R" is a
continuous function of ¢ € R?, for all ¢ in T. If J(¢) is a nonempty face of P(e) and .J is a nonempty face
of P, we write T(J(e)) :={t € T : Vi(e) € J(€)} and T'(J) :== {t € T : V; € J}. We may also consider the
recession cones rec(J(e)) and rec(J), which are both faces of o.

Definition 6.5.3. For fized ¢ € RY, we say P(¢) refines P if for any proper nonempty face J(¢) of P(e),
there exists a proper nonempty face J of P such that T'(J(e)) C T(J) and rec(J(€)) C rec(J).

Lemma 6.5.4. For ¢ € R sufficiently small, P(¢) refines P.

Proof. Assume the conclusion fails. Then there exists a sequence {€m, }mez., such that lim,, . €, = 0,
and a sequence of proper nonempty faces J(e,) of P(e;,), such that, for any m and any proper nonempty
face J of P, either T'(J(em)) € T(J) or rec(J(€ey)) ¢ rec(J). Since T is finite and o has finitely many faces,
after possibly replacing {€m, }mez., by a subsequence, we may assume that T'(J(ep,)) and rec(J(ey,)) are
independent of m. Denote these by T = T'(J(,,)) and R = rec(J(€,,)) respectively. Consider a sequence iy,
of elements in Tj(sm) C 77, such that ||um|| = 1. After possibly replacing {€,}mez., by a subsequence, we

may assume that lim,;, .o Uy =u € 75 C Troec( 7 exists for some nonempty face J of P. Since 75 is closed,

u € Tp, and hence Tye.(y) C 75 and RC rec(J). For any t € Tandt €T,

(29) (u, Vi) = n}gnw<um, Vi) = vgiinw(um, Vi(em)) < AE%J“WW(%» = n”}i—r)noo<um’ Vi) = (u, Vi),
and hence V; € J. We deduce that T C T'(J), a contradiction. O

Definition 6.5.5. We say that { P(e) }. is locally combinatorially constant if for any e sufficiently small, and
for any nonempty face J(€) of P(e), there exists a (unique) nonempty face J of P such that T(J(€)) = T(J)
and rec(J(€)) = rec(J), and, moreover, every nonempty face J of P appears in this way.

Lemma 6.5.6. After possibly replacing P with P(e) for some ¢ € Qf, {P(e)}c is locally combinatorially
constant.

Proof. Lemma 6.5.4 implies that we may order {P(e)}. by refinement. Since T is finite and o has finitely
many faces, there exists an € € R such that @ = P(e) is minimal under this ordering. Then {Q(e)}. is
locally combinatorially constant. Consider € € R’ such that e + ¢ € Qf, and let Q" = Q(¢’). Then for ¢
sufficiently small, {Q’(€)}. is locally combinatorially constant. O

Given a family of cones {C}}%2 , define lim sup Cj, to be the cone of points u € R™ such that w is a limit
point of a sequence of points uy € Cy, i.e., there exists a subsequence of uy converging to w.
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Lemma 6.5.7. Assume that {P(e)}. is locally combinatorially constant. Fiz a nonempty face J of P. For
e sufficiently small, let J(e) be the nonempty face of P(e) such that T(J(e)) = T(J) and rec(J(e)) = rec(J).
Consider any {Ek}kEZZO such that lim,, o €x = 0. Then limsupy 7y,) C 75, and, if we assume that
dim P = n, then imsupy, 7j(c,) = 7J-

Proof. We first show that limsupy, 75(,) C 7s. Suppose that uy € 7j(,), and that, after possibly replacing
{€k}kez-, With a subsequence, limy_, o ur = u € R” exists. Then v € 75, for some nonempty face J’ of P.
Then the calculation in (29) implies that T(.J) = T(J(ex)) C T(J'), and hence J C J' and u € 70 C 7.
We need to prove the converse statement. Assume that dim P = n. Then 7; is generated by its rays
{¥m}1<m<p. For any e sufficiently small, let {7,,(€)}1<m<, denote the corresponding rays in the dual fan
to P(e). Consider elements {wun, k € Ym(ex) : 1 < m < p,k > 0} such that ||um, k|| = 1. Then, after possibly
replacing {ex }rez., With a subsequence, we may assume that limyg_ oo Upm p = Uy, exists for 1 < m < p.
Then u,, € limsupy, Vim(ex) C Ym and |[u,,|| = 1. Given an element u € 77, there exists a,, € R, such that
u= Zm A W,- Then limyg_ oo Zm AU,k = U € limsupy, Ty, ), as desired. a O

With these lemmas in hand, we now return to our problem. Fix a restricted, weakly a-compatible pair
(Z,F), where Z = (Z,)ses and F = (Fy)scs. We may apply Lemma 6.5.6 to both P(e) = Newt(f)z() and
P(e) = Qz(o). Hence, by Lemma 6.5.2, we may replace Z by Z(¢) so that {Qz(}e and {Newt(f)z(c) }e
are locally combinatorially constant. Consider a nonempty face J of @z, dual to a cone 75 in X z. For €
sufficiently small, let J(e) denote the corresponding nonempty face of Qz(.), dual to the cone 7 of ¥z ().
Similarly, given a cone C'in ¥ N ¥z, we let C(e) denote the corresponding cone in ¥ N ¥ z(. If C is dual
to a face of Newt(f)z of the form K’ + J' for some K’ € T' and some nonempty face J' C Qz(), then
C(e) = or' N Ty is dual to the face K’ + J'(€) in Newt(f)z(c).

Remark 6.5.8. Consider a nonempty face J of Qz such that oy N7y # {0}. Since {Qz()}e is locally
combinatorially constant, for any s € S, Z, € J if and only if Z,(es) € J(€). In particular, if ops N7 # {0},
then F; = max{F; : Z, € J} = max{F; : Zs(e;) € J(e)} = Fy(q).

The lemma below says that a pair (C, J) not being a-critical is an open condition.

Lemma 6.5.9. Let J be a nonempty face of Qz, and consider a cone C € XN Xz. Suppose there exists a
sequence {em}mEZzo such that €, € Q°, limy, o0 €m = 0 and (Clen), J(€m)) is a-critical for all m. Then
(C,J) is a-critical.

Proof. By Lemma 6.4.8 and since {Newt(f)z()} is locally combinatorially constant, C(en) C Ty, is
dual to a face of the form K + J'(e,,) of Newt(f)z(,.), where K € I" and J’ is a face of @z such that
J(em) C J'(€m), or, equivalently, J C J’. Then C is dual to K + J'. In particular, C C 7,0 C 75. By
hypothesis, C(e,) Noa # {0}. It follows from Bolzano—Weierstrass and Lemma 6.5.7 that C' N oy # {0}.
Then oy N'75 # {0}, and, by Remark 6.5.8, F;; = Fj(, ) for all m. The condition C(e,,) C oAy, implies
that ox C 04, and hence C C 04, . By Lemma 6.5.7 and since Hoa, 41 is closed, C' = limsup,, C(em) C

Haap,+1, and hence C is critical with respect to (o, Ap,). We conclude that (C, J) is a-critical. O

We say that € can be chosen to be arbitrarily small if for any § > 0, there exists a choice of € such that
les| < § for all s € S.

Lemma 6.5.10. Suppose that (C,J) is a-critical and C ¢ opr. Then there exists an arbitrarily small choice
of € € QS such that (C(e), J(€)) is not a-critical.

Proof. By Lemma 6.4.8, C' is dual to a face K + J’ of Newt(f)z, where K € T" and J' is a face of @z such
that K C Fy and J C J'. Then C(e) C 7y is dual to the face K + J'(¢) of Newt(f)z(). Note that
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C C 0Ar, implies that o C 04, , and hence Ap, € K. Since K, M are faces of I', K N M is a (possibly
empty) face of M, and Cxnar = Cx N Chr. Let B = Gen(Crrpr) U Apy.

Assume that 1 € span(Bk). We can write 1 = ) i, 5 Av'V, for some coefficients Ay, with Ay, = 1 for all
V € Ay Applying ¢y, to both sides gives —a = ZVEBK\Unb(CKmM) Av. Hence we may equivalently write

aAp, +1= > AWV —Ap)+ Y WV
VEBK\Unb(CKmM) VGUnb(CKmNj)

Consider u € C° C o NHaap, +1. Consider V € Gen(Ck). If V€ Unb(Ck), then u € o implies that
(u,V)=0. Since Ar, € K, if V € Vert(K), then u € o% implies that (u,V — Ap,) = 0. We compute:

0= (u,adp, +1) = > v (u,V — Ap,) + > Ay (u, V)
VGBK\Unb(C}(mNI) VEUnb(CKmM)
= Y (wV-Ag)
VeBrg~Ck

Since each term in the right-hand sum is positive, we deduce that the sum must be empty. It follows that
Br C Cknm and 1 € span(Cgnps). Since M is minimal in Contrib(a), we deduce that K N M = M. Then
C C og C o, a contradiction.

We conclude that 1 ¢ span(Bg). Since Ap, € By, it follows that «Ap, + 1 ¢ span(Bg). Since
aAp, +1 € span(M) N Q™ and Newt(f) is a-simplicial, it follows that there exists v’ € Q™ such that

(1) (W,adp, +1) =1,

(2) (u/,V) =0 for all elements V € Bk, and

(3) (v, V) =0 for all V€ Gen(CFp,, ~ Cu).
Consider an element u € C°NQ" = 03 N (7,,)°NQ" C Haap, 11, and let 4(A) = u+ Au’ for some choice of
A # 0 € R. Then property (1) implies that (@()\), Ap, +1) = A # 0, and hence @()) ¢ Hoa 1. Properties
(2) and (3) imply that for any V in Ck, (4(N),V) = (u, V) + M/, V) = (u, V). It follows that 4(\) € 0%
provided |}| is sufficiently small.

Recall that 70 = Nz, cp7z,. Consider s € S such that Z; € J'. We claim that for a generic choice
of A € Q, we may choose €, € Q such that (4()), Zs(es)) = (u, Zs). Assume this claim holds. It follows
that with this choice of € = {es}ses, @A) € (74:(€))° provided |A| is chosen sufficiently small. Then
a(A) € o N (7y(€))° = C(e)° and U(A) ¢ Hoap 1. Either oar 075 = {0}, or oar N7y # {0} and, by
Remark 6.5.8, F;; = Fy( and C(e) ¢ Hoap,  +1- In either case, (C(e), J(e)) is not a-critical.

It remains to verify the claim. We compute:

(@(A), Zs(es)) = (a(N), Zs + €sVr)
= <u7 ZS> + /\<U'/7 Zs> + €s(<u7 VM> + )‘<u/a VM>)

Suppose that (u',Var) # 0. Then for A # —é;ﬂ:‘(}”;{é, we may set €5 = —%7 and the above
calculation shows that (G()), Zs(es)) = (u, Zs). If (u/,Vp) = 0, then we may set ¢, = 0. Since (Z,F) is
restricted, Z, € span({Vas} UGen(CF, ~ Car) U Ayy) for every s € S. Since Z; € J', Definition 6.4.3 implies
that Fs C Fj. Then properties (2) and (3) imply that (v', Zs) = 0, and the above calculation shows that

(@(A), Zs(es)) = (u, Zs).- O

Lemma 6.5.11. Suppose there exists a restricted, weakly a-compatible pair (Z,F). Then there exists an
a-compatible pair (Z,F).

Proof. Consider the restricted, weakly a-compatible pair (£, F) above. Suppose (Z,F) is not a-compatible.
That is, suppose there exists a pair (C,J) that is a-critical and C ¢ op. Then Lemma 6.5.9 and
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Lemma 6.5.10 imply that we can deform (Z,F) and strictly increase the number of pairs (C,J) that do
not have a-critical intersection. Since there are finitely many such pairs, by repeating this procedure we
obtain an a-compatible pair. O

6.6. Existence of restricted, weakly a-compatible sets. In this section, we use the existence of a
locally unique labeling to explicitly construct a restricted, weakly a-compatible pair. Recall that Gen(Cr) =
Vert(F') U Unb(CF) is the set of distinguished vertices on the rays of Cp. Recall that because Newt(f) is
a-simplicial, there is a bijection between {K € I' : M C K C F} and subsets of Gen(Cp ~\ Cy) =
Gen(Cr) \ Gen(Cyy).

Consider an element F' € Contrib(«) ;. Given an element V' in Gen(Cr), let (V') € F C T be defined by

V) = V if Ve Vert(F),
T\ V+Vy if Ve Unb(Cp).

Lemma 6.6.1. Suppose that F,F' € Contrib(a)y and V € Gen(Cr). Then (V) € F' if and only if
Ve GGH(CF/).

Proof. First, suppose that V' € Vert(F). Then ((V) =V € F' if and only if Ve Vert(F’). Second,
suppose that V' € Unb(Cp). Consider u € 0%,. Then (u, V) = (u,((V) — Var), so {(V) € F' if and only if
(u, (V) — Vay) =0, if and only if (u, V) =0, if and only if V' € Unb(Cg). The result follows. O

Let S be the set of saturated chains of faces in I starting at M, i.e., a chain of faces starting at M where
the dimension increases by one at each step. Let s = F, be an element of S. Let ¢5; denote the length of F,,
i.e., the number of elements in F, minus one. We let F, ; denote the ith element of F, for 0 < i < /;. For
example, Fo g = M. We write F' € F, if F' = F,; for some 0 <7 < /.

Define V5 o = V. Since F, is saturated and Newt(f) is a-simplicial, we may define V5 ; to be the unique
element of Gen(Cr, , \ CF, ,_,) for 1 <i < /.

Definition 6.6.2. Let S be the set of saturated chains of faces in T starting at M. We define a pair (Z,F),
where Z = (Zs)ses and F = (Fy)ses are collections of elements of Q™ and Contrib(a)as respectively, as
follows: for any element s = Fy of S, let

N

Zl@c

i=0
where {b; ;}o<ij<r, T =n—1—dim M, and

271 — 2ip, ifi=j
bij = bij(n) =270 — (i+j)u, ifi<j
0, otherwise

for some p € Q such that 0 < p <K< 1. Let Fs := F, ¢, be the mazimal element of F,.

For example, by o = 1 and if s = F,, where F, = {M}, then ¢, =0, Z, = Vi, and Fy = M. Note that we
abuse notation above by not indicating the dependence of (Z, F) on the choice of u. Below we fix a value of
w sufficiently small. Our goal is to show that we can construct a restricted, weakly a-compatible pair from
(Z,F). Recall that we have fixed a locally unique labeling (Ap, e}.) of Contrib(a) s

Definition 6.6.3. Let s = F, € S. Let Ay, = {Ap : F € F,}. Given an element A in Ay, we define a
base direction e , as follows: if A= Ap for some F € F,, then ;.4 = €p. We define a linear function
d,: R™ — R”™ by

=X = ) (e: a4, X)(A— V).
A€ A,
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The fact that e 4 is well-defined in Definition 6.6.3 is an immediate consequence of the locally unique
labeling condition. Explicitly, if A = Ap = Aps for some F, F’ € F,, then either F C F' or F/ C F, and (%)
implies that e}, = e.

Remark 6.6.4. For s € S, u € o)y and X € R, (u, ®,(X)) = (u, X).
) =0

Lemma 6.6.5. Let s = F, € S. Then (e}, 25(X)) for any F € Fy and any X € R*. If F;, C K and
(€5, X) =0 for some X € R™, then (e}, ®:(X)) =0.

Proof. Recall from (20) that (e}, Var) = 0 for all F' > M. Suppose that I € F,. Then e} 4, = ef, and
we compute (ef, P5(X)) = (€5, X — (€} 4, X)(Ar — Var)) = 0. Suppose that F; C K and (ef, X) = 0. If
(€5, A) =0 for all A € A, then (e}, Ps(X)) = (e}, X) = 0. Suppose that (e}, Ar) # 0 for some F € F.
Then A = Ap. Since F' C K, the locally unique labeling condition (x) implies that €iAp = €p = €. As
above, (ef;, ®5(X)) = (e}, X — (€% a,.» X)(Ar — Var)) = 0. O

Lemma 6.6.6. With the notation of Definition 6.6.2, suppose that (Z,F) satisfies the following property:
Suppose that o3 N1z, N7z, # 0, for some K € Contrib(a)ps and s = Fo,s' = Fg € S. Then
(1) K C F, and
(2) either Fs € F, or Fg € F,.

Let ®(2) := (P5(Zy))ses. Then (P(Z),F) is restricted and weakly a-compatible.

Proof. It follows from Definition 6.6.2 and Definition 6.6.3 that (®(Z), F) is restricted. Suppose that g% N
To.(2,) VTo,, (2, 7 0, for some K € Contrib(a)yr and s = F,,s" = Fy € S. By Remark 6.6.4, the restriction
of ¥z to ops equals the restriction of Yp(z) to op. Hence o N1z, NTZ7, # (. We deduce that K C Fj,
and, either F, € F, or Fy € F,. The latter condition implies that either Fs C Fy or Fy C F.

Applying Lemma 6.6.5 with s = F, and I’ = F§, gives (e ,®s(Zs)) = 0. It remains to show that
(ef,,®s(Zs)) = 0. Suppose that Fs € F,. Applying Lemma 6.6.5 with s’ = F; and F' = Fj, gives
(ef,, ®sr(Zs)) = 0, as desired. Suppose that Fy € F,. Then Fy C F,. Applying Lemma 6.6.5 with
s’ = F, and K = F,, gives (ef,, @5 (Zs)) = 0, provided (ef ,Zs) = 0. By Definition 6.6.2, Zy €
span({Vas} U Gen(Cp,, \ Cr)). Since For C Fy, Fy is a By-face with base direction e, and (e}, Var) =0
by (20), it follows from Remark 6.2.5 that (e}, , Zy) = 0, as desired. ' A O

~ 0

It remains to show that (Z, F) satisfies conditions (1) and (2) in Lemma 6.6.6. We will prove this through
a series of lemmas.

Lemma 6.6.7. There exists a constant Apy > 0 such that for any K, F,F' € Contrib(a)y that are not

subfaces of a common face in Contrib(«)yr, and for any nonzero u € ok, there exists an element V €
Gen(Cp ~ Ch) U Gen(Crr \ Cyr) such that {(u,((V))/N(u) > 14 M.

Proof. Fix K, F,F’ € Contrib(a)js that are not subfaces of a common face in Contrib(a)y,. Let V =
Gen(Cr ~ Cy) UGen(Cpr \ Cyr), and consider the continuous function ¢: ox ~ {0} — R defined by

o(u) = ((max(u, ¢(V))/N(w)) - 1.

We claim that the image satisfies im(¢) C Rs¢. Indeed, suppose ¢(u) = 0. Let F, be the face of 9 Newt(f)
minimized by u. Then F,, contains K and {¢(V) : V € V}. By Lemma 6.6.1, Cg, contains Cx, Cr and Cp.
Then K, F, F’ are common subfaces of F,, a contradiction.

Note that ¢(nu) = ¢(u) for all n € Ry and u € ox ~ {0}. Since ox NS is compact, there exists
A = MK, F,F’') > 0 such that ¢(cxg N.S) C [A,00). We let Ay be the minimum value of A\(K, F, F’) over
the finitely many choices of K, F, F”. O
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Below we fix A\j; > 0 satisfying Lemma 6.6.7.
Lemma 6.6.8. Letr =n—1—dim M. Assume that p > 0 is chosen sufficiently small. Then the coefficients
{bi,j = bi ; (1) Yo<i,j<r satisfy the following properties:
(1) bi,j >0 fori <y,
(2) bi,j > bi,j+1 fOT’i <j<r,
(3) bij > bipr fori<j,
(4) > iskbig > D sy bijy1 forany 1 <k <j<r, and
(5) Zizo bir + brrAn > 1.
Proof. We check the conditions hold by direct computation, for p sufficiently small. Condition (1) is clear.
For condition (2), we compute, for i = j < r,
bii=2"" = 2ip > by =270 — 20+ 1)p,
and, fori < j <r, ‘ ‘
bij =2 — (it ) > bija =270 — (i 4+ D
For condition (3), we compute, for i + 1 < j,
bij =27 — (i > bigry =270 — (i 4+ +
and, for i + 1 = j, ' ‘
biipr =270 (24 V) > bigripn =270 — (2 4 2)p.
For condition (4), define ¢y j = >, bi,; for k < j. Then

J
cry=2"F = (i+5)n

=277 — (j—k+1)(35 + k)p/2.
For j <, cxj > ¢k j+1, as desired. For condition (5), we compute
> bi A brp A — 1= o+ bppdar — 1
i>0
==3r(r+1)p/2+ b A
==3r(r+1)p/24+ 27" = 2ru)m
=27y —pr(3(r +1)/2 4+ 22 p).
The latter expression is positive for p sufficiently small. (|

Lemma 6.6.9. Let s = F, € S and suppose v € op N 7z, is nonzero. Then (u,((Vs;)) < (u,((Vs;))
for any 0 < i < j < {,. Moreover, if Fs C F € T', then there exists a constant 0 < m < Ay such that
Gen(Cp, ~ Cy) ={V € Gen(Cr ~ Cyr) : (v, {(V))/N(u) < 1+ m}.

Proof. Since u € our, ((Vso) = Ve € M, and ((V; ;) € Newt(f), it follows that (u,{(Vs,0)) < (u, (Vs ))
for any 0 < j < /,. Suppose that (u,((Vs,)) > (u,((Vs,;)) for some 0 <i < j < {s. Let 7 = (4,7) € Sym,,
be the permutation of [(] switching ¢ and j. Let 7(s) be the unique element in S such that £, = £, and
Vi(s),i = Vi,m(s) for 1 < i < £,. Using (3) in Lemma 6.6.8, we compute:
<’U,, Zs — Z‘Il'(é)> = bi,fs <’LL, C(VS,Z) - g(vﬂ'(é),l)> + bj,ﬂs <u7 g(‘/&j) - C(VF(S)7j)>
= (bi,e, — bje.){u, (Vi) = C(Vs,5)) > 0.
The latter contradicts the assumption that u € 7z,. This completes the proof of the first statement.
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Since M is interior and w € opr, N(u) > 0. Let m = ((u,{(Vs,e,))/N(u)) —1 > 0. Assume that m > Ap.
Using all the statements of Lemma 6.6.8, we compute

(u, Zs) /N (u szz (u, ((Vs,1)) /N (u)

fs
> Z bie, +be, 0. A\

=0

> big + brpdu > 1
i=0
On the other hand, if § is the unique element in & with £z = 0, then, since u € o)y,
(u, Z5y /N (u) = (u, Vag) /N (u) =1 < (u, Zs) /N (u).
This contradicts the assumption that u € 7z_. We conclude that m < Aj;.
Since (u,((Vs,e,)) = maxo<i<e, (4, ((Vs,:)), we have
Gen(Cr, ~ Cy) C{V € Gen(Cp ~ Cpr) : (u, (V) /N(u) <1+ m}.

It remains to prove the reverse inclusion. Suppose that V' € Gen(Cp \ Cyr) and (u,((V))/N(u) < 1+ m.
Equivalently, we assume that (u,((Vse,) — ((V)) > 0. We argue by contradiction. Assume that V' ¢ Cp,.
Let s’ be the unique element in S such that £y = £, + 1, Vo ; = Vi ; for 0 < i < 4, and Vi y, = V. If we
let V.1 = Vs _1 =0, then we can write

s Ly
Zbké (u, ((Vs,1) szé (u, (Vi) — C(Visk—1))s

k=0 i=

ls+1 lo41 Ls+1

Zy) = Z br,e,+1{u, ((Ver 1) Z i0+1) (U C(Vir k) — C(Vir k—1)), and
k=0 =0 i=
6 L, £o+1
(W, 2o = Zay = (D bie. - szm )ty C(Vik) = C(Va 1)) + b 1,041 (us (Vi) = C(V).

k=0 i=k
Since u € oy and Vi9 = Vi € M, we have (u,((Vs0)) = N(u) > 0. By conditions (1) and (4) in
Lemma 6.6.8, it follows that all terms above are nonnegative, and at least one term is positive. This
contradicts the assumption that v € 74_. ]

The following lemma completes our proof.
Lemma 6.6.10. With the notation of Definition 6.6.2, (£, F) satisfies the the following property:
Suppose that o3 N1z, N1z, # 0, for some K € Contrib(a)ps and s = F,,s' = Fy € S. Then
(1) K C F, and
(2) either Fs € F, or Fy € F,.

Proof. Fix u € 0§ N7z, N7z,. By Lemma 6.6.9, (u,{(V))/N(u) < 1+ Ap for all V € Gen(Cr, \ Car) U
Gen(Cp, ~ Cpr). By Lemma 6.6.7, there exists a face F' € Contrib(a) such that K, F, Fy C F. By
Lemma 6.6.9, there exists m,m’ > 0 such that

Gen(Cp, ~ Cp) ={V € Gen(Cr . Cpr) : (u,¢(V))/N(u) <1
Gen(Cp, ~ Cuy) ={V € Gen(Cp ~ Cur) : (u, ((V))/N(u) <1+ m'}.
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Since u € o, it follows from Lemma 6.6.1 that Gen(Cx ~\Chr) = {V € Gen(Crp~Cys) : (u,((V))/N(u) =
1}, and hence K C F,. It remains to establish (2). Without loss of generality, we may assume that
m < m/. Then Gen(Cp, ~ Cy) = {V € Gen(Cr, ~ Cur) : (u,¢(V))/N(u) < 1+ m}. By Lemma 6.6.9,
(U, (Ve 4)) < {u,((Vyr j)) for 0 <i < j < ly. We deduce that F, € F}. O

A corollary of the proof of Lemma 6.6.10 is that K € F,.

Proof of Theorem 6.4.12. Let o € 7Z, and assume that all faces of Contrib(«) are UB; and Newt(f) is a-
simplicial. Let M be a minimal face of Contrib(«). Then Lemma 6.6.6 and Lemma 6.6.10 imply that there
is a restricted, weakly a-compatible pair. Lemma 6.5.11 then implies that there is an a-compatible pair. [

7. BEYOND THE SIMPLICIAL CASE

Our techniques are capable of proving the local motivic monodromy conjecture for certain nondegenerate
singularities whose Newton polyhedra are not simplicial. In this section, we prove our strongest result on
the local motivic monodromy conjecture, explain the remaining cases needed to prove the local motivic
monodromy conjecture for nondegenerate singularities, and prove the local motivic monodromy conjecture
for 3-dimensional nondegenerate singularities.

7.1. Local motivic monodromy conjecture. We first state our strongest theorem on the local motivic
monodromy conjecture for nondegenerate singularities. Recall that given 8 € Q, D(8) € Z~¢ is the denom-
inator of 3, written as a reduced fraction.

Theorem 7.1.1. Suppose f is nondegenerate, and suppose that, for every o € Q \ Z, either:

(1) Newt(f) has D(a)-good projection and there is a face in Contrib(«) that is not pseudo-UBj,

(2) Newt(f) is a-simplicial and every face of Contrib(a) is UBy, or

(3) there is f € Q with D(«) dividing D(8) and a face F of Contrib(8) with | Unb(Cr)| =n — 1.
Then there is a set of candidate poles P C Q for Zmot(T) such that for all « € P, exp(2wia) is a nearby
eigenvalue of monodromy.

To complete the proof of Theorem 7.1.1 we need the following lemma.

Lemma 7.1.2. Let a € Q. Suppose there is § € Q with D(«) dividing D(5) and a face F' € Contrib(5)
with | Unb(Cr)| =n — 1. Then exp(2mia) is a nearby eigenvalue of monodromy.

Proof. Let F be a face in Contrib(8) with | Unb(Cr)| = n — 1. Recall that we may write (Unb(Cr)) = R
for some Ir C [n], and that F' denotes the image of F under the projection R” — R"/(Unb(CF)). Then
F = {pr} C R, where pr is the lattice distance of F' to the origin. Observe that 3 = —1/pp and D(83) = pp.
Let = z, be a general point in A’ C X;. By either Varchenko’s theorem (see (10)) or Theorem 3.2.1,

we compute
pr—1

E(F,)+1="Y [i/D(B)]. D

=0

Proof of Theorem 7.1.1. The result is an immediate consequence of Theorem 3.4.6, Theorem 6.1.2 and
Lemma 7.1.2. O

On the other hand, there are three major classes of Newton polyhedra that Theorem 7.1.1 does not cover.
(1) All faces of Contrib(«) are UB7, but Newt(f) is not a-simplicial.
(2) Every face of Contrib(«) is pseudo-UBj, and at least one face of Contrib(«) is not UBj.
(3) There is a face of Contrib(a) that is not UB;, and Newt(f) does not have D(«)-good projection.
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For (1), see [ELT22, Theorem 4.3] and [Que24, Theorem A] for results that produce “fake poles” of the
topological and naive motivic zeta function under certain conditions but without an a-simplicial assumption.
For (2), a Ba-facet in the sense of [ELT22, Definition 3.9] is pseudo-UB; but not UB;. It is known that Bo-
facets sometimes do not give rise to poles of the local topological zeta function, see, e.g., [ELT22, Proposition
3.11]. For (3), see [Est21] for one approach to proving that exp(2mic) is an eigenvalue of monodromy in this
situation. See Example 2.2.4 and Example 3.2.5 for explicit examples. Note that (3) does not occur when
Newt(f) is convenient.

7.2. Dimension 3 case. We now use Theorem 7.1.1 to deduce the local motivic monodromy conjecture for
nondegenerate singularities when n = 3 and prove the theorem below. See Section 1.3.1 for a history of prior
results on monodromy conjectures for nondegenerate singularities when n = 3.

Theorem 7.2.1. Suppose that f is a nondegenerate polynomial in three variables. Then there is a set of
candidate poles P C Q for Zmot(T) such that for all o € P, exp(2mia) is a nearby eigenvalue of monodromy.

Lemma 7.2.2. Suppose n =3 and F is a By-face. Then Cp is simplicial.

Proof. Let A be an apex with base direction ej. Then Cr N {e} = 0} is a polyhedral cone of dimension at
most 2, and hence is simplicial. Since Cp is spanned by Cr N {e; = 0} and the ray through A, it follows
that Cp is simplicial. O

Proof of Theorem 7.2.1. Let a € Q be a candidate pole. If o € Z, then 1 is an eigenvalue of monodromy
for H(Fy,C). Hence, we may assume that o ¢ Z. Similarly, we may assume that Xy is not smooth at the
origin, else {—1} is a set of candidate poles for Z,ot (7). We show that if Newt(f) does not satisfy condition
(1) or (3) of Theorem 7.1.1, then it satisfies condition (2). By Lemma 7.1.2, we may therefore assume that,
for all g with D(«) dividing D(8) and all F' € Contrib(8), | Unb(Cr)| < 1. Then Newt(f) has D(«a)-good
projection, so we may assume that for every face F' of Contrib(«), F' is pseudo-UB;.

We now argue that every face F' of Contrib(«) is UB;. Then by Lemma 7.2.2, Newt(f) is a-simplicial
and we have verified that condition (2) of Theorem 7.1.1 is satisfied.

If dim F' < 1, then F' is simplicial and hence is UB;. First suppose that dim F' = 2 and F' is compact.
Choose two vertices w; and wsy that lie on a 2-dimensional face of R3>0 (if they do not exist, then no
triangulation contains any UB;-facet), say {ef = 0}. Observe that for j € {2,3}, either (ef,w1) > 0 or
(€7, w2) > 0, else one of w; or wy would be in the upper convex hull of the other.

If F' is not UBj, there are at least two other vertices, ws and ws. We now consider two cases.

(1) First consider the case when ws and wy both have (ef,w;) = 1. Consider the 2-dimensional UB;
lattice simplex with vertices wi, w3, ws. We may assume that there is an apex with base direction
es. If the apex is wy, then w3 and wy must be of the form (1,0, ¢) for some ¢ € N. But then one of
w3 or wy is in the upper convex hull of the other. Hence we may assume that the apex is ws. Then,
wy = (0,0,a) and wg = (1,1,b) for some a,b € N. Note that (e}, ws) = 0 implies that (e}, ws) > 0.
Now consider the 2-dimensional UB; lattice simplex with vertices ws, w3, wy. This has an apex at
height 1 with base direction e5. As above, the apex can not be ws, else one of ws or wy is in the
upper convex hull of the other. It also can not be ws, else b =1 and o« = —1 € Z. Hence b = 0 and
the apex is wy. Since wy, we, w3, wy all lie on F'; we deduce that

wy = (0,0,a),ws = (0,a,0),ws = (1,1,0),ws = (1,0,1),

for some a € Z~(. Note that a > 1, else Xy is smooth at the origin. Then w = ((a — 1)/a)w; +
(1/a)we = (0,1,a — 1) is a lattice point in F, and the 2-dimensional lattice simplex with vertices
w,ws,wy is not UB7, a contradiction.
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(2) Now suppose that there is some vertex ws such that (e}, ws) > 1. As w;, wq, w3 span a 2-dimensional
UB; lattice simplex and either (e, w1) > 0 or (e3, w2) > 0, we may assume that w; is an apex with
base direction e} and (e5,w;) = 1. The fourth vertex wy must have (e5,wy) > 1, as otherwise
we would be in the previous case. Consider the 2-dimensional UB; lattice simplex with vertices
we, w3, wys. It cannot have an apex at height 1 in either of the directions e] or e5. Then we must
have wy = e3, which implies that X is smooth at the origin, a contradiction.

Now suppose that dimF = 2 and |Unb(Cg)| = 1. Then Cr has good projection and F is UB;. By
Remark 3.4.4, F is UB;. O
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