
KAZHDAN–LUSZTIG POLYNOMIALS OF BRAID MATROIDS

LUIS FERRONI ANDMATT LARSON

Abstract. We provide a combinatorial interpretation of the Kazhdan–Lusztig polynomial
of the matroid arising from the braid arrangement of type A𝑛−1, which gives an interpreta-
tion of the intersection cohomology Betti numbers of the reciprocal plane of the braid ar-
rangement. Moreover, we prove an equivariant version of this result. The key combinato-
rial object is a class of matroids arising from series-parallel networks. As a consequence,
we prove a conjecture of Elias, Proudfoot, and Wakefield on the top coefficient of Kazhdan–
Lusztig polynomials of braidmatroids, andwe provide explicit generating functions for their
Kazhdan–Lusztig and 𝑍-polynomials.

1. Introduction

1.1. Overview. Since their introduction in 1979 [KL79], Kazhdan–Lusztig polynomials of
Bruhat intervals in Coxeter groups have been extensively studied under various lenses. They
play a central role in representation theory, algebraic geometry, and combinatorics. A re-
markable feature of the theory of Kazhdan–Lusztig polynomials is that it can be generalized
to explain deep phenomena in several areas of mathematics. One far-reaching extension
has been proposed by Stanley in [Sta92], giving rise to what is now known as Kazhdan–
Lusztig–Stanley (KLS) polynomials. We refer to [Pro18] for a detailed survey. Beyond the
aforementioned case of Bruhat intervals in Coxeter groups, there are other important fami-
lies of polynomials with integer coefficients that are encompassed by KLS theory. Notably,
the polynomial having as coefficients the 𝑔-vector of a simplicial polytope is a KLS polyno-
mial. The famous 𝑔-theorem for simplicial polytopes, established by Billera–Lee [BL80] and
Stanley [Sta80] gives inequalities that the coefficients of the 𝑔-polynomial must satisfy.
We consider another instance of KLS polynomials which arises frommatroids. Matroids

can be viewed as a simultaneous abstraction of two pervasive notions in mathematics and
computer science: linear independence and the greedy algorithm. The study of Kazhdan–
Lusztig polynomials of matroids was initiated in [EPW16] by Elias, Proudfoot, and Wake-
field. This theory played a key role in the resolution of the Dowling–Wilson conjecture by
Braden, Huh, Matherne, Proudfoot, and Wang [BHM+20].
In the three aforementioned cases, i.e., Bruhat intervals in Coxeter groups, simplicial

polytopes, and matroids, the KLS polynomials can be defined by relatively simple recur-
sions. The resulting polynomials have non-negative coefficients, but the respective proofs
involve the use of heavy machinery fromHodge theory. For example, the non-negativity for
𝑔-polynomials of simplicial polytopes follows from an application of theHard Lefschetz the-
orem [Sta80]; in the Coxeter setting, the proof by Elias andWilliamson establishes a version
of Hodge theory for Soergel bimodules [EW14]; whereas in the matroid case, the central in-
gredient is a version of Hodge theory for a variant of intersection cohomology for matroids
by Braden, Huh, Matherne, Proudfoot, and Wang [BHM+20].
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Putting the three proofs into perspective, one may view the non-negativity of these three
families of polynomials as a consequence of the fact that they are Hilbert–Poincaré poly-
nomials. In other words, the non-negativity of the coefficients follows from the fact that
they are the dimensions of suitable vector spaces. However, it remains an outstanding and
broadly open problem to find combinatorial interpretations for their coefficients.
The most basic examples of matroids arise from cycle matroids of graphs. The case of

the complete graph K𝑛 on 𝑛 vertices has been central to various key developments in the
theory. The cycle matroids of complete graphs are called braid matroids. The pursuit of
formulas and algorithms for computing theKazhdan–Lusztig polynomials of braidmatroids
eventually led to the introduction of other objects, some of which now lie at the core of the
singular Hodge theory of matroids, developed in [BHM+20].
The lattice of flats of the braid matroid K𝑛 is the partition lattice Π𝑛, i.e., the poset of

partitions of the set {1, … , 𝑛} ordered by coarsening. It is well known that partition lattices
are tightly related to various objects appearing in other areas of mathematics. For example,
the strata in𝑀0,𝑛+1, themoduli spaces of complex projective lines with 𝑛+1marked points,
are indexed by certain chains in Π𝑛.
The central result of this paper provides a combinatorial interpretation for the coefficients

of the Kazhdan–Lusztig polynomials of all braid matroids. Moreover, we will provide an in-
terpretation for a related object, called the 𝑍-polynomial. The interpretation we provide is
surprisingly concrete: both the coefficients of the Kazhdan–Lusztig polynomials and the 𝑍-
polynomials of braid matroids count matroids that arise from series-parallel networks. Fur-
thermore, our combinatorial description of the coefficients yields an interpretation of much
finer invariants than the Kazhdan–Lusztig and 𝑍-polynomials, which take into account the
symmetries of the matroid (the equivariant Kazhdan–Lusztig and 𝑍-polynomials).
This has a number of relevant applications, such as the possibility ofwriting down explicit

(but complicated) generating functions, which allow one to compute these polynomials ex-
plicitly, circumventing their defining recursion. In addition, our main result allows us to
settle a conjecture by Elias, Proudfoot, and Wakefield which asserted a mysterious formula
for the leading coefficient of the Kazhdan–Lusztig polynomial of K2𝑛. Some other conse-
quences requiring a more technical discussion are also included below.

1.2. Kazhdan–Lusztig polynomials of matroids. As mentioned earlier, the main ob-
jects introduced by Elias, Proudfoot, and Wakefield in [EPW16] are the Kazhdan–Lusztig
polynomials of matroids. To state their precise definition we will follow an alternative ap-
proach by Proudfoot, Xu, andYoung [PXY18], andBraden andVysogorets [BV20]. Precisely,
they show that there is a unique way to associate to every loopless matroidM a polynomial
𝑃M(𝑡) ∈ ℤ[𝑡] satisfying the following properties:
(i) If rk(M) = 0, then 𝑃M(𝑡) = 1.
(ii) If rk(M) > 0, then deg 𝑃M(𝑡) <

1
2
rk(M).

(iii) For every matroidM, the polynomial

𝑍M(𝑡) =
∑

𝐹∈L(M)
𝑡rk(𝐹)𝑃M∕𝐹(𝑡)

is palindromic1 of degree rk(M).

1A polynomial 𝑓(𝑡) is palindromic if 𝑓(𝑡) = 𝑡𝑑𝑓(𝑡−1), where 𝑑 = deg 𝑓.
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HereL(M) is the lattice of flats ofM. The polynomial 𝑃M(𝑡) is called the Kazhdan–Lusztig
polynomial ofM, and the polynomial𝑍M(𝑡) is called the Z-polynomial ofM. It is not difficult
to prove that the three properties above uniquely specify 𝑃M(𝑡) and 𝑍M(𝑡).
Kazhdan–Lusztig polynomials and 𝑍-polynomials of matroids display remarkable prop-

erties. For example, the coefficients of the Kazhdan–Lusztig polynomial and 𝑍-polynomial
of amatroid are non-negative, and the coefficients of the𝑍-polynomial are unimodal [BHM+20,
Theorem 1.2]. The lattice of flats ofM is modular if and only if 𝑃M(𝑡) = 1 [EPW16, Proposi-
tion 2.14]. Kazhdan–Lusztig polynomials and𝑍-polynomials were conjectured in [GPY17b,
Conjecture 3.2] and [PXY18, Conjecture 5.1] to be real rooted. Much work in the liter-
ature is devoted to the study of these polynomials for specific classes of matroids, such
as uniform matroids [GLX+21, GX21, Pro19], matroids of corank 2 [FS22], sparse paving
[LNR21, FV22], and paving matroids [FNV22].
When a matroid M is realized by a linear subspace 𝐿 ⊆ ℂ𝑛, the Kazhdan–Lusztig poly-

nomial and 𝑍-polynomial ofM admit algebro-geometric interpretations. The 𝑍-polynomial
ofM is the Poincaré polynomial of the intersection cohomology of the closure of 𝐿 in (ℙ1)𝑛,
and the Kazhdan–Lusztig polynomial is the Poincaré polynomial of the stalk of the inter-
section cohomology at the point (∞,… ,∞) of (ℙ1)𝑛. Equivalently, the Kazhdan–Lusztig
polynomial is the Poincaré polynomial of the intersection cohomology of the (affine) recip-
rocal plane of 𝐿: the closure of the image of 𝐿 under the Cremona transform on 𝔸𝑛. This
proves the non-negativity of the coefficients whenM is realizable; the non-negativity for ar-
bitrarymatroidswas proved by Braden, Huh,Matherne, Proudfoot, andWang [BHM+20] by
combinatorializing this description of the Kazhdan–Lusztig polynomial and 𝑍-polynomial.
When the action of a subgroup Γ of𝔖𝑛 preserves 𝐿 ⊆ ℂ𝑛, there is an action of Γ on the

intersection cohomology of the closure of 𝐿 in (ℙ1)𝑛 and on the intersection cohomology of
the reciprocal plane of 𝐿. By taking the Γ-equivariant Poincaré polynomial, we may then
construct versions of the Kazhdan–Lusztig polynomial and 𝑍-polynomial which have co-
efficients in the ring of virtual representations of Γ, VRep(Γ). This can be extended to all
loopless matroids with an action of a finite group: There is a unique way of associating to
each action Γ ↷ M of a group Γ on a loopless matroid2M a polynomial 𝑃Γ

M
(𝑡) ∈ VRep(Γ)[𝑡]

in such a way that

(i) If rk(M) = 0, then 𝑃Γ
M
(𝑡) = tr is the trivial representation.

(ii) If rk(M) > 0, then deg 𝑃Γ
M
(𝑡) < 1

2
rk(M).

(iii) For everyM, the polynomial

𝑍Γ
M
(𝑡) =

∑

[𝐹]∈L(M)∕Γ
𝑡rk(𝐹) IndΓΓ𝐹 𝑃

Γ𝐹
M∕𝐹(𝑡)

is palindromic of degree rk(M).
Here, Γ𝐹 is the stabilizer of 𝐹 andL(M)∕Γ denotes the quotient of the lattice of flats ofM by
the action ofΓ. The polynomial𝑃Γ

M
(𝑡) is called the equivariant Kazhdan–Lusztig polynomial,

and 𝑍Γ
M
(𝑡) is called the equivariant 𝑍-polynomial. See [GPY17a, Pro21].

1.3. The Kazhdan–Lusztig theory of braid matroids. As mentioned above, the 𝑛-th
braid matroid K𝑛 is the graphic matroid associated to the complete graph on 𝑛 vertices; as
such, the symmetric group𝔖𝑛 acts on K𝑛 by permuting the vertices of the complete graph.

2A group action on a matroid is an action on the ground set which sends flats to flats.
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The 𝑛-th braid matroid has rank 𝑛 − 1. The 𝑛-th braid matroid is realized by the braid
arrangement of hyperplanes perpendicular to the roots of type A𝑛−1.
Kazhdan–Lusztig polynomials of braidmatroids have been extensively studied, both equiv-

ariantly and non-equivariantly. For other graphic matroids, such as the matroid induced
by a cycle on 𝑛 edges U𝑛−1,𝑛 [PWY16], wheel and fan graphs [LXY22], partial saw graphs
[BV20], and thagomizer graphs [Ged17, XZ19], there are fairly simple formulas for the
Kazhdan–Lusztig polynomial.
The lack of understanding of the Kazhdan–Lusztig polynomials of braid matroids has

been the driving force for many significant developments in the theory. For example, the
authors of [PXY18] state that their “main motivation” for introducing the 𝑍-polynomials of
matroids was to compute the Kazhdan–Lusztig polynomials of braid matroids.
To calculate 𝑃K𝑛(𝑡) and 𝑍K𝑛(𝑡) using the definitions is in general a heavy computational

task. The main result of Karn and Wakefield in [KW19] provides an explicit (i.e., non-
recursive), but fairly complicated expression for the coefficients of 𝑃K𝑛(𝑡). In practice, the
fastest known way to compute both 𝑃K𝑛(𝑡) and 𝑍K𝑛(𝑡) is provided by the recurrence derived
in [PXY18, Corollary 4.2].
The𝔖𝑛-equivariantKazhdan–Lusztig polynomial ofK𝑛 has also been studied. In [GPY17a],

the authors computed the linear term of 𝑃𝔖𝑛
K𝑛
(𝑡) and gave a functional equation which is sat-

isfied by the generating function of 𝑃𝔖𝑛
K𝑛
(𝑡). In [PY17], the authors studied 𝑃𝔖𝑛

K𝑛
(𝑡) using tools

from representation stability; this machinery allowed them to give a partial description of
the poles of the generating function and boundwhich irreducible representations of𝔖𝑛 can
appear. See [Tos22] for a strengthening of these results.
A further conjecture posed originally by Elias, Proudfoot, and Wakefield [EPW16, Sec-

tionA] asserts that the leading coefficient of𝑃K2𝑛(𝑡) counts labelled triangular cacti on 2𝑛−1
nodes. Prior to the present paper, not only did this conjecture remain elusive; the problem
of formulating an analogous statement for the leading coefficient of 𝑃K2𝑛−1(𝑡), or other coef-
ficients, remained open.
Theorem 1.1 below provides a concrete combinatorial interpretation for all the coeffi-

cients of both 𝑃K𝑛(𝑡) and 𝑍K𝑛(𝑡) for all 𝑛.

1.4. Main results. Amatroid is quasi series-parallel if it does not containU2,4 orK4 as ami-
nor. Equivalently, a matroid is quasi series-parallel if it is a direct sum of loops, coloops, and
series-parallel matroids on a ground set of size at least 2 (these are defined in Section 2.1).
The first of our main theorems can be stated as follows.

Theorem 1.1 Let A(𝑛, 𝑟) denote the set of all quasi series-parallel matroids on [𝑛] of rank 𝑟
and, let S(𝑛, 𝑟) denote the set of simple quasi series-parallel matroids. Then

[𝑡𝑖] 𝑃K𝑛(𝑡) = |S(𝑛 − 1, 𝑛 − 1 − 𝑖)|,
[𝑡𝑖] 𝑍K𝑛(𝑡) = |A(𝑛 − 1, 𝑛 − 1 − 𝑖)|.

In fact, we will derive the preceding statement from a stronger result. We provide a de-
scription of the equivariant Kazhdan–Lusztig polynomial and the equivariant𝑍-polynomial
of all braid matroids with respect to any𝔖𝑛−1 subgroup of𝔖𝑛.

Theorem 1.2 Choose an𝔖𝑛−1 subgroup of𝔖𝑛. Then
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(i) The𝔖𝑛−1-equivariant Kazhdan–Lusztig polynomial of K𝑛 has 𝑡𝑖 coefficient given by the
permutation representation of𝔖𝑛−1 on S(𝑛 − 1, 𝑛 − 1 − 𝑖).

(ii) The 𝔖𝑛−1-equivariant 𝑍-polynomial of K𝑛 has 𝑡𝑖 coefficient given by the permutation
representation of𝔖𝑛−1 onA(𝑛 − 1, 𝑛 − 1 − 𝑖).

An immediate consequence of our main results and Poincaré duality and the Hard Lef-
schetz theorem for intersection cohomology is that the rank-indexed sequence of the num-
bers of quasi series-parallel matroids on [𝑛] is unimodal. More so, it is a 𝛾-positive sequence,
by [FMSV22, Theorem 1.8].
We also use Theorem 1.1 to confirm the conjecture in [EPW16, Section A] on the leading

coefficient of 𝑃K2𝑛(𝑡); see Proposition 2.11. In [PY17, Remark 6.3], Proudfoot and Young
note that this conjecture shows the existence of a certain pole of the generating function for
the 𝑖-th coefficient of 𝑃K𝑛(𝑡). We also give an expression for the leading term of 𝑃K2𝑘+1(𝑡);
see Proposition 2.13.
Since the study of several objects related to (quasi) series-parallel matroids is a recurring

problem in enumerative combinatorics, we are able to present explicit (but complicated)
generating functions for Kazhdan–Lusztig and 𝑍-polynomials of braid matroids. In partic-
ular, this provides an additional tool to study asymptotics of the Betti numbers and the total
dimensions of intersection cohomologies of braid matroids, cf. Remark 2.15 below.

2. Background

Throughout this paper we shall assume familiarity with the basic properties of matroids.
In particular, we mostly follow the notation and terminology of Oxley [Oxl11].

2.1. Series-parallelmatroids. Series-parallelmatroids are a prominent family ofmatroids
which pervade graph theory and the theory of electrical networks. Given the variety of
sources, coming from both graph theory and enumerative combinatorics, that define sim-
ilar but different objects under the name “series-parallel”, we will include a recapitulation
of the basic terminology and background of this topic in matroid theory, following [Oxl11,
Section 5.4].
Two operations play an important role in the construction of these matroids. Assume

thatM andM′ are matroids on 𝐸 and 𝐸′ respectively. We say thatM′ is a parallel extension
ofM if there is an element 𝑒 ∈ 𝐸′ which belongs to a circuit of size 2 inM′ and satisfies that
M′ ⧵ 𝑒 = M. Dually, we say that M′ is a series extension of M if there is an element 𝑒 ∈ 𝐸′
which belongs to a cocircuit of size 2 in M′ and satisfies M′∕𝑒 = M. In particular, notice
that, if we takeM = U1,1 andM′ = U2,2, thenM′ is not a series extension ofM.
By definition, a series-parallel matroid is a matroid that is obtained from a single loop or

a single coloop via a finite (possibly empty) sequence of series or parallel extensions3. We
can deduce the following elementary conclusions from the definition of these matroids.

∙ Series-parallel matroids are connected matroids.
∙ The rank of a series-parallel matroidM on a ground set of size at least 2 is equal to
one plus the number of series extensions performed in the construction ofM from
U1,2.

3This follows Oxley’s conventions. In particular, all series-parallel matroids on a ground set of size at least 2
are actually obtained via series and parallel extensions starting from the matroid U1,2.
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A classical paper by Brylawski [Bry71] establishes the following list of equivalences, re-
formulated also by Oxley in [Oxl82, Theorem 2.1].

Proposition 2.1 ([Bry71, Theorem 7.6]) LetM be a matroid. The following are equivalent.
(i) M is a series-parallel matroid.
(ii) M ≅ U0,1 or 𝛽(M) = 1.
(iii) M is connected and does not contain any minors isomorphic to K4 or U2,4.

Here 𝛽(M) is the 𝛽-invariant of M introduced by Crapo [Cra67]. Notice that 𝛽(M) =
𝛽(M∗)wheneverM ≇ U0,1,U1,1. On the other hand, it follows either by the definition or the
above result that M is series-parallel if and only if M∗ is series-parallel — even in the case
in whichM is either a loop or a coloop.

(a) Series-parallel matroids
on [𝑛] of rank 𝑘

𝑘∖𝑛 = 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1
2 0 1 6 25 90 301
3 0 1 25 290 2450
4 0 1 90 2450
5 0 1 301
6 0 1
7 0

(b) Quasi series-parallel matroids
on [𝑛] of rank 𝑘

𝑘∖𝑛 = 1 2 3 4 5 6 7
0 1 1 1 1 1 1 1
1 1 3 7 15 31 63 127
2 1 7 35 155 651 2667
3 1 15 155 1365 10941
4 1 31 651 10941
5 1 63 2667
6 1 127
7 1

Table 1. Enumeration of series-parallel and quasi series-parallel matroids.

Example 2.2 Using the recursive definition of series-parallel matroids, onemay check that
there are exactly 4 isomorphism classes of series-parallel matroids on 6 elements of rank 3.
They are induced by the graphs depicted in Figure 1. Notice that the first of the fourmatroids
is isomorphic to 20matroids on [6], the second one is isomorphic to 180matroids on [6], the
last two are each isomorphic to 45matroids on [6]. These add up to 20+180+45+45 = 290
series-parallel matroids with ground set {1, 2, 3, 4, 5, 6} of rank 3 (see Table 1).

Figure 1. Isomorphism classes of series-parallel matroids on [6] of rank 3.

Proposition 2.3 Let C(𝑛, 𝑘) denote the set of series-parallel matroids on [𝑛] of rank 𝑘. Then,
the bivariate generating function

𝐶(𝑥, 𝑦) ∶=
∞∑

𝑛=1

𝑛∑

𝑘=0
|C(𝑛, 𝑘)|𝑥

𝑛

𝑛! 𝑦
𝑘,
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is given by

(1) 𝐶(𝑥, 𝑦) = 𝑥(𝑦 + 1) + 𝑦 ∫ [(1𝑦 log(1 + 𝑥𝑦) + log(1 + 𝑥) − 𝑥)
⟨−1⟩

] 𝑑𝑥.

Here the symbol ⟨−1⟩ stands for the compositional inverse of the function inside the parenthesis
with respect to the variable 𝑥, i.e., treating 𝑦 as a constant.

Proof. The case 𝑦 = 1 of the above formula reduces to a classical problem studied extensively
in the literature; see [Sta99, Solution of Exercise 5.40] and references mentioned therein.
The case of our interest was essentially carried out by Drake in his PhD thesis [Dra08, Ex-
ample 1.5.1]. By relying on a combinatorial interpretation for Lagrange’s inversion theorem,
he establishes a generating function for “series-parallel networks” on a labelled ground set
of edges according to the number of series extensions. Explicitly:

( 1𝛼 log(1 + 𝛼𝑥) + 1
𝛽 log(1 + 𝛽𝑥) − 𝑥)

⟨−1⟩
= 𝑥 + (𝛼 + 𝛽)𝑥

2

2! + (𝛼2 + 6𝛼𝛽 + 𝛽2)𝑥
3

3! +

(𝛼3 + 25𝛼2𝛽 + 25𝛼𝛽2 + 𝛽3)𝑥
4

4! +⋯

By taking 𝛼 = 𝑦 and 𝛽 = 1 and integrating, we obtain:

∫ (1𝑦 log(1 + 𝑥𝑦) + log(1 + 𝑥) − 𝑥)
⟨−1⟩

𝑑𝑥 = 𝑥2
2! + (𝑦 + 1)𝑥

3

3! + (𝑦2 + 6𝑦 + 1)𝑥
4

4! +

(𝑦3 + 25𝑦2 + 25𝑦 + 1)𝑥
5

5! +⋯

Wemustmake a small correction bymultiplying by 𝑦 and adding 𝑥(𝑦+1). The term 𝑥(𝑦+1)
comes from considering the two matroids with ground set of size 1. The reason these do
not appear in Drake’s formula is because, under the definition he uses for “series-parallel
networks” as parenthesized expressions under an equivalence relation, these two matroids
would come from “empty” expressions. □

Remark 2.4 We do not know a way to simplify (1). We point out that the use of formulas
for the antiderivative of an inverse function does not help to get rid of the integral symbol.
On the other hand, equally complicated expressions can be deduced by using Lambert’s
𝑊-function.

2.2. Quasi series-parallelmatroids. Although the class of series-parallelmatroids is closed
under taking duals, it is not closed under taking direct sums or taking minors. The best way
to resolve this issue is through the class of quasi series-parallel matroids.

Definition 2.5 Let M be a matroid. We say that M is a quasi series-parallel matroid if all
the connected components ofM are series-parallel matroids.

Although the name “quasi series-parallel matroid” is new, this class of matroids has ac-
tually appeared before in the literature4.

Proposition 2.6 LetM be a matroid. The following are equivalent:

4In fact, Seymour [Sey95] calls “series-parallel matroids” what we have called “quasi series-parallel ma-
troids”. We emphasize once again that we are following Oxley’s convention.
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(i) M is a quasi series-parallel matroid.
(ii) M∗ is a quasi series-parallel matroid.
(iii) M does not contain any minor isomorphic to K4 or U2,4.
(iv) M is a binary gammoid.
(v) M is a regular gammoid.
(vi) M has branch-width smaller than or equal to 2.

The above result is essentially a restatement of [Oxl11, Theorem10.4.8] and [Oxl11, Propo-
sition 14.2.6]; we refer to Oxley’s book for the undefined terminology.

Example 2.7 There are exactly 6 isomorphism classes of quasi series-parallel matroids on
4 elements with rank 2. They are depicted in Figure 2. The number of different matroids on
{1, 2, 3, 4} isomorphic to each of these matroids is 6, 12, and 6 for the three matroids on the
top, from left to right, and 4, 3, and 4 respectively for the three on the bottom. This amounts
to 6 + 12 + 6 + 4 + 3 + 4 = 35 quasi series-parallel matroids with ground set {1, 2, 3, 4} of
rank 2 (see Table 1).

Figure 2. Isomorphism classes of quasi series-parallel matroids on [4] of
rank 2.

A recurring themewithin combinatorics consists of passing from the enumeration of con-
nected labelled structures to the enumeration of all labelled structures (whether connected
or not). In particular, the theory of exponential generating functions is useful to this end.
Moreover, in the case of our interest, equation (1) enumerates all connected quasi series-
parallel matroids. If we want to enumerate all quasi series-parallel matroids, by a standard
technique (see [Sta99, Section 5.1] or [FS09, p. 148]) it suffices to compose this functionwith
an exponential.

Proposition 2.8 LetA(𝑛, 𝑘) denote the set of all quasi series-parallel matroids on [𝑛] of rank
𝑘. Then, the bivariate generating function

𝐴(𝑥, 𝑦) ∶=
∞∑

𝑛=1

𝑛∑

𝑘=0
|A(𝑛, 𝑘)|𝑥

𝑛

𝑛! 𝑦
𝑘,

is given by

(2) 𝐴(𝑥, 𝑦) = exp(𝐶(𝑥, 𝑦)),

where 𝐶(𝑥, 𝑦) is given as in equation (1).
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2.3. Simple quasi series-parallel matroids. The last family of matroids playing a role in
the statement of Theorem 1.1 is that of simple quasi series-parallel matroids.
Recall that a matroid M is simple if it loopless and contains no circuits of size 2. Two

(possibly equal) elements 𝑖, 𝑗 are said to be parallel if they are not loops and rkM({𝑖, 𝑗}) = 1.
The ground set ofM is partitioned into subsets called parallel classes, which are themaximal
subsets that consist of elements which are parallel to each other. The simplification of M,
denotedM, is the matroid on the set of parallel classes ofM with rank function

rk
M
(𝑆) = rkM

(⋃
𝑇∈𝑆 𝑇

)
for any S.

Example 2.9 There are exactly two isomorphism classes of simple quasi series-parallel ma-
troids on 7 elements of rank 4. They are depicted in Figure 3. There are 630matroids on [7]
isomorphic to the matroid on the left, and there are 105 for the matroid on the right. These
add up to 735 simple quasi series-parallel matroids on [7] of rank 4 (see Table 2).

Figure 3. Isomorphism classes of simple quasi series-parallel matroids on
[7] of rank 4.

Proposition 2.10 If 𝑛 > 1, then a simple quasi series-parallel matroid on [𝑛 − 1] has rank
greater than 𝑛−1

2
.

Proof. Wemay reduce to the case of simple (connected) series-parallelmatroids onnonempty
ground sets. Then the result follows from the observation that in order to obtain a simple
matroid from a sequence of series and parallel extensions ofU1,1, wemust have done at least
as many series extensions as parallel extensions. □

(a) Simple quasi series-parallel matroids on [𝑛] of
rank 𝑘
𝑘∖𝑛 = 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0
3 1 5 15 0 0 0
4 1 16 175 735 0
5 1 42 1225 16065
6 1 99 6769
7 1 219
8 1

Table 2. Enumeration of simple quasi series-parallel matroids.
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We now study simple quasi series-parallel matroids of the smallest possible rank. We
begin with the case of ground sets of odd size. By Proposition 2.10, a simple quasi series-
parallel matroid of rank 𝑘 on [2𝑘 − 1] is connected, and thus is a series-parallel matroid. A
triangular cactus is a connected graph where every edge is contained in a unique cycle, and
that cycle is a triangle.

Proposition 2.11 There is a bijection between simple series-parallel matroids of rank 𝑘 on
[2𝑘 − 1] and triangular cacti with vertex set [2𝑘 − 1].

Before giving the bijection, we observe that both triangular cacti and rank 𝑘 simple series-
parallel matroids on [2𝑘 − 1] are built inductively. The triangles in a triangular cactus are
arranged in a tree-like fashion, so every triangular cactuswith at least three vertices contains
a triangle which has at least two vertices of degree 2. When we delete those two vertices, we
get a triangular cactus on a smaller ground set. Every rank 𝑘 simple series-parallel matroid
on [2𝑘 − 1], with 𝑘 ≥ 2, is a series extension of a series-parallel matroid of rank 𝑘 − 1 on
ground set of size 2𝑘 − 2. By Proposition 2.10, such a matroid cannot be simple, and so it
is a parallel extension of a rank 𝑘 − 1 simple series-parallel matroid on a ground set of size
2𝑘 − 3.

Proof. To a simple series-parallel matroid M of rank 𝑘 on [2𝑘 − 1], we associate the graph
𝑇(M) with vertex set [2𝑘 − 1] and edges (𝑎, 𝑏) if {𝑎, 𝑏} is contained in a 3-element circuit of
M. Note that if we do a parallel extension and then a series extension at 𝑖 ∈ [2𝑘 − 1] toM to
obtain M̃, we add a triangle to 𝑇(M) with vertices 𝑖, 2𝑘, and 2𝑘 + 1. In particular, 𝑇(M̃) is a
triangular cactus by induction.
To a triangular cactus 𝐺 with vertex set [2𝑘 − 1], we build a graph whose edge set is

[2𝑘 − 1] by adding a triangle with edges {𝑎, 𝑏, 𝑐} for each triangle with vertices {𝑎, 𝑏, 𝑐} in 𝐺.
That there is such a graph follows from the inductive structure of triangular cacti. We obtain
amatroid 𝑆(𝐺) by taking the graphic matroid of this graph. Note that if𝐺 is obtained from a
triangular cactus 𝐺′ on a vertex set of size 2𝑘 −3 by adding a triangle, then 𝑆(𝐺) is obtained
from 𝑆(𝐺′) by doing a parallel extension and then a series extension. We see by induction
that 𝑆(𝐺) is independent of the choice of graph and is a rank 𝑘 simple series-parallelmatroid.
Similarly, it follows from induction that 𝑇(𝑆(𝐺)) = 𝐺. To check that 𝑆(𝑇(M)) = M, we again
use that both constructions are compatible with the inductive structure of series-parallel
matroids and triangular cacti. □

In [BL18], the authors show that the number of triangular cacti with vertex set [2𝑘 −
1] is (2𝑘 − 3)!!(2𝑘 − 1)𝑘−2. We therefore have the following result, which together with
Theorem 1.1 proves a conjecture stated in [EPW16, Section A].

Corollary 2.12 The number of simple quasi series-parallel matroids of rank 𝑘 on [2𝑘 − 1] is
equal to (2𝑘 − 3)!!(2𝑘 − 1)𝑘−2.

Let 𝐸𝑘 be the number of simple series-parallel matroids of rank 𝑘 + 1 on [2𝑘]. Then

(𝐸0, 𝐸1, … ) = (0, 1, 75, 9345, 1865745, 554479695, 231052877055, 128938132548225, … ).

We do not know a simple expression for 𝐸𝑘; the 𝐸𝑘 can have large prime factors. After
we prove Theorem 1.1, the following result will give an expression for the leading term of
𝑃K2𝑘+1(𝑡) in terms of 𝐸𝑘.
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Figure 4. Two simple series-parallel matroids of rank 4 on [7] and their
corresponding triangular cacti.

Proposition 2.13 The number of simple quasi series-parallel matroids of rank 𝑘 + 1 on [2𝑘]
is equal to

𝐸𝑘 +
1
2

𝑘−1∑

𝑎=0

( 2𝑘
2𝑎 + 1

)
(2𝑎 − 1)!!(2𝑘 − 2𝑎 − 3)!!(2𝑎 + 1)𝑎−1(2𝑘 − 2𝑎 − 1)𝑘−𝑎−2.

Proof. By Proposition 2.10, a simple quasi series-parallel matroid of rank 𝑘 + 1 on a ground
set of size 2𝑘 can have atmost two connected components. The number with one connected
component is exactly 𝐸𝑘. If there are two connected components, then Proposition 2.10
implies that one connected component must have size 2𝑎 + 1 and rank 𝑎 + 1 for some 𝑎,
and the other component must have size 2(𝑘 −𝑎)− 1 and rank 𝑘 −𝑎. Proposition 2.11 then
implies the result. □

Let Fbe a family of isomorphism classes of matroids. Denote Fsimp and Floop the sub-
classes of all of simple and of all loopless matroids inF, respectively. Let us write |F(𝑛, 𝑘)|
for the number of rank 𝑘 matroids on [𝑛] whose isomorphism class lies inF, and similarly
forFsimp andFloop.
Denote by [M] the isomorphism class of thematroidM. Let us assume that [U0,0] ∈ Fand

thatFhas the property that [M] lies inFif and only if the class of the simplification [M] lies
inF. This mild assumption allows us to establish the following elementary relationships:

|F(𝑛, 𝑘)| =
𝑛∑

𝑖=𝑘

(𝑛
𝑖
)
|Floop(𝑖, 𝑘)|,

|Floop(𝑛, 𝑘)| =
𝑛∑

𝑖=𝑘
{𝑛𝑖 }|Fsimp(𝑖, 𝑘)|,

where
{
𝑛
𝑖

}
denotes the Stirling number of the second kind. Notice that the family Aof all

isomorphism classes of quasi series-parallel matroids satisfies this condition.
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Proposition 2.14 LetS(𝑛, 𝑘) denote the set of all simple quasi series-parallel matroids on [𝑛]
of rank 𝑘. Then, the bivariate generating function

𝑆(𝑥, 𝑦) ∶=
∞∑

𝑛=1

𝑛∑

𝑘=0
|S(𝑛, 𝑘)|𝑥

𝑛

𝑛! 𝑦
𝑘,

is given by

(3) 𝑆(𝑥, 𝑦) = 1
𝑥 + 1𝐴(log(𝑥 + 1), 𝑦) − 1,

where 𝐴(𝑥, 𝑦) is given as in equation (2).

Proof. This is a formal consequence of the fact that

|A(𝑛, 𝑘)| =
𝑛∑

𝑖=𝑘

(𝑛
𝑖
) 𝑖∑

𝑗=𝑘
{ 𝑖𝑗 }|S(𝑗, 𝑘)|.

It is possible to translate this expression in terms of generating functions. More precisely,
one obtains:

𝐴(𝑥, 𝑦) = 𝑒−𝑥 𝑆(𝑒𝑥 − 1, 𝑦).
Using the change of variable 𝑢 = log(𝑥 + 1) yields the result of the statement. □

Remark 2.15 There is a large literature on enumerating various objects which are closely
related to (quasi) series-parallel matroids. In the work of Moon [Moo87], an asymptotic
estimate of the general term of the single variable series𝐶(𝑥, 1), defined in equation (1), was
obtained. In particular, one may apply standard techniques to obtain asymptotic estimates
for the coefficients of the series𝐴(𝑥, 1) and 𝑆(𝑥, 1). Notice that our Theorem 1.1 implies that
the coefficients of these series are described by the 𝑍-polynomial and the Kazhdan–Lusztig
polynomial, both evaluated at 𝑡 = 1. In particular, that provides asymptotics for the total
dimensions of the intersection cohomology of K𝑛 and its stalk at the empty flat.

3. Proof of the main results

The flats of K𝑛 are in bijection with partitions of [𝑛]: a partition 𝑄 given by [𝑛] = 𝑆1 ⊔
⋯⊔𝑆𝑘 is identified with the flat 𝐹𝑄 corresponding to the subgraph that consists of all edges
where both vertices lie in 𝑆𝑖 for some 𝑖. The simplification of the contraction K𝑛∕𝐹𝑄 is the
braid matroid on [𝑘], the set of parts in 𝑄. The stabilizer in𝔖𝑛 of 𝐹𝑄 is the set of permuta-
tions which preserve 𝑄.

Proposition 3.1 Let Γ be a group acting on a loopless matroid. Then the subgroup 𝑁 of Γ
fixing all of the parallel classes is normal, and 𝑃Γ

M
(𝑡) is the pullback from VRep(Γ∕𝑁)[𝑡] of

𝑃Γ∕𝑁
M

(𝑡).

Proof. Any automorphism of a matroid sends parallel classes to parallel classes, so there is
a map from Γ to the symmetric group on the set of parallel classes whose kernel is 𝑁.
The second part follows from induction on the size of the ground set and the fact that

simplifying a matroid does not change its lattice of flats. □

We now prove Theorem 1.2 from which Theorem 1.1 follows. Our strategy is to use the
following observation (see, e.g., [BHM+20, Corollary A.5]): Let Γ be a finite group acting on
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a matroidM, and let 𝑃Γ(𝑡) ∈ VRep(Γ) be a polynomial of degree less than 1
2
rk(M). Suppose

that

𝑍Γ(𝑡) ∶= 𝑃Γ(𝑡) +
∑

∅≠[𝐹]∈L(M)∕Γ
𝑡rk(𝐹) IndΓΓ𝐹 𝑃

Γ𝐹
M∕𝐹(𝑡)

is palindromic. Then 𝑍Γ(𝑡) = 𝑍Γ
M
(𝑡) and 𝑃Γ(𝑡) = 𝑃Γ

M
(𝑡).

Proof of Theorem 1.2. We induct on 𝑛. Let Γ = 𝔖𝑛−1 be the subgroup of𝔖𝑛 that fixes 𝑛. Let
𝑃Γ ∈ VRep(Γ)[𝑡] be the generating function of the permutation representation of simple
quasi series-parallel matroids of rank 𝑛 − 1 − 𝑖 on [𝑛 − 1], and let 𝑍Γ be the generating
function of the permutation representation of quasi series-parallel matroids of rank 𝑛−1−𝑖
on [𝑛−1]. By Proposition 2.10, the degree of 𝑃Γ is less than 𝑛−1

2
. Because the dual of a quasi

series-parallel matroid is quasi series-parallel, 𝑍Γ is palindromic. Therefore it suffices to
show that

(4) 𝑍Γ(𝑡) = 𝑃Γ(𝑡) +
∑

∅≠[𝐹]∈L(K𝑛)∕𝔖𝑛−1

𝑡rk(𝐹) IndΓΓ𝐹 𝑃
Γ𝐹
K𝑛∕𝐹

(𝑡).

Let 𝑄 = 𝑆1 ⊔⋯⊔ 𝑆𝑘 be a partition of [𝑛] with 𝑛 ∈ 𝑆𝑖, and letM be a simple quasi series-
parallel matroid on [𝑘] ⧵ 𝑖 of rank 𝑘 − 1 − 𝑗. The quotient of Γ𝐹𝑄 by the normal subgroup
which fixes each parallel class of K𝑛∕𝐹𝑄 is a subgroup of𝔖[𝑘]⧵𝑖. Let 𝑉M be the pullback of
the permutation representation on the set of matroids on [𝑘]⧵𝑖 isomorphic toM to Γ𝐹𝑄 from

𝔖[𝑘]⧵𝑖. By induction and Proposition 3.1, 𝑉M is a summand of [𝑡𝑗]𝑃
Γ𝐹𝑄
K𝑛∕𝐹𝑄

(𝑡). The stabilizer
ofM is the inverse image in Γ𝐹𝑄 of the automorphism group ofM.
Let M̃ denote the matroid on [𝑛−1]which has 𝑆𝑖 ⧵𝑛 as a set of loops, each 𝑆𝓁 is a parallel

class (𝓁 ≠ 𝑖), and simplifies to M. The automorphism group of M̃ is the inverse image in
Γ𝐹𝑄 of the automorphism group ofM, so the induction of 𝑉M to𝔖𝑛−1 can be identified with
the permutation representation on the set of matroids on [𝑛 − 1] which are isomorphic to
M̃. Note that rk(𝐹𝑄) + 𝑘 − 1 − 𝑗 = 𝑛 − 1 − 𝑗, so the permutation representation on the set
of matroids on [𝑛 − 1] isomorphic to M̃ appears as a summand in degree 𝑛 − 1 − rk(M̃).
Furthermore, every quasi series-parallel matroid is either simple or simplifies to a simple
quasi series-parallel matroid on a smaller ground set, which proves (4). □

As a consequence of the main result, we can use the generating functions described in
Propositions 2.8 and 2.14 to compute 𝑍-polynomials and Kazhdan–Lusztig polynomials of
braid matroids.

Corollary 3.2 The bivariate generating functions𝐴(𝑥, 𝑦) and 𝑆(𝑥, 𝑦) defined by equations (2)
and (3) satisfy

𝑛![𝑥𝑛] 𝐴(𝑥, 𝑦) = 𝑍K𝑛+1(𝑦),
𝑛![𝑥𝑛] 𝑆(𝑥, 𝑦) = 𝑦𝑛𝑃K𝑛+1(1∕𝑦).

Avery short piece of SAGE code implementing these two generating functions is included
on the website of the first author5.

5Accessible at https://sites.google.com/view/ferroniluis/home/research or by clicking here.

https://sites.google.com/view/ferroniluis/home/research
https://drive.google.com/uc?export=view&id=17rbTR30bF9EL1Q9-t0MDJyMDy9JIbU_O
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