
ON SOME ASPECTS OF K-THEORETIC POSITIVITY

MATT LARSON

In these notes, we will discuss some positivity phenomena arising from the K-theory of projective varieties.
This can be summarized as showing that some integer is non-negative (or non-positive) by realizing it as
the Euler characteristic of a vector bundle on some variety, and then showing that the cohomology of that
vector bundle is concentrated in a particular degree.

This technique has a number of combinatorial application. The first combinatorial applications of this
technique, in some form, are due to Stanley [Sta75, Sta80]. Our main example will be a paper of Speyer
[Spe09], which bounds the complexity of matroid polytope subdivisions.

We will work over a field k, which we will often need to assume has characteristic 0. We will assume
that it is algebraically closed for convenience. The reader will lose little by assuming that k = C. Let

[n] = {1, . . . , n}, and let
(
[n]
r

)
denote the set of subsets of [n] of size r.

1. The Grassmannian and matroids

1.1. The Grassmannian. For a natural number n and 0 ≤ r ≤ n, the Grassmannian Gr(r, n) is the space
of r-dimensional subspaces of kn. This can be given the structure of a projective variety, as follows. For
an r-dimensional subspace L of kn, choose an r × n matrix M whose row span is L. If M ′ is another such
matrix, then there is g ∈ GLr(k) such that M ′ = gM .

The Plücker coordinates of L are the
(
n
r

)
determinants of the maximal minors of M . Up to scaling by a

non-zero constant, they are independent of the choice of M : if we replace M by gM for some g ∈ GLr(k),
then all of the Plücker coordinates are scaled by det g. We therefore obtain a well-defined element [L] of

projective space P(
n
r)−1.

It turns out that the subset {[L] : L ∈ Gr(r, n)} is a Zariski-closed subset of P(
n
r)−1, i.e., it is the vanishing

locus of a set of polynomial equations. These equations are generated by a very explicit set of equations
called Plücker relations. One can also show that the linear subspace L can be recovered from its Plücker

coordinates, and we can identify Gr(r, n) with this locus in P(
n
r)−1. For a proof of the above statements, see

[Ful97].

Example 1.1. The Grassmannian Gr(1, n) is Pn−1.

Example 1.2. The Grassmannian Gr(2, 4) is a hypersurface in P5. If the coordinates on P5 are p12, p13, p14, p23,
and p34, then Gr(2, 4) is the vanishing locus of p12p34 − p13p24 + p14p23.

Example 1.3. There is an isomorphism from Gr(r, n) to Gr(n− r, n), given by taking [L] ∈ Gr(r, n) to the
subspace L⊥ = {v ∈ kn : ⟨v, w⟩ = 0 for all w ∈ L}, where ⟨−,−⟩ is the standard inner product on kn.

The Grassmannian admits a transitive action on GLn(k). In terms of the r×n matrix M whose row span
is L, an element g ∈ GLn(k) replaces L by the row span of Mg. This transitive action implies that Gr(r, n)
is smooth. Because GLn is connected, it also implies that Gr(r, n) is irreducible. One can show that the
dimension of Gr(r, n) is r(n− r).

Inside of GLn, there are two particularly important subgroup. The Borel subgroup B is the space of
upper triangular matrices. The torus T is the space of diagonal matrices. If L is the row span of an r × n
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matrix M and t = (t1, . . . , tn) ∈ T , then the point t · [L] represents the row span of the matrix obtained by
scaling the n columns of M . This torus is isomorphic to Gn

m, i.e., the nth power of the multiplicative group.
Much of these notes will focus on the geometry and combinatorics of torus-orbits on Grassmannians.

The action of GLn(k) on Gr(r, n) extends to an action on P(
n
r)−1. This is particularly easy to see for

the torus: an element t = (t1, . . . , tn) scales the coordinate labeled by a subset S of {1, . . . , n} of size r by∏
i∈S ti.

Remark 1.4. The Grassmannian Gr(r, n) can also be viewed as a moduli space of (essential) arrangements
of n hyperplanes in an r-dimensional subspace. Given a subspace L of kn, we obtain n hyperplanes by
intersecting L with the coordinates axes (at least if L is not contained in any coordinate subspace). If we
have an arrangement of n hyperplanes in L whose intersection is 0, then we can obtain an embedding of L
into kn by writing each hyperplane as the vanishing locus of a linear form.

1.2. Torus-orbits on the Grassmannian. We will now begin a detailed study of the torus-orbits on the
Grassmannian, using ideas introduced in [GS87]. The first step is to analyze the stabilizers of points in
the Grassmannian. Note that the subgroup of T that consists of multiples of the identity acts trivially on
Gr(r, n), so every point has a stabilizer.

Proposition 1.5. For each subspace L of kn, there is a unique finest partition [n] = S1 ⊔ · · · ⊔ Sc such that

L =

c⊕
i=1

L ∩ kSi .

The stabilizer of [L] ∈ Gr(r, n) in the torus T is Gc
m, with the ith factor scaling kSi .

Proof. The support of a linear form
∑

aixi which vanishes on ℓ is the set {i : ai ̸= 0}. A linear form which
vanishes on ℓ is said to have minimal support if it is nonzero, and there is no nonzero linear form whose
support is strictly contained in the support of ℓ. If two linear forms of minimal support have the same
support, then they are constant multiples of each other. Every linear form vanishing on L can be written as
a linear combination of linear forms of minimal support which vanish on L.

Consider the equivalence relation generated by setting i ∼ j if i and j are both contained in the support
of some linear form vanishing on L with minimal support. Let S1, . . . , Sc be the equivalence classes. Then
the ideal of L is generated by linear forms whose support is contained in some Si, implying that there is a
direct sum decomposition

L =

c⊕
i=1

L ∩ kSi .

For any direct sum decomposition like this, the ideal of L is generated by linear forms whose support is
contained in the blocks, implying that this is the finest partition which induces a direct sum decomposition.

Let t = (t1, . . . , tn) be an element of the stabilizer of L, i.e., tv ∈ L for all v ∈ L. Then for each linear
form ℓ =

∑
aixi vanishing on L, the linear form

∑
tiaixi also vanishes on L. If ℓ has minimal support, then

this must be a constant multiple of ℓ. We deduce that ti = tj for all i, j in the support of ℓ. The description
of the Si in terms of the equivalence relation ∼ then implies the result. □

We say that the partition [n] = S1 ⊔ · · · ⊔ Sc is the partition into connected components. If 0 < r < n,
then a general point of Gr(r, n) has a 1-dimensional stabilizer in T , i.e., there is only a single connected
component.

The key tool to study torus-orbits in Gr(r, n) will be the theory of moment polytopes. We first recall the
general theory, see [Ful93, Chapter 3], [Sot03, Section 8], or [EFLS24, Section 6.1]. Let H be a torus with
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character lattice M . Let V be a representation of H. Then V has a unique decomposition V ≃ ⊕N
i=1Vi into

H-eigenspaces, where Vi is the subspace of V where H acts by some character ai ∈ M .
There is an action of H on PV . Given a point x ∈ PV with representative v ∈ V , let

Ax = {ai : vi ̸= 0 in the expression v =

N∑
i=1

vi}.

Then the normalization of the torus-orbit closure H · x is the toric variety corresponding to the normal fan of
Conv(Ax) ⊂ M ⊗ZR, with respect to the affine lattice generated by Ax, i.e., the translation of the sublattice
of M generated by {ai − aj : ai, aj ∈ Ax} so that it contains Ax. The polytope Conv(Ax) ⊂ M ⊗Z R is

called the moment polytope of H · x. In particular, by [CLS11, Corollary 3.A.6], there is a bijection between
k-dimensional faces of the moment polytope and k-dimensional H-orbits in H · x.

We apply this to points of the Grassmannian in its Plücker embedding. The character lattice of the torus
T is identified with Zn, and the eigenspaces of T acting on the ambient space of the Plücker embedding are

the coordinate lines. The character corresponding to a subset S ∈
(
[n]
r

)
is eS :=

∑
i∈S ei. The torus-fixed

pointed of P(
n
r)−1 are in bijection with

(
[n]
r

)
.

Given [L] ∈ Gr(r, n), we see that the set A[L] is {eS : pS([L]) ̸= 0}, where pS is the Plücker coordinate

corresponding to S. We see that the moment polytope of T · [L] is

Conv(eS : pS([L]) ̸= 0).

However, T · [L] is contained in Gr(r, n). Although there is a unique T -fixed curve between any two distinct

T -fixed points in P(
n
r)−1, most of these curves do not lie in Gr(r, n).

Proposition 1.6. The T -fixed curve in P(
n
r)−1 between the T -fixed points corresponding to distinct subsets

S1, S2 in
(
[n]
r

)
lies in Gr(r, n) if and only if S2 = (S1 \ i) ∪ j for some i ∈ S1, j ∈ S2.

Remark 1.7. There are finitely many 2-dimensional T -fixed subvarieties of Gr(r, n). However, Gr(2, 4) has
infinitely many 3-dimensional T -fixed subvarieties.

In particular, every edge in the moment polytope of T · [L] must connected two vertices eS1
and eS2

with
S2 = (S1 \ i) ∪ j. This happens if and only if every edge is parallel to ei − ej , i.e., it is parallel to a root of
type An−1. The proves the following.

Theorem 1.8. [GS87] All edges of the moment polytope of a torus-orbit closure in Gr(r, n) are parallel to
a vector of the form ei − ej.

Motivated by this, we define matroids as a generalization of moment polytopes of torus-orbits in Grass-

mannians. Matroids are certain subsets of
(
[n]
r

)
that model the set of non-vanishing Plücker coordinates of

a linear subspace.

Definition 1.9. A subset B of
(
[n]
r

)
is a matroid of rank r on ground set [n] if the polytope

Conv(eS : S ∈ B)

has all edges parallel to a vector of the form ei − ej.

A matroid is usually called M, and we say that the set B appearing in Definition 1.9 is its set of bases.
For a matroid M, the polytope Conv(eS : S ∈ B) is called the matroid polytope of M. It is denoted P (M).

From Theorem 1.8, we deduce that each linear subspace L ⊆ kn of dimension r gives rise to a matroid on
ground set [n] of rank r. A matroid arising in this way is called realizable (over k).
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Example 1.10. For 0 ≤ r ≤ n, the uniform matroid Ur,n is the matroid whose bases are all subsets of [n]
of size r. A general linear subspace realizes Ur,n.

Example 1.11. Consider the matrix

A =

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

 .

If k has characteristic 2, then the row span of A in k7 realizes a matroid called the Fano matroid F7. If
k has characteristic different from 2, then it realizes a matroid called the non-Fano matroid F+

7 , which is
the same as the Fano matroid except that {5, 6, 7} is a basis. The Fano matroid is realizable over fields of
characteristic 2, and the non-Fano matroid is realizable over fields of characteristic different from 2.

Example 1.12. Given two matroids M1 and M2 of ranks r1, r2 on ground sets {1, . . . , n} and {n+1, . . . ,m},
their direct sum M1 ⊕M2 is the matroid of rank r1 + r2 whose bases are {B1 ∪ B2 : Bi basis of Mi}. The
matroid F7 ⊕ F+

7 is not realizable over any field.

We say that a matroid is connected if it cannot be written as a direct sum of two matroids on non-empty
ground sets. For a matroid M on [n], the dimension of P (M) is n − c(M), where c(M) is the number of
connected components of M. In particular, M is connected if and only if its polytope P (M) has dimension
n− 1.

Example 1.13. A face of a matroid polytope is a matroid polytope.

Example 1.14. Give a matroid M on [n], the dual matroid M⊥ is the matroid with bases {[n] \ B :
B basis of M}. If M is realized by L ⊆ kn, then M⊥ is realized by L⊥ ⊆ kn, i.e., the image of the point [L]
under the isomorphism Gr(r, n) ≃ Gr(n− r, n).

1.3. Normality of torus-orbit closures. Proposition 1.5 describes the dense torus inside a torus-orbit
closure in the Grassmannian, and Theorem 1.8 describes the normal fan. In order to use this to identify the
torus-orbit closure (up to isomorphism), we need to know that torus-orbit closures are normal. This follows
from the following highly non-obvious property of matroid polytopes. For a polytope P , let aP denote its
ath dilate.

Theorem 1.15. [Wel76, Chapter 18.6, Theorem 3] For any positive integer a, every lattice point in aP (M)
is a sum of a lattice points in P (M).

To prove the normality of torus-orbit closures, we discuss semigroup algebras of lattice polytopes.

Definition 1.16. Let P be a lattice polytope in Rn. The semigroup algebra RP of P is the graded vector
space

⊕
k≥0 ⊕p∈kP (M)∩Znk · p, equipped with the multiplication is induced by p · q = p+ q.

Proposition 1.17. [BH93, Theorem 6.1.4] The semigroup algebra RP of a lattice polytope is normal.

If L is a representation of M, then the homogeneous coordinate ring of T · [L] is the subring of the
semigroup algebra which is generated in degree 1. As Theorem 1.15 implies that the semigroup algebra is
generated in degree 1, this implies the homogeneous coordinate ring is equal to the semigroup algebra. As
such a semigroup algebra is normal, this implies the following result.

Corollary 1.18. [Spe09, Proposition A.1] Each torus-orbit closure T · [L] in Gr(r, n) is projectively normal

in P(
n
r)−1, i.e., the cone over it is normal in A(

n
r).
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In particular, torus-orbit closures in Grassmannians are normal, and so if [L1] and [L2] are points of the

Grassmannian over k which realize the same matroid, then there is a toric isomorphism from T · [L1] to

T · [L2].

Remark 1.19. Torus-orbit closures in homogeneous spaces of other types do not enjoy the nice properties
of torus-orbit closures in the Grassmannian. Outside of type A, torus-orbit closures frequently fail to be
normal. Except in a few other cases (such as maximal orthogonal Grassmannians), the vanishing or non-
vanishing of the generalized Plücker coordinates of a point does not determine the stabilizer, i.e., there is no
description of the stabilizer like in Proposition 1.5. See [ELS25, Example 2.5] for an example of two points
in the Lagrangian Grassmannian LGr(2, 4) whose torus-orbit closures have the same moment polytope,
but different stabilizers. In that example, there is an interior lattice point in the moment polytope which
may or may not be contained in A. The generalized Plücker coordinates correspond to the vertices of the
moment polytope, and knowing the vanishing or the non-vanishing of generalized Plücker coordinates does
not determine the lattice affinely generate by A.

2. Matroid polytope subdivisions

We will be interested in subdivisions of matroid polytopes into unions of matroid polytopes. It turns out
that there is a natural source of these subdivisions arising from the geometry of the Grassmannian, which
seems to have first been noticed by Kapranov [Kap93]. The properties of these subdivisions have taken on
an increasingly important role in matroid theory, thanks to the development of a technique which allows one
to use matroid polytope subdivisions to reduce statements to the case of realizable matroids. In particular,
this allows one to use tools from algebraic geometry to prove results about non-realizable matroids.

Definition 2.1. Let P be a polytope in Rn. A polyhedral subdivision of P is a collection of polytopes
Q1, Q2, . . . , Qk which are contained in P and of the same dimension as P , such that P = ∪k

i=1Qi, the
relative interiors of the Qi are disjoint, and the intersection of any two of the Qi is a face of both.

An interior face of a polyhedral subdivision is a face of some Qi which is contained in the relative interior
of P . In particular, each of the Qi is an interior face.

The easiest subdivisions to construct are regular subdivisions. These are subdivisions that are constructed
by choosing a finite subset S of P which includes all of the vertices and a height function h : S → R, forming
the polytope P̂ in Rn × R as the convex hull of (p, h(p)) for p ∈ S, and then projecting the lower faces.

Definition 2.2. A matroid polytope subdivision of a matroid polytope P (M) is a polyhedral subdivision of
P (M) such that all of the polytopes appearing in the subdivision are matroid polytopes.

Figure 1. The matroid polytope P (U2,4).

Example 2.3. There is a subdivision of the polytope P (U2,4) with two full-dimensional cells, correspond
to the top half and the bottom half of the bipyramid in Figure 1.
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Because a face of a matroid polytope is a matroid polytope, it suffices to check that the top-dimensional
cells are matroid polytopes.

We will now construct a large number of matroid polytope subdivisions. Let R be a discrete valuation
ring, with fraction field K, valuation ν : K× → Z, and residue field κ. Let L be a saturated R-submodule of
Rn of rank r. This is the same thing as a map SpecR → Gr(r, n), i.e., the germ of a curve in Gr(r, n). We
have a matroid M induced by the subspace L⊗R K of Kn.

For each basis B of M, we obtain an integer ν(pB) by taking the valuation of the Plücker coordinate
corresponding to B. The Plücker coordinates are defined up to scaling, and so these integers are defined up
to translation by a global constant. We obtain a regular polyhedral subdivision of P (M) by using the ν(pB)
as a height function on the vertices of P (M). This subdivision does not change if we translate by heights by
a global constant, so it does not depend on the choice of scaling of the Plücker coordinates.

Theorem 2.4. [Spe09, Proposition A.2] The subdivision of P (M) described above is a matroid polytope
subdivision.

Example 2.5. Let R be the discrete valuation ring k[t](t), and let L be the R-submodule of R4 generated
by the rows of the matrix

A =

(
1 0 1 1
0 1 1 t

)
.

We have M = U2,4. Using the matrix A to compute the Plücker coordinates of L⊗R K, we have ν(p34) = 1
and ν(pB) = 0 for all other bases. Then the induced matroid polytope subdivision is the subdivision in
Example 2.3.

This example can be computed very explicitly. The Grassmannian and its Plücker embedding are defined
over any base scheme. Inside of P5

R, projective space over SpecR, Gr(2, 4) is the hypersurface defined by the
equation p12p34 − p13p24 + p14p23 = 0. The torus-orbit closure of [L] is 3-dimensional, and it is defined by
the additional equation tp12p34 = (1 − t)p14p23. When we set t = 0, the equations defining the torus-orbit
closure become p14p23 = 0 and p12p34 = p13p24. This has two components, each of which is the toric variety
of a square pyramid.

There are two ways to prove Theorem 2.4. In [Spe08, Proposition 2.2] (see also [OPS19, Corollary
13]), Speyer characterized the height functions on the vertices of P (M) which induce matroid polytope
subdivisions, and it is easy to check, using the Plücker relations, that the ν(pB) satisfy his condition. It
is also a consequence of a general description of projective toric varieties over a discrete valuation ring
[Smi96, Section 2]. Using this second approach, Theorem 2.4 can be generalized without difficulty to torus-
orbit closures in any homogeneous space.

Example 2.6. Let M be a matroid of rank r on [n], and let rkM : 2[n] → Z be the rank function of M,
given by rkM(S) = maxB basis |B ∩ S|. Then the regular subdivision of Ur,n induced by the height function
h(S) = − rkM(S) on the vertices of P (Ur,n) is a matroid polytope subdivision. If M is connected, then P (M)
intersects the relative interior of P (Ur,n), and so it is a face of this subdivision.

The main purpose of these notes is to discuss the mathematics surrounding the following theorem.

Theorem 2.7. A matroid polytope subdivision of P (Ur,n) has at most (n−c−1)!
(r−c)!(n−r−c)!(c−1)! interior faces of

dimension n− c for c ≤ min{r, n− r}, and it has no interior faces of dimension less than min{r, n− r}.

In fact, equality holds for the number of top-dimensional interior faces (i.e., the subdivision has
(
n−2
r−1

)
top-dimensional faces) if and only if each connected matroid matroid appearing in the subdivision is a
series–parallel matroid, in which case one has equality for the number of interior faces of each dimension.
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Theorem 2.7 was conjectured in [Spe08], and it was known as Speyer’s f-vector conjecture. Major progress
was made in [Spe09], where Theorem 2.7 was reduced to verifying the non-negativity of a certain invariant of
matroids. In [Spe09], Speyer proved this non-negativity for matroids realizable over a field of characteristic 0.
After some more cases were proved in [EL23,FS24], the non-negativity was proved in general in [FSS24,BF24].

The proof of Theorem 2.7 shows that if M is a matroid of rank r on [n], then a subdivision of P (M) has

at most (n−c−1)!
(r−c)!(n−r−c)!(c−1)! interior faces of dimension n − c for c ≤ min{r, n − r}, and it has no interior

faces of dimension less than min{r, n − r}. In fact, the proof gives a bound which is strictly stronger for
every matroid. However, this stronger bound is still not sharp for most matroids: it is sharp if and only if M
admits a subdivision into series parallel matroids. This is not possible for, for example, the Fano matroid.

We now outline the strategy introduced in [Spe09]. For each n, define the valuative group Valn to be
the subgroup of functions from Rn to R generated by the indicator functions of matroid polytopes on [n].
There is a direct sum decomposition Valn = ⊕n

r=0 Valr,n, where Valr,n is the subgroup generated by indicator
functions of matroid polytopes of rank r. A function f from the set of matroids on [n] to an abelian group
A is said to be valuative if it factors through Valn.

There are many easy examples of valuative invariants, such as the number of bases of a matroid, the
volume of P (M) (with respect to a volume form on the hyperplane

∑
xi = r), the Ehrhart polynomial

of P (M). Surprisingly, most natural invariants of a matroid turn out to be valuative, such as the Tutte
polynomial [AFR10] and most “algebro-geometric” invariants such as the Bergman class [BEST23] and
various K-theoretic invariants [LLPP24].

If we have a matroid polytope decomposition of P (M), then, by a version of inclusion-exclusion [AFR10,
Theorem 3.5], we have an equality

(1) 1P (M) =
∑

Q interior face, dimQ=n−c

(−1)c+11Q.

Here 1P is the indicator function of P . Suppose that f : {matroids on [n]} → Z is a valuative invariant such
that (−1)c+1f(M) ≥ 0 for each matroid M with c connected components. Then, for any matroid polytope
subdivision of P (Ur,n), we have

f(Ur,n) =
∑

Q interior face, dimQ=n−c

(−1)c+1f(Q).

Each term on the right-hand side of non-negative, and so this gives a bound on the complexity of the
subdivision.

It is easy to construct valuative invariants which are non-negative on all matroids. However, they are
fewer obvious ways to construct a valuative invariant with the sign property that is needed to use (1) to
bound the complexity of a matroid polytope subdivision turns out to be quite difficult. As we will explain,
such invariants arise naturally from K-theoretic constructions. Here are some elementary examples, although
they are still, in some way, related to K-theory.

Example 2.8. The volume of the matroid polytope P (M) is a valuative invariant which is 0 on all discon-
nected matroids. The (normalized) volume of P (Ur,n) is known to be the Eulerian number A(n− 1, r − 1),
the number of permutations in Sn−1 with r − 1 descents. A matroid polytope is a lattice polytope, so its
volume is at least 1. This implies that a subdivision of P (Ur,n) has at most A(n− 1, r− 1) top-dimensional

interior faces. This is much weaker than Theorem 2.7, which shows there are at most
(
n−2
r−1

)
top-dimensional

interior faces.

Example 2.9. The Ehrhart polynomial ehrP (M)(t) is a valuative invariant of matroids. For a positive integer

a, ehrP (M)(t) is equal to (−1)n−c times the number of lattice points in the interior of the dilate aP (M). In
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particular, this gives a bound on the complexity of a matroid polytope subdivision. It seems that these
bounds are not strong enough to prove Theorem 2.7.

Remark 2.10. Derksen and Fink showed that that Valn is the quotient of the free abelian group with a
basis labeled by matroid on [n] by the subgroup generated by relations of the form (1) [DF10, Appendix A].
See [EHL23, Appendix A] for a discussion of related questions.

3. K-groups of spaces

We now discuss the K-theory of schemes, see [Ful98, Section 15.1]. K-theory is a type of intersection
theory, and, as is usual, it comes in two flavors, a homological flavor and a cohomological flavor. When the
scheme is smooth, these flavors can be identified.

LetX be a scheme which is finite type over k. LetK◦(X) be the Grothendieck group of coherent sheaves on
X, i.e., K◦(X) is the quotient of the free abelian group generated by coherent sheaves on X by the subgroup
generated by relations corresponding to short exact sequences. In other words, if 0 → F1 → F2 → F3 → 0 is
a short exact sequence of coherent sheaves on X, then [F2] = [F1] + [F3] in K◦(X). If there is a long exact
sequence

0 → F1 → F2 → · · · → Fk → 0,

then we have
∑k

i=1(−1)i[Fi] = 0 in K◦(X) by breaking this long exact sequence into short exact sequences.
Let K◦(X) be the Grothendieck group of vector bundles on X. If 0 → F1 → F2 → F3 → 0 is a short

exact sequence of coherent sheaves on X and E is a vector bundle, then 0 → E ⊗F1 → E ⊗F2 → E ⊗F3 → 0
is short-exact. It follows that K◦(X) is a ring, with multiplication given by tensor product, and K◦(X) is a
module over K◦(X).

There is a map K◦(X) → K◦(X), obtained by viewing a vector bundle as a coherent sheaf. In general,
this map is neither injective nor surjective, but if X is smooth then it is an isomorphism [Ful98, Appendix
B.8], essentially because every coherent sheaf has a finite resolution by vector bundles. In this case, we
denote both K◦(X) and K◦(X) by K(X).

We list some properties of K-groups. Let π : X → Y be a map of schemes which are finite type over k.

(1) For any scheme X, K◦(X) is generated (as an abelian group) by classes of structure sheaves of
(integral) subvarieties of X.

(2) If X → Y is proper, then there is a pushforward map π∗ : K◦(X) → K◦(Y ), defined by π∗[F ] =∑
i≥0(−1)i[Riπ∗F ].

(3) There is a pullback map π∗ : K◦(Y ) → K◦(X) defined by π∗[E ] = [π∗E ].
(4) If X → Y is proper, a ∈ K◦(Y ), and x ∈ K◦(X), then

(2) π∗(π
∗a · x) = a · π∗x.

The property (2) is known as the projection formula.

Remark 3.1. Note that if X and Y are smooth, then there is a pullback map π∗ : K(Y ) → K(X). Given
the coherent sheaf F on Y , π∗[F ] is usually not equal to [π∗F ]. Rather, we resolve F by vector bundles and
pull those back.

Particularly important is the case when X is a projective variety and Y is a point. Then K(Y ) = Z, and
the pushforward map K◦(X) → Z is equal to the Euler characteristic. I.e., the pushforward of [F ] to a point
is equal to

χ(X,F) =
∑
i≥0

(−1)i dimHi(X,F).

There are two practical ways to compute the Euler characteristic.
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If L is a line bundle, then the function a 7→ χ(X,F ⊗ L⊗a) is a polynomial. If L is ample, then for a
sufficiently large, Serre vanishing implies that χ(X,F ⊗L⊗a) agrees with dimH0(X,F ⊗L⊗a). In this case,
we can compute χ(X,F) by forming the graded module ⊕a≥0H

0(X,F ⊗ L⊗a), finding the polynomial p(a)
which agrees with dimH0(X,F ⊗ L⊗a) for a sufficiently large, and then setting a = 0.

For example, we compute the Euler characteristic of the line bundle O(a) on PN . The corresponding
graded module is k[x0, . . . , xN ][a], i.e., the ring k[x0, . . . , xN ], with 1 placed in degree −a, viewed as a

module over k[x0, . . . , xN ]. For i ≥ −a, the dimension of the ith graded piece is
(
N+a+i

N

)
. Setting i = 0, we

see that

(3) χ(PN ,O(a)) =

(
N + a

N

)
.

If X is embedded into PN for some N , then a coherent sheaf on X can be pushed forward to a coherent
sheaf on PN . A coherent sheaf F on PN corresponds to a graded module M =

⊕
i∈Z H

0(PN ,F(i)) over
the polynomial ring k[x0, . . . , xN ]. This correspondence is a bit subtle in general, but an exact sequence of
graded modules induces an exact sequence of sheaves on PN . By the Hilbert syzygy theorem, any graded
module M over k[x0, . . . , xN ] has a graded free resolution

0 → k[x0, . . . , xN ]⊗ VN → k[x0, . . . , xN ]⊗ VN−1 → · · · → k[x0, . . . , xN ]⊗ V1 → M → 0,

where each Vi is a graded vector space. This induces a long exact sequence of sheaves on PN involving F ,
the sheafification of M , and a bunch of direct sums of lines bundles. This writes [F ] as a linear combination
of combination of classes of line bundles, and one can then use (3) to compute the Euler characteristic.

We now describe the K-theory of PN . This will be done more generally for Grassmannians later.
As shown above, K(PN ) is spanned (as an abelian group) by classes of line bundles. Repeatedly using the

short exact sequence 0 → O(−1) → O → OH → 0, where H is a hyperplane, and inducting on the dimension,
we see that K(PN ) is generated as an abelian group by powers of [OH ]. Using the Koszul complex, i.e., the
long exact sequence

0 → O(−(N + 1)) → O(−N)⊕N+1 → · · · → O(−1)N+1 → O → 0,

we see that [OH ]N+1 = ([O] − [O(−1)])N+1 = 0, and so K(PN ) is generated as an abelian group by
[O], [OH ], [OH ]2, . . . , [OH ]N .

We claim that these classes form a basis for K(PN ). There is a pairing K(PN ) ×K(PN ) → Z given by
(a, b) 7→ χ(PN , ab). We have

χ(PN , [OH ]i[OH ]j) =

{
1 i+ j ≤ N,

0 otherwise.

The matrix whose (i, j)th entry is χ(PN , [OH ]i[OH ]j) is nondegenerate. This means that this pairing does
not descend to any quotient of the span of [O], [OH ], . . . , [OH ]N , and so these classes must be linearly
independent in K(PN ). We conclude that

K(PN ) ≃ Z[x]/(xN+1), x = [OH ],

where H is a hyperplane. Note that, for instance by Proposition 3.2 below, [OH ]k is the class of a linear
subspace of PN of codimension k.

The nondegeneracy of this pairing means that we can compute the class of a sheaf [F ] in K(PN ) in terms
of the Hilbert polynomial of F . That is, we have [F ] =

∑
ai[OH ]N−i, where

(4) χ(PN ,F ⊗O(a)) =

N∑
q=0

aq

(
a+ q

q

)
.
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We see that K◦(PN ) can be identified with subspace of polynomial functions on Z which is spanned by the
functions a 7→

(
a+q
q

)
, for q = 0, . . . , N . This is exactly the space of numerical polynomials of degree at most

N , i.e., polynomial p ∈ Q[t] such that p(a) is an integer for every a ∈ Z.

We now explain the sense in which K-theory is a form of intersection theory. If Y and Z are smooth
subvarieties of an ambient variety X, then we say that Y and Z are transverse at a point x ∈ Y ∩ Z
if the tangent spaces TxY , TxZ to Y and Z at x are transverse inside of TxX, i.e., codimTxY ∩ TxZ =
codimTxY + codimTxZ, where codim is the codimension inside of TxX.

Proposition 3.2. If Y and Z are smooth subvarieties of a smooth variety X which meet transversely, then
[OY ] · [OZ ] = [OY ∩Z ].

Usually one does intersection theory using singular cohomology or Chow groups. K-theory captures some
refined information, as illustrated by the following examples.

Example 3.3. Let Y,Z be subvarieties of a variety X. Then there is an exact sequence

0 → OY ∪Z → OY ⊕OZ → OY ∩Z → 0,

so [OY ∪Z ] = [OY ] + [OZ ]− [OY ∩Z ]. Note that, if Y and Z are the same dimension, then we have [Y ∪Z] =
[Y ] + [Z] in Chow or in cohomology, so K-theory is capturing some refined information about how Y and Z
meet.

Example 3.4. Let Y be the union of two skew lines in P3. Then [OY ] = 2[OH ]2 in K(P3), as [OH ]2 is the
class of a line. Let Z be the union of two lines in P3 that meet at a point. We have χ(Z,O(a)) = 2a+ 1, so
[OZ ] = 2[OH ]2 − [OH ]3 by (4). Note that Y and Z have the same class in the cohomology ring H∗(P3).

Furthermore, it is often the case that if Z1 and Z2 are subvarieties of a smooth scheme X which can be
deformed to each other, we have [OZ1

] = [OZ2
] ∈ K(X), as in the following examples.

Example 3.5. Let X be a smooth projective variety such that K(X) is a finitely generated torsion-free
abelian group, and the pairing K(X) × K(X) → Z given by (a, b) 7→ χ(X, ab) is nondegenerate. For
example, this holds for a Grassmannian or a smooth projective toric variety, and, more generally, for any
complex variety for which the map from K(X) to its topological topological K-theory is an isomorphism.
Let C be a connected curve, and suppose that Z is a subscheme of X × C which is flat over C. Let
p be the map from X × C to C. Then for any vector bundle E on X and points q1, q2 ∈ C, we have
χ(p−1(q1) ∩ Z, E|p−1(q1)) = χ(p−1(q2) ∩ Z, E|p−1(q2)) because the Euler characteristic is locally constant in
proper flat families [Vak25, Theorem 24.7.1]. This implies that [Op−1(q1)∩Z ] = [Op−1(q2)∩Z ] in K(X).

Example 3.6. Let X be a smooth variety, and let Z be a smooth subvariety of X×P1 which is flat over P1.
Let p : X × P1 → P1 be the projection. Then for any two points q1, q2 ∈ P1, we have [Oq1 ] = [Oq2 ] ∈ K(P1).
Pulling back to X × P1, we see that [Op−1(q1)] = [Op−1(q2)] in K(X × P1). This implies that [Op−1(q1)∩Z ] =
[Op−1(q2)∩Z ] in K(X), as [Op−1(q1)] · [OZ ] = [Op−1(q1)∩Z ] by Proposition 3.2, and similarly for q2.

There is a direct connection between K-groups and Chow groups, which are an algebraic version of
homology. If X is a scheme, K◦(X) is equipped with a decreasing filtration F0 ⊇ F1 ⊇ · · · ⊇ FdimX ⊇ 0,
called the coniveau filtration. Here Fi is the subgroup generated by classes of coherent sheaves whose support
has codimension at least i. There is a surjective map from the Chow groups A•(X) to the associated graded
grK◦(X), obtained by sending the class of a subvariety [Z] to [OZ ], and this map becomes an isomorphism
after tensoring with Q [Ful98, Example 15.1.5].
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4. K-theory of the Grassmannian

We will now describe the K-theory of the Grassmannian. Recall that GLn acts on Gr(r, n), and so B,
the Borel subgroup of upper triangular matrices in GLn, acts on Gr(r, n).

Proposition 4.1. The action of B on Gr(r, n) has finitely many orbits, one for each sequence λ =
(λ1, λ2, . . . , λr) of [n] with n − r ≥ λ1 ≥ · · · ≥ λr ≥ 0. The orbit corresponding to λ is isomorphic to
Aλ1+···+λr .

Let Ωλ denote the closure of the B-orbit corresponding to λ. This is called the Schubert variety associated
to λ. Set |λ| = λ1 + · · ·+ λr, so dimΩλ = |λ|.

Proposition 4.2. The classes of B-orbit closures {[OΩλ
]} form a basis for K(Gr(r, n)).

Note that, when r = 1, this recovers the basis for K(Pn−1) described previously.

4.1. K-theoretic positivity on the Grassmannian. As a consequence of Proposition 4.2, given any
subscheme X of Gr(r, n), we can write [OX ] =

∑
λ aλ[OΩλ

] for some integers aλ. We will show, in good
circumstances, these integers aλ have certain positivity properties.

The first observation is aλ = 0 if |λ| > dimX. This can be seen by using the relationship between
K◦(Gr(r, n)) and the Chow groups A•(Gr(r, n)). This connection also implies that if |λ| = dimX, then aλ
is the coefficient of [Ωλ] in the expansion of the fundamental class of X in AdimX(Gr(r, n)) in terms of the
classes of Schubert varieties. It follows from the Kleiman–Bertini theorem [Ful98, Lemma B.9.2] that the
coefficients of the expansion of [Ωλ] in terms of classes of Schubert varieties can be computed as the length of
the dimensionally transverse intersection of X with a subvariety of Gr(r, n), and so the aλ are non-negative
in this case.

When |λ| < dimX, then the aλ capture more refined information about X. For example, they can be
used to distinguish two skew lines in P3 from two lines that meet at a point.

We say that an integral scheme X over a field of characteristic 0 has rational singularities if a resolution
of singularities π : X̃ → X, i.e., a proper birational map from a smooth scheme X̃, has π∗OX̃ = OX and
Riπ∗OX̃ = 0 for i > 0. If this holds for one resolution, then it holds for any resolution, because any two

resolutions can be dominated by a third. In particular, if π : X̃ → X is a resolution of singularities of a
variety with rational singularities, then π∗[OX̃ ] = [OX ].

Example 4.3. If X is a smooth variety, a (normal) toric variety [Ful93, pg. 76], or a Schubert variety
[BK05, Section 3.4], then it has rational singularities.

If X is proper and has rational singularities, then for any a ∈ K◦(X) and any resolution π : X̃ → X,

we have χ(X, a) = χ(X̃, π∗a) by the projection formula. In fact, the Leray spectral sequence and the

projection formula implies that, for any vector bundle E , the natural map from Hi(X, E) to Hi(X̃, π∗E) is
an isomorphism for all i.

Theorem 4.4. [Bri02] Let X be a closed subvariety of the Grassmannian over a field of characteristic 0,
and assume that X has rational singularities. Write [OX ] =

∑
λ aλ[OΩλ

]. Then (−1)dimX−|λ|aλ ≥ 0.

I.e., the coefficients which are used to express [OX ] in the basis given by structure sheaves of Schubert
varieties alternate in sign. When λ = dimX, one has aλ ≥ 0 without any restriction on the singularities or
characteristic. In the case of Gr(1, n) = Pn−1, Theorem 4.4 predicts the signs occurring in the expansion of
the Hilbert polynomial of X using the basis {

(
a+q
q

)
}q=0,...,n−1 for polynomials in a of degree at most n− 1,

as in (4).
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The key tool to prove K-theoretic positivity results is the Kawamata–Viehweg vanishing theorem. This
controls the cohomology of inverses of nef and big line bundles on a smooth projective variety. A line bundle
L on a projective variety X is nef if its restriction to every integral curve in X has non-negative degree. We
say that L is big if the sections of its tensor powers have the maximal possible growth rate, i.e., if

lim sup
a→∞

dimH0(X,L⊗a)

(dimX)a
> 0.

If L is nef, then L is big if and only if its top self-intersection number
∫
X
c1(L)dimX is positive.

We can obtain nef and big line bundles as follow: we take a surjective map X → Y with dimX = dimY
and embedding of Y into projective space Pn, and then we pull back the hyperplane bundle O(1) to X.

Theorem 4.5 (Kawamata–Viehweg vanishing theorem). Let X be a (connected) smooth projective variety
over a field of characteristic 0, and let L be a nef and big line bundle on X. Then Hi(X,L−1) = 0 for
i < dimX.

By Serre duality, Hi(X,L−1) is dual to HdimX−i(X,ωX ⊗ L), where ωX is the canonical bundle, so
Kawamata–Viehweg vanishing is often phrased as saying that if L if nef and big, then Hi(X,ωX ⊗ L) = 0
for i > 0.

In the case when L is ample, Theorem 4.5 is called Kodaira vanishing, and the proof is considerably easier
in this case. We will mostly use the following corollary.

Corollary 4.6. Let X be a projective variety with rational singularities over a field of characteristic 0, and
let L be a nef and big line bundle on X. Then (−1)dimXχ(X,L−1) ≥ 0.

Proof. Let π : X̃ → X be a projective resolution of singularities of X. Then π∗L is a nef and big line bundle
on X̃, so, by Theorem 4.5, we have

χ(X̃, π∗L−1) =
∑
i≥0

(−1)i dimHi(X,π∗L−1) = (−1)dimX dimHdimX(X̃, π∗L−1).

The result follows, as χ(X,L−1) = χ(X̃, π∗L−1) because X has rational singularities. □

Note that Theorem 4.5 and even Corollary 4.6 can fail in positive characteristic [Tot19]. Corollary 4.6
can also fail without the assumption that X has rational singularities:

Example 4.7. Choose some integers d > n ≥ 3. By generically projecting the rational normal curve in Pd,
construct a smooth degree d rational curve in Pn. Let Y be the cone over this curve, and let Ỹ be the blow-up
of Y at the cone point, so the map π : Ỹ → Y is a resolution of singularities. The variety Ỹ is isomorphic to
the dth Hirzebruch surface, and, using toric geometry, one can show that Hi(Ỹ , π∗O(−1)) = 0 for all i. But
Y is not normal: there is a (d− n)-dimensional vector space of sections of O(1) on the rational curve which
are not restricted from Pn. This implies that the sheaf π∗OỸ /OY has length at least d− n. Because π is an
isomorphism outside of the origin, this sheaf is concentrated at the origin. Also, R1π∗OỸ = R2π∗OỸ = 0
because the curve is rational, so we have

π∗[OỸ ] = [OY ] +m[Op], m ≥ d− n.

By the projection formula (2), we have χ(Y,O(−1)) = −m < 0.

We now prove Theorem 4.4 in the case r = 1, i.e., for subschemes of projective space. The general case
is similar, except that it require a more sophisticated vanishing theorem.
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Proof of Theorem 4.4. We will use the observation that the pairing K(Pn−1) × K(Pn−1) → Z given by
(a, b) 7→ χ(Pn−1, ab) is nondegenerate. Under this pairing, the dual basis to {[O], [OH ], . . . , [OH ]n−1} is
{[OH ]n−1, [OH ]n−2[O(−1)], [OH ]n−3[O(−1)], . . . , [O(−1)]}. That is, we have

[OX ] =
∑

an−1−i[OH ]i, where an−1−i = χ(Pn−1, [OX ] · [OH ]n−1−i[O(−1)]).

By Proposition 3.2, [OX ] · [OH ]n−1−i is the structure sheaf of the result of slicing X by n− 1− i transverse
hyperplanes. Call this variety Z. By an appropriate version of Bertini’s theorem, Z has dimension dimX −
(n− 1− i), and it has rational singularities. It follows from Corollary 4.6 that

(−1)dimX−(n−1−i)an−1−i = χ(Z,O(−1)) ≥ 0. □

Remark 4.8. If one replaces [OX ] with π∗[OX̃ ], where π : X̃ → X is a resolution of singularities, then
Theorem 4.4 holds without any assumption on the singularities.

4.2. Bounds on matroid polytope subdivisions. Using Theorem 4.4, we can construct valuative invari-
ants of matroids that, at least for matroids realizable over a field of characteristic 0, have the sign property
that is needed to bound the complexity of a matroid polytope subdivision.

Given a linear subspace L ⊆ kn, we may expand the class of the structure sheaf of the torus orbit closure
[O

T ·[L]
] in terms of structure sheaves of Schubert varieties:

[O
T ·[L]

] =
∑
λ

aλ[OΩλ
].

Let M be the matroid of L, and let c be the number of components of M, so dimT · [L] = n− c. The torus-

orbit closure T · [L] is a normal toric variety, and normal varieties have rational singularities by Example 4.3.
Then, if k has characteristic 0, Theorem 4.4 gives that (−1)n−|λ|−caλ ≥ 0.

It is reasonable to expect that the class [O
T ·[L]

] ∈ K(Gr(r, n)) depends only on the matroid of L: often,

though not always, it is possible to deform any other realization L′ of M to L. Such a deformation induces
a deformation of the corresponding torus-orbit closures, which implies that their K-classes are equal by
Example 3.5.

In situations like this, when one has an “algebro-geometric” invariant of realizable matroids, it is almost
always possible to extend the definition of this invariant to all matroids. One finds a formula for the invariant,
and then the formula typically makes sense for an arbitrary matroid.

Example 2.5, together with Example 3.3, suggests that the class [O
T ·[L]

] behaves valuatively with respect

to matroid polytope subdivisions. See [Spe09, Proposition A.3]. It is reasonable to hope that this behavior
extends to non-realizable matroids.

These properties were established in [FS12], although none of them are obvious. That is, for each matroid
M of rank r on [n], the authors construct a class [OM] ∈ K(Gr(r, n)) that agrees with the class of the
structure sheaf of the torus-orbit closure of a realization, if M is realizable. The function M 7→ [OM] is
valuative.

We can construct more valuative invariants by writing

[OM] =
∑

aλ(M)[OΩλ
] in K(Gr(r, n)).

As explained previously, if M is realizable over a field of characteristic 0, then (−1)n−|λ|−c(M)aλ(M) ≥ 0, i.e.,
the valuative function M 7→ (−1)n−1−|λ|aλ(M) has the sign pattern needed to give bounds on the complexity
of matroid polytope subdivisions, at least when all of the pieces are realizable over a field of characteristic 0.
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It is conjectured, but not known, that (−1)n−|λ|−c(M)aλ(M) ≥ 0 for all matroids M [BF22, Conjecture
9.8]. However, it seems that the bounds one obtains using this strategy are not enough to prove the sharp
bounds in Theorem 2.7 (except in the case of faces of dimension n− 1, see Proposition 5.18).

5. Speyer’s g-polynomial of a matroid

We now introduce the invariant which Speyer used in [Spe09] to bound the complexity of a matroid
polytope subdivision. For each matroid M, he constructed a polynomial gM(t) ∈ Z[t] which has the property
that M 7→ (−1)c(M)+1gM(t) is valuative. When M is realizable over a field of characteristic 0, Speyer showed
that its g-polynomial has non-negative coefficients, and that the bounds it gives on the complexity of a
matroid polytope subdivision are optimal, i.e., sufficient to prove Theorem 2.7 in that case. The non-
negativity of the coefficients of the g-polynomial was proved in general in [FSS24,BF24].

We will explain the definition of the g-polynomial. We begin with the case of realizable matroids. We
will describe the properties of the g-polynomial, and then prove the non-negativity of the coefficients when
M is realizable over a field of characteristic 0.

5.1. Defining the g-polynomial for realizable matroids. An element i ∈ [n] is a loop of a matroid M
if i is not contained in any basis. A coloop is an element which is contained in every basis. We say that M
is loopless if it does not have any loops, and we define coloopless similarly.

If M is realized by L ⊆ kn, then M is loopless if and only if L is not contained in any coordinate hyperplane.
The loops of M are the same as the coloops of the dual matroid M⊥.

The following technical proposition is a consequence of Remark 2.10, because the matroid polytopes of
matroids with loops or coloops are contained in the boundary of the matroid polytope of any loopless and
coloopless matroid. It can also be proved directly, see [BEST23, Proof of Lemma 5.9].

Proposition 5.1. Let Valcln be the subgroup of Valn generated by matroids with loops or coloops, and let

Valncln be the subgroup generated by matroids without loops or coloops. Then Valn = Valcln ⊕Valncln .

There are several different possible definitions of the g-polynomial. However, for matroids with loops or
coloops, these definitions can fail to be equivalent, so we will only define the g-polynomial for loopless and
coloopless matroids.

Let L ⊆ kn be a realization of a loopless and coloopless matroid M of rank r, so dimL = r, L is not
contained in any coordinate hyperplane. Let L⊥ ⊆ kn be the orthogonal complement to L, so L⊥ realizes
M⊥ and is not contained in any coordinate hyperplane. There is a rational map

Pn−1 × Pn−1 99K Pn−1,

given, in homogeneous coordinates, by (x1, · · · , xn)×(y1, · · · , yn) 7→ (x1y1, . . . , xnyn). Because M is loopless
and coloopless, L and L⊥ are both non-zero vector spaces, so we can consider their projectivizations. Using
the embeddings PL ↪→ Pn−1 and PL⊥ ↪→ Pn−1, we obtain a rational map

PL× PL⊥ m
99K Pn−1.

Note that the image of m is contained in the hyperplane H = {z1 + · · · + zn = 0} of Pn−1. As both H
and PL× PL⊥ have dimension n− 2, m can be viewed as a rational map between two varieties of the same
dimension. The g-polynomial of M will capture certain data about this map, such as its degree.

Let Z be a smooth projective variety resolving the indeterminancy of this rational map, i.e., Z is a smooth
projective variety which fits into the following triangle:
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Z

PL× PL⊥ H,

p m

m

where the map p is birational. For example, in characteristic 0, one can take the closure of the graph of m
in PL× PL⊥ ×H and resolve the singularities. We will see an explicit construction of a possible choice for
Z, valid in any characteristic, in Section 5.4.

We will consider the line bundle O(1) on H, obtained by restricting the hyperplane class from Pn−1. Let
[OD] denote the class of a generic section of O(1) in K(H).

Definition 5.2. The g-polynomial gM(t) of a realizable loopless and coloopless matroid M with c connected
components is the polynomial whose ti coefficient is (−1)i+cχ(Z,m∗[O(−1)] · m∗[OD]n−i−1). If M is not
loopless or not coloopless, then we set gM(t) = 0.

The constant term of gM(t) is 0. In order to compute the coefficient of ti, we slice H by n − i − 1
general hyperplanes, take the inverse image in Z, pull back O(−1) and compute the Euler characteristic. In
particular, we see that the linear term of the g-polynomial is the degree of the map m.

In other words, by looking at the proof of Theorem 4.4 in the case of projective space, we can compute
the coefficients of gM(t) by writing the Hilbert polynomial of O(1) on Z as

χ(Z,O(a)) =

n−2∑
q=0

aq

(
a+ q

q

)
.

Then, for i > 0, the coefficient of ti in gM(t) is (−1)i+can−1−i.
The coordinate-wise multiplication of two projective varieties is sometimes called the Hadamard product.

See [BC24] for a comprehensive survey of the literature. It often arises in rigidity theory, see, e.g., [Ber22].
At least over a field of characteristic 0, it is not hard to see that Definition 5.2 is independent of the choice

of Z. For if we have another smooth projective variety Z ′ resolving the indeterminancy, then both Z and Z ′

can be dominated by another smooth variety Z̃ also resolving the indeterminacy, and the projection formula
(2) implies that the Euler characteristic does not change when we pull back from Z or Z ′ to Z̃.

It is true, but not obvious, that the definition above does not depend on the choice of realization of M.
This will be explained in Section 5.5, as well as how to extend this definition to non-realizable matroids.

Remark 5.3. In [Spe09], Speyer defines the coefficients of the g-polynomial as certain linear combinations of
the invariants aλ(M). This definition agrees with Definition 5.2, at least for loopless and coloopless matroids.
From the definition in [Spe09], it is tricky to see the non-negativity of the coefficients. In particular, the
non-negativity does not follow from Theorem 4.4.

5.2. Properties of g-polynomial. We now discuss the fundamental properties of the g-polynomial. One
property is clear: if M is loopless and coloopless, then the definition of gM(t) does not change when we
replace L by L⊥.

Proposition 5.4. We have gM(t) = gM⊥(t).

Proposition 5.5. Let L be a realization of a loopless and coloopless matroid M with c connected components,
S1, . . . , Sc. Then the closure of the image of m is {(z1, . . . , zn) :

∑
j∈Si

zj = 0 for i = 1, . . . , c}.

Proof. It follows from Proposition 1.5 that the image of m is contained in {(z1, . . . , zn) :
∑

j∈Si
zj = 0 for i =

1, . . . , c}. For the direction, it suffices to show that the dimension of the image of m is n− c. This reduces
to the case of connected matroids. I don’t know a very elementary proof this case. Later, we will compute
the degree of the map PL× PL⊥ 99K H in Proposition 5.14, and it can be proved combinatorially that the
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degree is positive for connected matroids, see Proposition 5.16. It can also be deduced from [Ber22, Theorem
3.1]. □

The following result will allow us to reduce computations to the case of connected matroids. It also
explains the choice of indexing in the definition of the g-polynomial.

Proposition 5.6. [Spe09, Proposition 3.2] Suppose that M = M1 ⊕ · · · ⊕Mc. Then

gM(t) = gM1
(t) · · · gMc

(t).

In particular, if M is connected and realizable, then Proposition 5.5 implies that the map m is dominant,
and in particular it has positive degree. We see that, if M is connected and realizable matroid, the linear
term of gM(t) is positive. By Proposition 5.6, this implies the following result.

Corollary 5.7. If M is a realizable loopless and coloopless matroid with c connected components, then the
coefficient of tc in gM(t) is positive.

The realizability assumption in Corollary 5.7 is not necessary. In Corollary 5.17, we explicitly compute
the coefficient of tc in terms of a well-known combinatorial invariant of matroids, and see that it is positive
for any loopless matroid.

5.3. Positivity in characteristic 0.

Theorem 5.8. [Spe09,FSS24,BF24] Let M be a matroid. Then the coefficients of gM(t) are non-negative.

Proof of Theorem 5.8 when M is realizable in characteristic 0. By Proposition 5.6, we may assume that M
is connected, i.e., c(M) = 1. Let Zi be the inverse image under m of the result of slicing H by n − i − 1
generic hyperplanes. By Proposition 3.2, m∗[OD]n−i−1 = [OZi

]. By Bertini’s theorem, Zi is a smooth variety
of dimension i − 1. By Proposition 5.5, because M is connected, m is dominant, and so the restriction of
m∗O(−1) to Zi is a nef and big line bundle. Corollary 4.6 then implies that (−1)i−1χ(Zi,m

∗O(−1)) ≥ 0,
implying the result. □

5.4. Wonderful varieties and tautological bundles. We will now relate the g-polynomial to the won-
derful varieties of [DCP95] and the tautological bundles of linear subspaces that were introduce in [BEST23].
This will allow us to connect the g-polynomial to other well-studied invariants of matroids.

The permutohedral toric variety Xn is the toric variety obtained by blowing up Pn−1 at the torus-fixed
points, then the strict transform of the torus-fixed lines, and so on. It is an (n − 1)-dimensional smooth
projective toric variety whose fan is the Weyl chambers of the type An−1 root system. It can be described
in a number of other ways. For example, it is the torus-orbit closure of a general point in the variety of full
flags in kn, and it is the toric variety corresponding to the polytope

∑n−1
r=1 P (Ur,n), where the sum denotes

Minkowski sum.
Given a subspace L of kn which is not contained in any coordinate hyperplane, i.e., it represents a loopless

matroid, the wonderful variety WL is the strict transform of PL under the map Xn → Pn−1. I.e., it is the
closure of PL ∩Gn

m/Gm in Xn, where Gn
m/Gm is the torus embedded in Pn−1.

The wonderful variety is a smooth and projective variety of dimension dimL − 1; it can be described as
an iterated blow-up of PL along strict transforms of intersections of PL with coordinate subspaces. It is also
a simple normal crossings compactification of PL ∩Gn

m/Gm.

In [BEST23], Berget, Eur, Spink, and Tseng constructed some important vector bundles SL,QL on the
permutohedral variety Xn using a linear subspace L of kn. These bundles form a short exact sequence

(5) 0 → SL → O⊕n
Xn

→ QL → 0.
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Over a point t ∈ Gn
m/Gm, the torus of Xn, the fiber of SL in kn is t−1[L]. This uniquely determines SL:

the total space of SL is the closure in Xn × kn of the total space of the restriction of SL to Gn
m/Gm. It is a

theorem that this is a vector bundle: it is the pullback of a certain vector bundle from the torus-orbit closure
of [L⊥] in Gr(n− r, n); the description of the fan of the permutohedral toric variety implies that there is a
map from Xn to the toric variety of any matroid polytope. The bundle QL is defined as the quotient.

The image of the section (1, . . . , 1) ∈ H0(Xn,O⊕n
Xn

) in QL transversely cuts out WL [BEST23, Theorem
7.10]. This identifies the restriction of QL to WL with the normal bundle of WL in Xn. The restriction of
SL to WL is closely related to the log tangent bundle of WL, viewed as a compactification of PL ∩Gn

m/Gm

[BEST23, Theorem 8.8].

The geometry of Speyer’s g-polynomial is closely related to the restriction of QL to WL. The sequence
(5) dualizes to give an injection Q∨

L ↪→ O⊕n
Xn

. Restricting to WL and projectivizing, we obtain a subvariety

PWL
(Q∨

L) of Xn × Pn−1.
Identifying kn/L with L⊥, the intersection of PWL

(Q∨
L) with Gn

m/Gm ×Gn
m/Gm is the locus

{(v, tv) : v ∈ PL ∩Gm/G, t ∈ PL⊥ ∩Gn
m/Gm}.

If the matroid M corresponding to L is loopless and coloopless with c connected components, then this
variety is isomorphic to (PL ∩ Gn

m/Gm) × (PL⊥ ∩ Gn
m/Gm), via the map which sends (v, w) to (v, vw). In

particular, if p is the projection of PWL
(Q∨

L) onto Pn−1, the p is a birational model for the map m considered
in the definition of the g-polynomial. As a consequence, the ti coefficient of gM(t) is

(−1)i+cχ(PWL
(Q∨

L), [O(−1)] · ([O]− [O(−1)])n−i−1) =

n−1−i∑
j=0

(−1)i+c+j

(
n− i− 1

j

)
χ(PWL

(Q∨
L),O(−j − 1)).

This will enable us to reduce problems involving the g-polynomial to computations on Xn, where there
are more tools because it is a toric variety.

Let π : PWL
(Q∨

L) → WL be the projection. We can compute the Euler characteristic on PWL
(Q∨

L) by
pushing forward along π. It follows from the fact that PWL

(Q∨
L) = Proj SymQL that, for a ≥ 0, we have

π∗O(a) = Syma QL. Furthermore, we have Riπ∗O(a) = 0 for i > 0, a ≥ 0, for example by the theorem on
cohomology and base change. Grothendieck duality implies that Riπ∗O(a) = 0 for i < n − r − 1, a < 0 or
i = r,−(n − r) < a < 0, and Rn−r−1π∗O(−a) = detQ∨

L ⊗ Syma−n+r Q∨
L for a ≤ −(n − r). We deduce the

following formula for the g-polynomial.

Proposition 5.9. Let L be a realization of a matroid M. For i > 0, the ti coefficient of gM(t) is

(−1)i+c(M)+n−r−1
n−1−i∑

j=n−r+1

(−1)j
(
n− i− 1

j

)
χ(WL,detQ∨

L ⊗ Symj+1−n+r Q∨
L).

For example, the coefficient of ti is 0 if i > r because the sum is empty. Because gM(t) = gM⊥(t), we see
that the ti coefficient of gM(t) is 0 if i > n− r as well, so the degree of g is at most min{r, n− r}. If i = r,
there is only one term in the sum. We see that the coefficient of tr is (−1)r+c(M)χ(WL,detQ∨

L).

Remark 5.10. The description of the g-polynomial in terms of PWL
(Q∨

L) does not show the symmetry of
the g-polynomial under matroid duality. There is a more symmetric model for Z, related to the conormal
fan of a matroid of [ADH23].

5.5. Defining the g-polynomial for non-realizable matroids. We can use the formula in Proposition 1.5
to see that the g-polynomial does not depend on the choice of realization, and to define the g-polynomial for
non-realizable matroids.
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For a matroid M on [n], the authors of [BEST23] constructed a class [QM] in K(Xn). When M is realized
by L, then [QM] = [QL]. In particular, the class of [QL] does not depend on the choice of realization. Define
[SM] as [O⊕n

Xn
]− [QM]; similarly, [SM] = [SL] for any realization L of M. We have the following key property.

Proposition 5.11. [BEST23, Proposition 5.6] The function which assigns a matroid to any fixed polynomial
function in the symmetric or exterior powers of [SM], [QM], and their duals is valuative.

In [LLPP24], the authors defined a ring K(M) for every loopless matroid M. There is a surjection map
from K(Xn) to K(M). If M is realized by L, then there is an identification of K(WL) with K(M). For
instance, the inclusion of WL into Xn induces a restriction map K(Xn) → K(WL), which is surjective. The
kernel of the map from K(Xn) to K(M) is the same as the map from K(Xn) to K(WL).

The authors of [LLPP24] constructed an “Euler characteristic” map χ : K(M) → Z which satisfies an
analogue of projection formula. When M is realized by L, this Euler characteristic map coincides with the
usual one. Suppose that L is a realization of M. Recall that there is a section of QL which transversely cuts
out WL inside of Xn. This induces a Koszul resolution of OWL

: there is an exact sequence

0 → ∧n−rQ∨
L → ∧n−r−1Q∨

L → · · · → Q∨
L → OXn

→ OWL
→ 0.

This implies that [OWL
] =

∑
i≥0(−1)i ∧i [Q∨

L] in K(Xn). The projection formula (2) then means that if M

is realization and a is a class in K(Xn), then

χ(WL, a) = χ(Xn, a ·
∑
i≥0

(−1)i ∧i [Q∨
L]).

By [LLPP24, Proposition 5.6], for any class a ∈ K(Xn) and any loopless matroid M, we have

(6) χ(M, a) = χ(Xn, a ·
∑
i≥0

(−1)i ∧i [Q∨
M]).

Definition 5.12. Let M be matroid. If M has a loop or coloop, then define gM(t) to be 0. Otherwise, define
gM(t) to be the polynomial whose constant term is 0, and whose ti coefficient for i > 0 is

(−1)i+c(M)+n−r−1
n−1−i∑

j=n−r+1

(−1)j
(
n− i− 1

j

)
χ(M,det[QM]∨ ⊗ Symj+1−n+r[QM]∨).

Then the following result is immediate by (6), Proposition 5.1, and Proposition 5.11.

Proposition 5.13. The assignment M 7→ (−1)c(M)gM(t) is a valuative invariant of matroids.

5.6. The beta invariant of a matroid. Now that we have defined the g-polynomial for all matroids, we
will compute its linear term. This computation will show that the linear term of the g-polynomial is strictly
positive for connected matroids, which will be crucial in the proof of Theorem 2.7.

The beta invariant β(M) is an important invariants of matroids. It can be defined using a deletion-
contraction recursion. We have β(U0,1) = 0, β(U1,1) = 1, and if i ∈ [n] is an element which is not a loop or
coloops, then β(M) = β(M/i)+β(M\ i). It can also be defined as the coefficient of x in the Tutte polynomial
of M.

Proposition 5.14. Let M be a loopless and coloopless matroid. The coefficient of t in gM(t) is β(M).

This can be proved in several ways. In [Spe09], Speyer directly verified that the linear term of the
g-polynomial satisfied the recursion defining the beta invariant.
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Proof of Proposition 5.14. One can massage Definition 5.2 to see that the linear term of the g-polynomial
is degree of the top Segre class of [QM]∨. In the realizable case, this is because the coefficient of t in gM(t)
is the top self-intersection of O(1) on PWL

(Q∨
L). The Segre classes of [QM]∨ are the Chern classes of [SM]∨.

The result then follows from [BEST23, Theorem 6.2]. □

Remark 5.15. When M is realized by L, one can deduce that
∫
WL

cr−1(S∨
L) = β(M) by using the logarithmic

Poincaré-Hopf theorem. In [BEST23, Theorem 8.8], it is shown that SL is an extension of the log tangent
bundle of WL by a trivial bundle, so cr−1(SL) is the top Chern class of the log tangent bundle. The
logarithmic Poincaré-Hopf theorem states that the degree of the top Chern class of the log tangent bundle
of a simple normal crossings compactification of a variety U is the topological Euler characteristic of U . It
is known that the Euler characteristic of PL ∩Gn

m/Gm is (−1)r−1β(M).

Proposition 5.16. [Cra67] A matroid M on at least 2 elements is connected if and only if β(M) is positive.

The difficult part of Proposition 5.16 is to show that if M is a connected matroid on [n] and i ∈ [n], then
either M/i or M \ i is connected. The following result follows from Proposition 5.14 and Proposition 5.6.

Corollary 5.17. If M is a loopless and coloopless matroid with connected components M1, . . . ,Mc, then the
coefficient of tc in gM(t) is β(M1) · · ·β(Mc). In particular, the coefficient of tc is strictly positive.

Finally, we note the following interpretation of the beta invariant.

Proposition 5.18. [Spe09, Theorem 5.1] Let λ = (n− r, 1r−1) be the hook shape. Then β(M) = aλ(M).

5.7. Bounding the complexity of a matroid polytope subdivision.

Proposition 5.19. [Spe09, Proposition 3.1] We have

gUr,n
(t) =

min{r,n−r}∑
i=1

(n− i− 1)!

(r − i)!(n− r − i)!(i− 1)!
ti.

Theorem 5.20. A matroid polytope subdivision of P (Ur,n) where all matroids M appearing have gM(t) ≥ 0

has at most (n−c−1)!
(r−c)!(n−r−c)!(c−1)! interior faces of dimension n− c for c ≤ min{r, n− r}, and it has no interior

faces of dimension less than min{r, n− r}.

Combined with Theorem 5.8, Theorem 5.20 proves Theorem 2.7.

Proof of Theorem 5.20. The matroid polytope of a matroid with a loop or coloop is contained in the bound-
ary of P (Ur,n), so all interior faces of a matroid polytope subdivision of P (Ur,n) correspond to loopless and
coloopless matroids. Using (1) and Proposition 5.13, we deduce that

−gUr,n
(t) =

∑
M, P (M) interior face

(−1)c(M)+1(−1)c(M)gM(t).

Looking at the coefficient of tc for c ≤ min{r, n − r}, we see that (n−c−1)!
(r−c)!(n−r−c)!(c−1)! is a sum of the

coefficient of tc in gM(t) over all matroids where P (M) is an interior face. By Corollary 5.17 (or Corollary 5.7
for realizable matroids), each interior face of dimension n − c contributes at least 1 to this sum, and each

other face contributes non-negatively, and so there are at most (n−c−1)!
(r−c)!(n−r−c)!(c−1)! faces of dimension n− c.

If c > min{r, n − r}, the coefficient of tc on the left-hand side is 0, so there can be no faces of dimension
n− c. □
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Remark 5.21. In [Spe09], Speyer shows that if M is a series-parallel matroid, i.e., the graphic matroid of a
graph which is obtained from a parallel edge by repeatedly either subdividing an edge or doubling an edge,
then gM(t) = t. It is known that if M is a matroid, then β(M) = 1 if and only if M is a series-parallel matroid
[Bry71, Theorem 7.6]. This implies that a matroid M has gM(t) = tc(M) if and only if it is a direct sum
of series-parallel matroids (such matroids are called (loopless and coloopless) quasi series-parallel matroids,
see [FL24]). It is known that a face of the matroid polytope of a quasi series-parallel matroids is a quasi
series-parallel matroids, and so if all (n− 1)-dimensional faces in a matroid polytope subdivision of P (Ur,n)
are series-parallel, then all interior faces are quasi series-parallel, and the bounds in Theorem 2.7 are sharp.
Furthermore, if any (n−1)-dimensional face is not a series-parallel matroid, then there are fewer than

(
n−2
r−1

)
(n− 1)-dimensional faces.

6. Positivity via Cohen–Macaulayness

The driving force behind all of the K-theoretic positivity phenomena that we have seen has been Corol-
lary 4.6. In situations where the hypotheses of Corollary 4.6 are not satisfied, it has been difficult to prove
directly that the conclusion holds. For instance, one could try to prove Theorem 5.8 by finding a combina-
torial interpretation of the coefficients of the g-polynomial, or by finding a non-negative recursive formula.
It is possible to prove that the β invariant of a matroid, i.e., the linear of the g-polynomial, is non-negative
in either of these ways. But no one has been able to do this for the other coefficients.

Corollary 4.6 concerns the value of the Hilbert polynomial of L at −1. This is difficult to get at directly,
because it involves understanding the higher cohomology of L−1. It is usually much easier to analyze the
sections and cohomology of positive twists of L. It is sometimes possible to use this to prove the conclusion
of Corollary 4.6 by proving a stronger result, known as arithmetical Cohen–Macaulayness. The significance
of Cohen–Macaulayness in combinatorial problems was first realized by Stanley [Sta75,Sta80].

Let A• = A0 ⊕A1 ⊕ · · · be a finitely generated graded algebra of Krull dimension d, with A0 = k. Then
A• is Cohen–Macaulay if there are homogeneous elements θ1, . . . , θd such that, for i = 1, . . . , d− 1,

θi is not a zero-divisor in A•/(θ1, . . . , θi−1).

The elements θ1, . . . , θd are called a homogeneous system of parameters. In most cases that relevant to
combinatorics, the ideal generated by A1 is primary to the homogeneous maximal ideal. For example, this is
true if A• is generated as a ring by A1. As k is infinite, this is equivalent to the existence of a homogeneous
system of parameters consisting of elements of A1, which we call a linear system of parameters (l.s.o.p.).
Any d general elements of A1 will do.

For example, A• is automatically Cohen–Macaulay if d = 0. If d = 1, then A• is Cohen–Macaulay if and
only if A1 contains an element which is not a zero-divisor. This holds if and only if SpecA• is generically
reduced.

A graded ring being Cohen–Macaulay gives very strong restrictions on the Hilbert function of A•. For a
graded module M•, let HilbM (z) =

∑∞
i=0 dimM i · zi denote the Hilbert series of M•.

Proposition 6.1. Assume that A• admits an l.s.o.p. If A• is Cohen–Macaulay of Krull dimension d + 1,
then we can write

HilbA(z) =
h0 + h1 + · · ·+ he

(1− z)d
,

where hi ≥ 0 for each i. If A• is generated in degree 1, then (h0, . . . , he) is the Hilbert function of an algebra
which is generated in degree 1.

Proof. Choose an l.s.o.p. θ1, . . . , θd. There is an exact sequence

0 → (θ1) → A• → A•/(θ1) → 0.
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Because θ1 is not a zero-divisor, we see that the Hilbert series of (θ1) is zHilbA(z). Using the additivity of
Hilbert series in short exact sequences, we see that

(1− z)HilbA(z) = HilbA/(θ1)(z).

Repeating this argument, and using that θi is not a zero-divisor on A/(θ1, . . . , θi−1), we see that

(1− z)d HilbA(z) = HilbA/(θ1,...,θd)(z).

Note that A•/(θ1, . . . , θd) is a graded algebra of Krull dimension 0, and so its Hilbert series is a polynomial
with non-negative coefficients, proving the claim about the form on the Hilbert series and the non-negativity
of the hi. If A

• is generated in degree 1, then so is A•/(θ1, . . . , θd), proving the second part. □

Often, the Hilbert function will be a polynomial. This holds in most cases which are relevant to combi-
natorics. If p is a polynomial of degree d, then we can write

(7)
∑
a≥0

p(a)ta =
h∗
0 + h∗

1t+ · · ·+ h∗
dt

d

(1− t)d+1
,

where the coefficients (h∗
0, . . . , h

∗
d) are related to p by the equation

(8) p(a) =

d∑
q=0

h∗
q

(
a+ d− q

d

)
.

See [Sta12, Section 4.3]. Note that (8) implies that (−1)dp(−1) = h∗
d, and that the lead term of p is

(h∗
0 + · · ·+ h∗

d)/d!.

Note that the polynomial a 7→
(
a+d−q

d

)
is the Hilbert polynomial of O(−q) on Pd. The polynomials

{
(
a+d−q

d

)
}q=0,...,d form a basis for the space of numerical polynomials of degree at most d, and computing

the numerator of the series (7) for a polynomial of degree d is the same thing as expanding it in this basis.
If X is a d-dimension subscheme of PN , then [OX ] lies in the piece FN−d of the coniveau filtration on

K(PN ). The classes {[OH ]N−d[O(−q)]}q=0,...,d form a basis for FN−d, and computing the numerator of the
series

∑
a≥0 χ(X,O(a))ta is the same as computing the expansion of [OX ] in this basis.

Using that [O(−1)] = [O]− [OH ], we see that [O(−q)] = ([O]− [OH ])q. This implies that

(9)

(
a+ d− q

d

)
=

q∑
i=0

(−1)i
(
q

i

)(
a+ d− i

d− i

)
.

The sign-definiteness of this transformation implies that if the numerator in (7) is non-negative, then the
coefficients in the expansion of p into the polynomials {

(
a+q
q

)
} has alternating signs. For example, we have

the following corollary.

Corollary 6.2. Let X be a subscheme of PN of dimension d such that the ring
⊕

a≥0 H
0(X,O(a)) is a

Cohen–Macaulay ring. Assume that χ(X,O(a)) = dimH0(X,O(a)) for a ≥ 0. Then in the expansion
[OX ] =

∑
ai[OH ]N−d+i, we have (−1)iai ≥ 0.

Proof. It follows from the fact that restriction ofO(1) toX is globally generated by the ring
⊕

a≥0 H
0(X,O(a))

is normalization of the subring which is generated in degree 1, and in particular it is finitely generated as
a module over the subring which is generated in degree 1. This implies that

⊕
a≥0 H

0(X,O(a)) admits an

l.s.o.p., and so Proposition 6.1 and the assumption that χ(X,O(a)) = dimH0(X,O(a)) for a ≥ 0 implies
that, if we write ∑

a≥0

χ(X,O(a))ta =
h∗
0 + h∗

1t+ · · ·+ h∗
dt

d

(1− t)d+1
,
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then h∗
i ≥ 0 for all i. From (9), we deduce that

ai = (−1)i
d∑

q=i

(
q

i

)
h∗
q . □

Note that Corollary 6.2 does not require the characteristic to be 0 or for X to have rational singularities
(or even be integral). This opens the door to verifying the hypotheses of Corollary 6.2 by degenerating
X to a reducible scheme. Additionally, while it is difficult to define varieties whose geometry is related
to the combinatorics of a non-realizable matroid, it is not hard to construct reducible schemes related to
non-realizable matroids. One can hope to prove that these schemes satisfy the hypothesis of Corollary 6.2.

Even though the inequalities given by the Cohen–Macaulayness of the section ring of a variety are much
stronger than those given by Theorem 4.4, they can be easier to prove. Unfortunately, these inequalities are
so strong that they fail in the case of m∗O(1) on Z.

Example 6.3. Let M be the Fano matroid F7. Then gM(t) = 3t3 + 5t2 + 3t, see [Spe09, Section 10], so

χ(Z,O(a)) = 3

(
a+ 5

5

)
− 5

(
a+ 4

4

)
+ 3

(
a+ 3

3

)
=

a5

40
+

a4

6
+

13a3

24
+

4a2

3
+

29a

15
+ 1

=

(
a+ 5

5

)
−

(
a+ 4

5

)
+ 3

(
a+ 3

5

)
,

i.e., the numerator of the series (7) is 1 − t + 3t2. There are also counterexamples to the inequalities in
Proposition 6.1 which are representable in characteristic 0, see [Fer23, Table 1].

In the case when A• is generated in degree 1, one obtains bounds on how fast the numerator of the Hilbert
series can grow. These bounds are given explicitly by the following result.

Definition 6.4. A sequence (h0, h1, . . . , hd) of integers is a Macaulay vector if (h0, h1, . . . , hd, 0, 0, . . . ) is
the Hilbert function of a graded artinian k-algebra A• which is generated in degree 1 and has A0 = k.

Macaulay vectors are also called M-vectors and O-sequences. Macaulay gave an explicit description of
these vectors as follows [BH93, Theorem 4.2.10]. Given positive integers n and d, there is a unique expression

n =

(
kd
d

)
+

(
kd−1

d− 1

)
+ · · ·+

(
kδ
δ

)
, kd > kd−1 > · · · > kδ ≥ 1.

Set n⟨d⟩ =
(
kd+1
d+1

)
+ · · · +

(
kδ+1
δ+1

)
, and define 0⟨i⟩ = 1 for all i. Then (1, a1, . . . , ad) is a Macaulay vector if

and only if 0 ≤ at+1 ≤ a
⟨t⟩
t for all t ≥ 1.

For example, let P be a lattice polytope in Rn, i.e., the convex hull of a finite number of points in Zn.
For a natural number a, let ehrP (a) be the number of lattice points in the ath dilate of P . It is known that
ehrP is a polynomial in a, called the Ehrhart polynomial. Let RP denote the semigroup algebra of P , see
Definition 1.16. The following result is due to Hochster.

Proposition 6.5. [BH93, Theorem 6.3.5] Let P be a lattice polytope. Then the semigroup algebra RP is
Cohen–Macaulay.

Furthermore, RP is a finitely generated module over the subring of RP which is generated in degree 1.
This implies the existence of an l.s.o.p. Note that the Krull dimension of RP is dimP + 1.
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Corollary 6.6. Let P be a lattice polytope of dimension d. Then we can write∑
a≥0

ehrP (a)t
a =

h∗
0 + h∗

1t+ · · ·+ h∗
dt

d

(1− t)d+1
,

with h∗
i ≥ 0 for each i. If, for each a, every lattice point in aP is a sum of a lattice points in P , then

(h∗
0, . . . , h

∗
d) is a Macaulay vector.

Proof. The Hilbert function of RP is given by the Ehrhart polynomial, so the result follows from Proposi-
tion 6.1 and Proposition 6.5. □

Remark 6.7. For a lattice polytope P of dimension d, h∗
d is the number of interior lattice points in P ,

which gives a combinatorial proof that h∗
d ≥ 0.
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