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ABSTRACT. Polymatroids are combinatorial abstractions of subspace arrangements in the same
way that matroids are combinatorial abstractions of hyperplane arrangements. By introducing
augmented Chow rings of polymatroids, modeled after augmented wonderful varieties of sub-
space arrangements, we generalize several algebro-geometric techniques developed in recent years
to study matroids. We show that intersection numbers in the augmented Chow ring of a poly-
matroid are determined by a matching property known as the Hall–Rado condition, which is new
even in the case of matroids.

1. INTRODUCTION

LetE = {1, . . . ,m} be a finite set, and let a = (a1, . . . , am) be a sequence of nonnegative integers.

Definition 1.1. A polymatroid P on E with cage a is a function rkP : 2
E → Z≥0 satisfying

(1) (Submodularity) rkP(S1) + rkP(S2) ≥ rkP(S1 ∩ S2) + rkP(S1 ∪ S2) for any S1, S2 ⊆ E,
(2) (Monotonicity) rkP(S1) ≤ rkP(S2) for any S1 ⊆ S2 ⊆ E,
(3) (Normalization) rkP(∅) = 0, and
(4) (Cage) rkP(i) ≤ ai for any i ∈ E.

We say that rkP is the rank function of the polymatroid P, and that P has rank r = rkP(E).

A polymatroid with cage (1, . . . , 1) is a matroid. For the fundamentals of matroid theory
we point to [Wel76]. Introduced as generalizations of matroids [Edm70], and also known as
generalized permutohedra, polymatroids are the central objects in the polyhedral study of com-
binatorial structures related to the symmetric group [AA, Pos09]. In those works, two polytopes
associated to a polymatroid P = (E, rkP) are the independence polytope I(P), defined by

I(P) =
{
x ∈ RE

≥0 :
∑
i∈S

xi ≤ rkP(S) for all S ⊆ E
}
,

and the base polytope B(P), which is the face of I(P) defined by

B(P) = I(P) ∩
{
x ∈ RE :

∑
i∈E

xi = rkP(E)
}
.

Both polytopes are re-encodings of the polymatroid P as follows [Edm70]: The polytope B(P)

determines I(P) by I(P) = {x ∈ RE
≥0 : y − x ∈ RE

≥0 for some y ∈ B(P)}, and the rank function
of P is recovered by rkP(S) = max{

∑
i∈S xi : x ∈ I(P)} = max{

∑
i∈S xi : x ∈ B(P)}.

We connect polyhedral properties of polymatroids to algebro-geometric properties arising
from the intersection theory of varieties associated to their realizations by linear subspaces.
Let V1, . . . , Vm be vector spaces of dimensions a1, . . . , am respectively over a field k, and let
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V =
⊕

i∈E Vi. A subspace L ⊆ V defines a polymatroid P on E with cage a = (a1, . . . , am)

whose rank function is

rkP(S) = dim
(

image of L under the projection V →
⊕
i∈S

Vi

)
for any S ⊆ E.

We say that L ⊆ V is a realization of the polymatroid P in this case. A realization L ⊆ V defines a
subspace arrangement on L that consists of subspaces {Li}i∈E where Li = ker(L → Vi). In terms
of the subspace arrangement, the rank function of P is equivalently described as

rkP(S) = codimL

( ⋂
i∈S

Li

)
for any S ⊆ E.

The key geometric object for us is the following compactification of L ⊆ V .

Definition 1.2. The augmented wonderful variety WL of a subspace L ⊆ V =
⊕

i∈E Vi is

WL = the closure of the image of L in
∏

∅⊊S⊆E

P
(⊕

i∈S

Vi ⊕ k

)
,

where the map L → P(
⊕

i∈S Vi ⊕ k) is the composition of the projection L →
⊕

i∈S Vi with the
projective completion

⊕
i∈S Vi ↪→ P(

⊕
i∈S Vi ⊕ k).

In the context of matroids and hyperplane arrangements, the augmented wonderful variety
was introduced in [BHM+22], and it played a central role in the proof of Dowling–Wilson top-
heavy conjecture [BHM+]. Augmented wonderful varieties are closely related to the wonderful
compactifications of subspace arrangement complements introduced in [DCP95].

A special role is played by the boolean arrangement L =
⊕

i∈E Vi with cage a, whose aug-
mented wonderful variety is called the polystellahedral variety with cage a, denoted Xa. Let
A•(Xa) be the Chow cohomology ring of Xa, which in Corollary 2.5 we show has the presenta-
tion

A•(Xa) =
Z[xS , yi : ∅ ⊆ S ⊊ E, i ∈ E]

⟨xS1
xS2

: S1, S2 incomparable⟩+ ⟨xSyai
i : i ̸∈ S⟩+ ⟨yi −

∑
S ̸∋i xS : i ∈ E⟩

.

Its grading satisfies A•(Xa) =
⊕a1+···+am

k=0 Ak(Xa), and it is equipped with the degree map,
which is an isomorphism

degXa
: Aa1+···+am(Xa)

∼→ Z determined by the property degXa
(ya1

1 · · · yam
m ) = 1.

The Chow homology group A•(Xa) is the graded group
⊕a1+···+am

k=0 Ak(Xa) where Ak(Xa) =

Aa1+···+am−k(Xa).

For a polymatroid P = (E, rkP) with cage a and rank r, we define a homology class [ΣP ] ∈
Ar(Xa) called the augmented Bergman class of P (Definition 3.12). We define the augmented Chow
ring A•(P) of P by

A•(P) = A•(Xa)/ ann([ΣP]), where ann([ΣP]) = {x ∈ A•(Xa) : x · [ΣP] = 0}.
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See Corollary 3.19 for an explicit presentation ofA•(P). Its grading satisfiesA•(P) =
⊕r

k=0A
k(P),

and it is equipped with the degree map, which is an isomorphism degP : A
r(P)

∼→ Z defined by

degP(ξ) = degXa
(ξ′ · [ΣP]) for any lift ξ′ ∈ A•(Xa) of ξ ∈ A•(P).

When a subspace L ⊆ V realizes P, one has an embedding WL ↪→ Xa by the construction of the
augmented wonderful variety. The resulting homology class [WL] ∈ Ar(Xa) equals [ΣP] (Propo-
sition 3.20), and the Chow ring A•(WL) of the augmented wonderful variety WL coincides with
the augmented Chow ring A•(P) (Remark 3.21).

The embedding Xa ↪→
∏

∅⊊S⊆E P(
⊕

i∈S Vi ⊕ k) provides the following useful set of gen-
erators for the Chow ring of Xa. For each nonempty subset S ⊆ E, let hS ∈ A1(Xa) be the
pullback of the hyperplane class on P(

⊕
i∈S Vi ⊕ k) along the map induced by the embedding

Xa ↪→
∏

∅⊊S⊆E P(
⊕

i∈S Vi ⊕ k). We show that {hS : ∅ ⊊ S ⊆ E} generates A•(Xa), and
that the monomials in these generators are all of the form [ΣP] for some polymatroid P with
cage a. For a polymatroid P, we define hS ∈ A1(P) to be image of hS under the quotient map
A•(Xa) → A•(P). We call these the simplicial generators of A•(P), motivated by similar terminol-
ogy in the case of matroids [BES23, LLPP]. These generators were also considered in [Yuz02].

We show that the intersection numbers of the simplicial generators are described by the Hall–
Rado condition: A sequence S1, . . . , Sr of nonempty subsets of E is said to satisfy the Hall–Rado
condition (with respect to a polymatroid P = (E, rkP)) if

rkP

( ⋃
j∈J

Sj

)
≥ |J | for all J ⊆ {1, . . . , r}.

See Lemma 5.2 for an interpretation of this condition in terms of a matching problem.

Theorem 1.3. Let P be a polymatroid of rank r, and let S1, . . . , Sr be a sequence of nonempty
subsets of E. Then

degP(hS1 · · ·hSr ) =

1 S1, . . . , Sr satisfies the Hall–Rado condition,

0 otherwise.

At least when P is realizable, the fact that degP(hS1
· · ·hSr

) = 0 if S1, . . . , Sr does not satisfy
the Hall–Rado condition has a simple geometric explanation. If rkP(Si1 ∪ · · · ∪ Sik) < k, then
the degree k element hSi1

· · ·hSik
is zero because it is pulled back from the image of WL in

P(
⊕

i∈Si1
Vi ⊕ k)× · · · × P(

⊕
i∈Sik

Vi ⊕ k), which has dimension rkP(Si1 ∪ · · · ∪ Sik) < k.

We highlight here the following corollary of Theorem 1.3.

Corollary 1.4. Let P be a polymatroid on E of rank r. Then 1
r! degP

(
(
∑

i∈E tih{i})
r
)
, the volume

polynomial ofA•(P) with respect to {h{i} : i ∈ E} ⊂ A1(P), equals the basis exponential generating
function of P, which is the polynomial in Q[ti : i ∈ E] given by∑

u∈B(P)∩ZE

tu

u!
, where tu = tu1

1 · · · tum
m and u! = u1! · · ·um!.

Our results here generalize several previous results in the literature.
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• When P is realizable and has cage (1, . . . , 1), Corollary 1.4 specializes to [AB16, Theorem
1.3(c)].

• When P is realizable, Theorem 1.3 specializes to [CCRMMn, Proposition 7.15] and the
first statement of [Li18, Theorem 1.1].

• When P has cage (1, . . . , 1), Theorem 6.4 (a variant of Theorem 1.3) specializes to [BES23,
Theorem 5.2.4]. When P is also boolean, it further specializes to [Pos09, Theorem 9.3]
because intersection numbers on toric varieties can be interpreted as mixed volumes.

Many invariants of matroids behave well with respect to matroid polytope decompositions.
This leads to the study of the valuative group of matroids [AFR10, BEST23, DF10], which gives a
powerful tool to study invariants of matroids. We consider the following notion of valuativity
for polymatroids with cage a.

Definition 1.5. For a polytope Q ⊂ RE , let 1Q : RE → Z be its indicator function defined by
1Q(x) = 1 if x ∈ Q and 1Q(x) = 0 otherwise. The valuative group Valr(a) of rank r polymatroids
with cage a is the subgroup of Z(RE) generated by 1B(P) for P a polymatroid of rank r and with
cage a.

We show that the valuative group is isomorphic to the homology groups of the polystellahe-
dral variety, generalizing [EHL, Theorem 1.5].

Theorem 1.6. For any 0 ≤ r ≤ a1 + · · · + am, the map that sends a polymatroid P with cage a
and rank r to [ΣP] induces an isomorphism Valr(a)

∼→ Ar(Xa).

To prove Theorem 1.6, we show that a choice of isomorphism Vi ≃ k
ai for each i ∈ E realizes

Xa as a toric variety (Proposition 2.3). This gives a description of the Grothendieck ring of vector
bundles K(Xa) in terms of certain polytopes in Ra1+···+am (Section 4.1). We relate

⊕
r Valr(a)

to this polytopal description. We then prove an exceptional Hirzebruch–Riemann–Roch-type
theorem (Theorem 4.8) that leads to the proofs of both Theorems 1.3 and 1.6.

The paper is organized as follows. In Section 2, we discuss polystellahedral varieties from
the point of view of toric geometry. In Section 3, we construct the augmented Bergman fan
of a polymatroid and develop its basic properties. In Section 4, we study the K-ring of the
polystellahedral variety. In Section 5, we prove Theorem 1.3 and 1.6. In Section 6, we prove
analogs of Theorem 1.3 and 1.6 for the polypermutohedral variety.

Acknowledgements. We thank June Huh for many invaluable conversations related to poly-
matroids, including suggesting the statements of Theorems 1.3 and 1.6. We thank the referees
for many helpful comments. The first author is supported by NSF Grant DMS-2001854, and the
second author is supported by an NDSEG fellowship.

Notations. All varieties are over an algebraically closed field k. For a subset S ⊆ {1, . . . , ℓ}, let
eS =

∑
i∈S ei be the sum of standard basis vectors in Rℓ. Denote by (·, ·) the standard inner

product. For polyhedra and toric varieties, we follow conventions of [Ful93, CLS11]. For a
rational polyhedral fan Σ, we let XΣ be the toric variety associated to Σ.
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2. THE TORIC GEOMETRY OF POLYSTELLAHEDRAL VARIETIES

We introduce the polystellahedral fan (with cage a) and study the properties of the associated
toric variety. This amounts to developing basic properties of the polystellahedral variety Xa,
since we will show that any choice of isomorphisms Vi ≃ k

ai for all i ∈ E induces an isomor-
phism between Xa and the toric variety associated to the polystellahedral fan.

2.1. Polystellahedral fans. Set n = a1 + · · · + am, and let E be a set of cardinality n. A map
π : E → E, which defines a partition E =

⊔
i∈E π

−1(i), is said to have cage a if |π−1(i)| = ai for
all i ∈ E.

Definition 2.1. A compatible pair with respect to a map π : E → E is a pair I ≤ F consisting of a
subset I ⊆ E and a chain F = {F1 ⊊ F2 ⊊ · · · ⊊ Fk ⊊ Fk+1 = E} of proper subsets of E such
that if π−1(S) ⊆ I for a subset S ⊆ E, then S ⊆ F1.

The polystellahedral fan Σπ is the fan in RE whose cones are in bijection with compatible pairs,
with a compatible pair I ≤ F corresponding to the cone

σI≤F = cone(−eE\π−1(F1), . . . ,−eE\π−1(Fk)) + cone(ei : i ∈ I).

Its rays are denoted ρi = R≥0ei for i ∈ E and ρF = R≥0(−eE\π−1(F )) for ∅ ⊆ F ⊊ E.

Note that the fan Σπ depends only on the map E → π(E), not the codomain E of π. A
polystellahedral fan Σa with cage a is a fan Σπ where π has cage a. We note two extreme cases:

• When π has cage (n), the fan Σπ is the inner normal fan of the n-dimensional standard
simplex conv({0} ∪ {ej : j ∈ E}) in RE. We denote this fan by Σn.

• When π has cage (1, . . . , 1), the fan Σπ is the stellahedral fan on E in [EHL]. We denote
this fan by ΣE.

A general polystellahedral fan in RE is both a refinement of Σn and a coarsening of ΣE in the
following way. For two maps π : E → E and π′ : E → E′, let us say π refines π′, denoted π ⪰ π′,
if the corresponding partitions form a refinement, i.e., for every i ∈ E one has π−1(i) ⊆ π′−1

(i′)

for some i′ ∈ E′. Recall that for a simplicial fan Σ and a vector v in its support, the stellar
subdivision of Σ by v is the new fan whose set of rays are {rays of Σ} ∪ {ρv = R≥0v} and the set
of cones are {σ ∈ Σ : v /∈ σ} ∪ {σ ∪ ρv : σ ∈ Σ such that v /∈ σ and v ∈ σ′ for some σ ⊂ σ′ ∈ Σ}.

Proposition 2.2. For a refinement π ⪰ π′, let (S1, . . . , Sk) be a sequence consisting of the subsets
S ⊆ E such that π−1(S) ̸= π′−1

(S′) for any S′ ⊆ E′, ordered in a way that |S1| ≥ · · · ≥
|Sk|. Then the fan Σπ is the result of the sequence of stellar subdivisions of the fan Σπ′ by the
sequence of vectors (−eE\π−1(S1), . . . ,−eE\π−1(Sk)). Moreover, at each step of the sequence of
stellar subdivisions, the resulting fan is projective and unimodular with respect to the lattice
ZE.

We prove the proposition using building sets, which were introduced in [DCP95] and studied
in [FY04, FS05]. We first review the special case of building sets on a boolean lattice here fol-
lowing [Pos09, Section 7], which is simpler than the general case. We will discuss building sets
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in a more general context in Section 3.2. A building set on E is a collection G ⊆ 2E of subsets
of E such that G contains E and {i} for each i ∈ E, and if S and S′ are in G and S ∩ S′ ̸= ∅,
then S ∪ S′ ∈ G. A nested set of G is a collection {X1, . . . , Xk} ⊆ G such that for every subcol-
lection {Xi1 , . . . , Xiℓ} with ℓ ≥ 2 consisting only of pairwise incomparable elements, one has⋃ℓ

j=1Xij /∈ G. The fan associated to G is the fan ΣG in RE/ReE whose cones are

{the image in RE/ReE of cone{eX1
, . . . , eXk

} ⊂ RE : {X1, . . . , Xk} a nested set of G}.

Proof. Let E ∪ {0} be the disjoint union of E with an extra element 0. We have an isomorphism
RE∪{0}/ReE∪{0} ≃ RE induced by ei 7→ ei for i ∈ E and e0 7→ −

∑
i∈E ei. It is straightforward to

verify that, under this isomorphism, the fan Σπ equals the fan ΣGπ in RE∪0/R1 associated to the
building set Gπ = {{i} : i ∈ E} ∪ {π−1(S) ∪ 0 : ∅ ⊆ S ⊆ E} on the boolean lattice of E ∪ {0}.
If π ⪰ π′, then we have Gπ ⊇ Gπ′ , and the desired statements in the proposition are now special
cases of [FM05, Theorem 4.2] and [FY04, Proposition 2]. □

2.2. Polystellahedral varieties. Let us fix the following notation for the rest of a paper.

Notation. Let E be a set of size n := a1 + · · ·+ am, and let π : E → E be a map with cage a.

Let Xπ be the toric variety associated to the polystellahedral fan Σπ . We record some proper-
ties of Xπ arising from the properties of the fan Σπ , starting with the fact that Xπ is isomorphic
to the polystellahedral variety Xa with cage a.

As before, let V =
⊕

i∈E Vi be the direct sum of vector spaces where dimVi = ai = |π−1(i)|
for all i ∈ E. Denote by GLa the group

∏
i∈E GL(Vi). Recall that Xa is the closure of the image

of the map V →
∏

∅⊊S⊆E P(
⊕

i∈S Vi ⊕ k). Because this map is GLa-equivariant, the group GLa

acts naturally on the variety Xa.

Proposition 2.3. Any choice of isomorphisms Vi ≃ k
π−1(i) for each i ∈ E, which gives a natural

embedding of the torus (k∗)E ↪→ GLa, identifies Xa with the toric variety Xπ of the fan Σπ .

Thus, from this point on, we will identify Xa with the toric variety Xπ , although the identifi-
cation depends on the choices of isomorphisms Vi ≃ k

π−1(i) for all i ∈ E.

Proof. With the isomorphisms Vi ≃ k
π−1(i) for all i ∈ E, the projective space PE = P(kE ⊕ k) ≃

P(V ⊕ k) with the obvious action of (k∗)E is the toric variety of the fan Σn. For a subset S ⊆ E,
let LS = k

π−1(E\S) ⊕ 0 ⊂ k
π−1(E\S) ⊕ k. If S is a proper subset, then P(LS) is the hyperplane

at infinity of the coordinate subspace P(kπ−1(E\S) ⊕ k) ≃ P(
⊕

i∈E\S Vi ⊕ k) of PE. Note the
complementation, and note that P(LS) is GLa-invariant for any ∅ ⊆ S ⊊ E.

We apply Proposition 2.2 with π′ being the map from E to a singleton set, which describes the
fan Σπ as a sequence of stellar subdivisions of the fan Σn. Translated into toric geometry terms,
it states that the toric variety Xπ of the fan Σπ is obtained from PE via a sequence of blow-ups as
follows: Order the proper subsets ofE so that their cardinalities are non-strictly decreasing, then
sequentially blow-up the (strict transforms of) the loci P(LS) in that order. This sequential blow-
up is also the description of the wonderful compactification of the complement of the subspace
arrangement {P(L{i}) : i ∈ E} in PE, introduced in [DCP95]. [DCP95, §1.6 Proposition (2)]
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moreover states that this wonderful compactification is also the closure of the image of the
rational map PE 99K

∏
∅⊊S⊆E P

(
(kE ⊕ k)/LS

)
, which, when restricted to V ≃ k

E ⊂ PE, is
exactly the map V →

∏
∅⊊S⊆E P(

⊕
i∈S Vi ⊕ k). □

Remark 2.4. Let Γa be the product
∏

i∈E Sπ−1(i) of permutation groups. Because Γa acts nat-
urally on the fan Σπ by permuting the coordinates of RE, the group Γa acts on the variety Xπ .
Under the identification Xa ≃ Xπ , this action agrees with the action of Γa embedded in GLa via
the isomorphism

⊕
i∈E Vi ≃

⊕
i∈E k

π−1(i).

We record the following presentation of the Chow ring of Xa. For a proper subset S of E and
an element j ∈ E, let xS and ỹj denote the toric divisors of Xa corresponding to the rays ρS and
ρj of Σa, respectively.

Corollary 2.5. For each i ∈ E, the divisors in the set {ỹj : j ∈ π−1(i)} are all equal to each other
as divisor classes inA1(Xa). Denote this divisor class by yi. The Chow ringA•(Xa) ofXπ equals

A•(Xπ) =
Z[xS , yi : ∅ ⊆ S ⊊ E, i ∈ E]

⟨xS1
xS2

: S1, S2 incomparable⟩+ ⟨xSyai
i : i ̸∈ S⟩+ ⟨yi −

∑
S ̸∋i xS : i ∈ E⟩

.

Proof. For a unimodular and projective fan Σ in RE with rays Σ(1) and primitive ray vectors
{uρ ∈ ZE : ρ ∈ Σ(1)}, [Ful93, §5.2 Proposition] states that the Chow ring of the smooth projective
toric variety XΣ equals

A•(XΣ) =
Z[xρ : ρ ∈ Σ(1)]

⟨
∏

ρ∈S xρ : {ρi}i∈S do not form a cone in Σ⟩+ ⟨
∑

ρ∈Σ(1)(uρ, v)xρ : v ∈ ZE⟩

where (u, v) here denotes the standard inner product on RE and xρ represents the toric divisor
of XΣ corresponding to the ray ρ. We apply this with Σ = Σπ .

Setting v = ej1−ej2 for any i ∈ E and j1, j2 ∈ π−1(i), the linear relations
∑

ρ∈Σ(1)(uρ, v)xρ = 0

imply the first statement that {ỹj}j∈π−1(i) are all equal as elements in A1(Xπ). Setting v = ej for
any i ∈ E and j ∈ π−1(i) then gives the relations {yi −

∑
S ̸∋i xS = 0 : i ∈ E}. The rest of the

corollary follows when one notes that the minimal non-faces of Σπ are the following: the sets
of the form {ρS1

, ρS2
} for incomparable proper subsets S1 and S2 of E, or the sets of the form

{ρS} ∪ {ρj : j ∈ π−1(i)} for a proper subset S of E and i ∈ E \ S. □

2.3. Nef divisors, deformations, and expansions. For a fan Σ in RE, a (lattice) polytopeQ ⊂ RE

is a (lattice) deformation of Σ if its inner normal fan ΣQ coarsens the fan Σ. We describe the
deformations of the polystellahedral fan.

As before, let π : E → E be a map with cage a. Define a linear map

pπ : RE → RE by ei 7→ eπ(i).

Definition 2.6. Let P = (E, rkP) be a polymatroid on E with arbitrary cage. The expansion
(with respect to π) of P is the polymatroid π∗(P) on E whose rank function is given by rkP ◦π.
Equivalently, the polymatroid π∗(P) is defined by setting its independence polytope to be

I(π∗(P)) = p−1
π (I(P)) ∩ RE

≥0.
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Proposition 2.7. A lattice polytope Q in RE is a deformation of Σa if and only if Q is a translate
of I(π∗(P)) for a polymatroid P on E.

We deduce the proposition by using a standard result in toric geometry that identifies defor-
mations with nef toric divisors. We prepare with the following lemma. Note that, by the linear
relations for the Chow ring A•(Xa) in Corollary 2.5, the set of divisor classes {xS : ∅ ⊆ S ⊊ E}
is a basis of A1(Xa).

Lemma 2.8. A divisor class D ∈ A1(Xa) is nef if and only if, when we write D =
∑

S⊊E aSxS ,
the function S 7→ aE\S is the rank function of a polymatroid on E.

Proof. Let φD be the piecewise linear function corresponding to the divisor D =
∑

S⊊E aSxS ,
which satisfies φD(ej) = 0 for all j ∈ E and φD(−eE\π−1(S)) = −aS for S ⊊ E. We use a criterion
for the nefness of a line bundle on a smooth projective toric variety from [CLS11, Theorem 6.4.9],
which states that D is nef if and only if the support function φD satisfies an inequality for each
minimal non-face of the fan. This gives the following inequalities:

• For S, S′ ⊊ E incomparable, the minimal non-face spanned by ρS and ρS′ gives the
inequality

φD(−eE\π−1(S) − eE\π−1(S′)) ≥ φD(−eE\π−1(S)) + φD(−eE\π−1(S′)).

Because −eE\π−1(S) − eE\π−1(S′) = −eE\π−1(S∩S′) − eE\π−1(S∪S′) and φD is linear on the
cone spanned by −eE\π−1(S∩S′) and −eE\π−1(S∪S′), we get that

aS∩S′ + aS∪S′ ≤ aS + aS′ .

• For S ⊊ E and i ̸∈ S, the minimal non-face spanned by ρS ∪ {ρj : j ∈ π−1(i)} gives the
inequality

φD(−eE\π−1(S) +
∑

j∈π−1(i)

ej) ≥ φD(−eE\π−1(S)) +
∑

j∈π−1(i)

φD(ej).

As −eE\π−1(S) +
∑

j∈π−1(i) ej = −eE\π−1(S∪i) and φD(ej) = 0, this gives the inequality

aS∪i ≤ aS .

These two inequalities are equivalent to the statement that S 7→ aE\S is a polymatroid. □

Proof of Proposition 2.7. The standard correspondence between nef toric divisors and deforma-
tions [CLS11, Theorems 6.1.5–6.1.7], when applied to the fan Σa, states that a nef divisor D =∑

S⊊E aSxS on Xa corresponds to the lattice deformation QD of Σa defined by

QD = {y ∈ RE : (y, ej) ≥ 0 for all j ∈ E and (y,−eE\π−1(S)) ≥ −aS for all ∅ ⊆ S ⊊ E},

which is exactly the independence polytope of the expansion of the polymatroid with rank
function S 7→ aE\S . Moreover, the correspondence implies that every lattice deformation of Σa

arises as a translate of the polytope corresponding to a nef divisor D =
∑

S⊊E aSxS . □
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We distinguish the following set of nef divisors on Xa arising from the standard simplices in
RE . Note that, for each nonempty subset S ⊆ E, the simplex ∆0

S = conv({0}∪{ei : i ∈ S}) ⊂ RE

is the independence polytope of the polymatroid on E whose rank function is

rk(T ) =

1 if T ∩ S ̸= ∅

0 otherwise
for ∅ ⊆ T ⊆ E,

or equivalently, rk(E \ T ) = 1 exactly when T ̸⊇ S.

Definition 2.9. For each nonempty subset S ⊆ E, we define hS ∈ A1(Xa) to be the nef divisor

hS =
∑

∅⊆T⊊E
T ̸⊇S

xT

corresponding to the simplex ∆0
S . We call the divisor classes {hS : ∅ ⊊ S ⊆ E} the simplicial

generators of Xa.

Proposition 2.10. The simplicial generators of Xa form a basis of A1(Xa). In particular, their
monomials span A•(Xa) as an abelian group.

Proof. By Möbius inversion, every divisor class in the basis {xT : ∅ ⊆ T ⊊ E} of A1(Xa) is a
linear combination of the simplicial generators. □

Remark 2.11. The definition of hS here agrees with its definition in the introduction as the
pullback of the hyperplane class of P(

⊕
i∈S Vi ⊕ k) along the map

Xa ↪→
∏

∅⊊S⊆E P(
⊕

i∈S Vi ⊕ k) → P(
⊕

i∈S Vi ⊕ k).

To see this, one notes that the independence polytope of the expansion of the polymatroid
of ∆0

S is the simplex ∆0
π−1(S) = conv({0} ∪ {ej : j ∈ π−1(S)}) ⊂ RE. The lattice points

of ∆0
π−1(S), considered as global sections of the corresponding line bundle, induce the map

Xa → P(
⊕

i∈S Vi ⊕ k).

We conclude by discussing the behavior of Chow rings under refinements. Proposition 2.2
implies that Σπ is a coarsening of the stellahedral fan ΣE. Thus, we have a toric birational map

u : XE → Xa induced by the refinement of fans ΣE ⪰ Σπ.

We record the following properties of u for future use.

Lemma 2.12. The pullback map u∗ : A•(Xa) → A•(XE) satisfies the following.

(1) u∗ is a split injection, with the splitting given by the pushforward map u∗ : A
•(XE) →

A•(Xa).
(2) If D ∈ A1(Xa) is a nef divisor class corresponding to a deformation Q of Σa, then the

pullback u∗D ∈ A1(XE) is a nef divisor class corresponding to Q considered as a defor-
mation of ΣE.

(3) For a nonempty subset S ⊆ E, the simplicial generator hS ∈ A1(Xa) pulls back to the
simplicial generator u∗hS = hπ−1(S) ∈ A1(XE).
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Proof. The first statement is a standard consequence of the birationality of u and the projection
formula. The second statement follows from [CLS11, Proposition 6.2.7]. The third statement
follows from the second, since the independence polytope of the expansion of the polymatroid
of ∆0

S is the simplex ∆0
π−1(S) = conv({0} ∪ {ej : j ∈ π−1(S)}) ⊂ RE. □

Remark 2.13. Let the polystellahedron with cage a be the polytope Πa in RE defined by

Πa = I(π∗(P)), where P is the polymatroid on E with B(P) = conv{w · (1, . . . ,m) : w ∈ SE}.

The face B(π∗(P)) of Πa was introduced as the polypermutohedron with cage a in [CHL+]. Using
the results in this subsection, one can verify that the polystellahedral fan Σa is the normal fan
of the polystellahedron Πa. Alternatively, using the building set associated to a polystellahedral
fan given in the proof of Proposition 2.2, one can verify that Πa is the corresponding nestohedron
[Pos09, Section 7].

3. AUGMENTED GEOMETRY OF POLYMATROIDS

For a polymatroid P with cage a and rank r, we define its augmented Bergman fan ΣP as a
subfan of the polystellahedral fan with cage a, and we use its properties to define the augmented
Bergman class [ΣP] ∈ Ar(Xa). We then record some geometric properties of the augmented
Bergman fan and the augmented Bergman class.

3.1. Multisymmetric lifts and duality. We begin with a construction of a matroid from a poly-
matroid P with cage a which has appeared many times in the literature [Hel72, Lov77, McD75,
Ngu86, BCF] under different names, such as the “free expansion” and “natural matroid.” Here,
we use the terminology of [CHL+].

Definition 3.1. The multisymmetric lift of a polymatroid P onE with cage a is the matroid Mπ(P)

on E whose rank function is given by

rkMπ(P)(S) = min{rkP(A) + |S \ π−1(A)| : A ⊆ E}.

Alternatively, the multisymmetric lift can be described via polytopes as follows.

Lemma 3.2. Let [0, 1]E be the unit cube in RE. Then, we have I(Mπ(P)) = I(π∗(P)) ∩ [0, 1]E.

Proof. We need to show that a subset S ⊆ E is independent in the matroid Mπ(P) if and only
if eS ∈ I(π∗(P)). By the definition of I(π∗(P)), we have that eS ∈ I(π∗(P)) if and only if, for
all U ⊆ E, one has |S ∩ U | ≤ rkP(π(U)). It suffices to check whether this holds when U is
a fiber of π, so this condition becomes |S ∩ π−1(A)| ≤ rkP(A), or, equivalently, rkP(A) + |S \
π−1(A)| = rkP(A) + |S| − |S ∩ π−1(A)| ≥ |S|, for all A ⊆ E. That is, the condition is equivalent
to rkMπ(P)(S) = |S|. □

The lemma and its proof implies that I(Mπ(P)) maps onto I(P) under the linear projection
pπ : RE → RE . Equivalently, a polymatroid P with cage a is recovered from Mπ(P) via the
formula rkP(S) = rkMπ(P)(π

−1(S)).
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When P is realized by a subspace arrangement L ⊆
⊕

i∈E Vi, the multisymmetric lift Mπ(P)

is realized by the hyperplane arrangementL ⊆ k
E obtained by a general choice of isomorphisms

Vi ≃ k
π−1(i) for all i ∈ E. In particular, the subspaces {Li : i ∈ E} in the arrangement appear as

subspaces arising as intersections of the hyperplanes in the arrangement L ⊆ k
E.

For a polymatroid P = (E, rkP) with cage a, a subset F ⊆ E is a flat of P if rkP(F∪a) > rkP(F )

for all a ∈ E \ F . The flats of P form a lattice, denoted LP. The loops of a polymatroid are the
elements of the minimal flat. We say that a polymatroid is loopless if the empty set is a flat, or
equivalently, if rkP(i) > 0 for all i ∈ E. Given a flat F of P, the subset π−1(F ) ⊆ E is a flat of the
multisymmetric lift Mπ(P). Flats of Mπ(P) of this form are called geometric flats of Mπ(P). The
key property of geometric flats is the following.

Proposition 3.3. [CHL+, Lemma 2.8] Every flat F of Mπ(P) contains a unique maximal geomet-
ric flat F geo. We have that rkMπ(P)(F

geo) = rkP(π(F
geo)), and rkMπ(P)(F ) = rkMπ(P)(F

geo)+ |F \
F geo|.

Remark 3.4. As in Remark 2.4, let Γa be the product
∏

i∈E Sπ−1(i) of permutation groups. The
terminology “multisymmetric” is justified by the fact that the obvious action of the group Γa on
E preserves the rank function of Mπ(P). In fact, this property characterizes multisymmetric lifts:
[CHL+, Theorem 2.9] states that a matroid Mπ on E such that the action of Γa preserves the rank
function is of the form Mπ(P) for a polymatroid P with cage a.1 Moreover, the map F 7→ π−1(F )

induces an isomorphism from the lattice LP of flats of P to the lattice of Γa-fixed flats of Mπ(P)

[CHL+, Corollary 2.7].

We now discuss polymatroid duality, see, e.g., [McD75]. Our main conclusion is that taking
multisymmetric lift commutes with polymatroid duality.

Definition 3.5. For a polymatroid P on E with cage a and rank r, its dual polymatroid P⊥ is a
polymatroid on E with cage a and rank n− r whose rank function is

rkP⊥(S) =
∑
i∈S

ai + rk(E \ S)− r.

Alternatively, duality can also be described via polytopes as follows. The rank function de-
scription for P⊥ above implies that

B(P⊥) = −B(P) + a,

or, equivalently, since I(P) = {x ∈
∏

i∈E [0, ai] : y − x ∈ RE
≥0 for some y ∈ B(P)}, we have

−I(P⊥) + a = {x ∈
∏

i∈E [0, ai] : x− y ∈ RE
≥0 for some y ∈ B(P)}.

When P is realized by L ⊆ V =
⊕

i∈E Vi, its dual P⊥ is realized by (V/L)∨ ⊆
⊕

i∈E V
∨
i

obtained by dualizing the surjection V ↠ V/L. When a = (1, . . . , 1), polymatroid duality agrees
with the usual notion of matroid duality.

1In the proof of this theorem, the authors of [CHL+] make the additional assumption that rkP(i) = ai, but this
assumption is never used.
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FIGURE 1. Polytopes associated to a polymatroid and its dual.

Proposition 3.6. For a polymatroid P on E with cage a, one has Mπ(P
⊥) = Mπ(P)

⊥.

Proof. This follows from Lemma 3.2 since B(P⊥) = −B(P) + a and pπ(
∑

j∈E ej) = a. □

3.2. Augmented Bergman fans of polymatroids. Let P be a polymatroid on E with cage a. We
now introduce the augmented Bergman fan ΣP of a polymatroid.

Definition 3.7. The augmented Bergman fan ΣP of P is the subfan of Σa consisting of cones σS≤F ,
where S is a subset of E and F = {F1 ⊊ · · · ⊊ Fk ⊊ Fk+1 = E} is a chain of proper flats of P
satisfying

(1) For all T ⊆ S, one has rkP(π(T )) ≥ |T |, and
(2) for all F ∈ F and all nonempty T ⊆ S \ π−1(F ), one has rkP(F ∪ π(T )) > rkP(F ) + |T |.

When a = (1, . . . , 1), that is, when P is a matroid M on E, the augmented Bergman fan of P
coincides with the augmented Bergman fan ΣM introduced in [BHM+22]. Explicitly, the fan ΣM

is the subfan of the stellahedral fan ΣE consisting of cones σI≤F where I ⊆ E is an independent
set of M and F = {F1 ⊊ · · · ⊊ Fk ⊊ Fk+1 = E} is a chain of proper flats of M such that I ⊆ F1.

Theorem 3.8. The augmented Bergman fan ΣP of P is the subfan of Σa whose support is equal
to the support of the augmented Bergman fan ΣMπ(P) of the multisymmetric lift of P. More
precisely, ΣP is the coarsening of the fan ΣMπ(P) such that it is a subfan of Σa.

This is the key property of ΣP that we will repeatedly use. The rest of this subsection is
dedicated to the proof of the theorem.

We now review building sets on the lattice of flats of a matroid; for proofs and details we
point to [DCP95, FS05]. A building set on a loopless matroid M on ground set E is a collection G
of nonempty flats of M such that, for all nonempty flats of F of M, the natural map of lattices∏

G∈maxG≤F

[∅, G] → [∅, F ]

is an isomorphism. Here, maxG≤F denotes the maximal elements of G contained in the interval
[∅, F ] ⊆ LM. All building sets that we consider will contain the maximal flat E. A nested set
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is a subset N ⊆ G that does not contain E such that, for all pairwise incomparable subsets
{F1, . . . , Fk} ⊆ N with k ≥ 2, the join

∨k
i=1 Fi of {F1, . . . , Fk} is not in G. Nested sets form

a simplicial complex, which is realized as a simplicial fan ΣM,G in RE/ReE whose cones are
{image in RE/ReE of cone{ei : i ∈ N} ⊂ RE : N a nested set}. We call ΣM,G the Bergman fan
of M with respect to the building set G. The support of ΣM,G does not depend on the choice of
building set [FY04, Theorem 4], and ΣM,G is always a unimodular fan [FY04, Proposition 2].

We prove Theorem 3.8 by identifying the fan ΣP with a Bergman fan of a matroid closely
related to the multisymmetric lift Mπ(P). Let Mπ(P)× 0 denote the free coextension of the multi-
symmetric lift Mπ(P), which is a matroid on the ground set E ⊔ {0} with flats

{F ∪ 0 : F ⊆ E flat of Mπ(P)} ∪ {I ⊆ E : I independent in Mπ(P)}.

Note that Mπ(P) × 0 is always loopless. We now define a building set on Mπ(P) × 0 whose
Bergman fan will be the augmented Bergman fan of P.

Lemma 3.9. Let G be the set of all flats of Mπ(P) × 0 of the form F ∪ 0 for F a geometric flat of
Mπ(P), or {j} for j ∈ E not a loop of Mπ(P). Then G is a building set.

Proof. Consider a flat of Mπ(P) × 0 of the form H ∪ 0 for H a flat of Mπ(P). By Lemma 3.3, H
contains a unique maximal geometric flat Hgeo, and, for any subset S with Hgeo ⊆ S ⊆ H , we
have that rkP(S) = rkP(H

geo) + |S \ Hgeo|. This identifies the interval [∅, H ∪ 0] in LMπ(P)×0

with [∅, Hgeo ∪ 0] × [∅, H \Hgeo]. The second factor splits as [∅, H \Hgeo] =
∏

i∈H\Hgeo [∅, i],
which gives the desired decomposition for H ∪ 0. If we have a flat of Mπ(P) × 0 of the form I

for I ⊆ E independent, then the desired decomposition is automatic. □

Before computing the nested sets of G, we need a preparatory lemma.

Lemma 3.10. Let F be a geometric flat of a multisymmetric matroid Mπ(P), and let S be a
nonempty subset of F such that |S| ≥ rkMπ(P)(F ) or |S| > rkMπ(P)(F ). Then there is a geometric
flat G of Mπ(P) and a nonempty subset S′ ⊆ S ∩ G such that |S′| ≥ rkMπ(P)(G) (respectively
|S′| > rkMπ(P)(G)) and S′ spans G.

Proof. We first do the case when |S| > rkMπ(P)(F ). We induct on the rank of F ; if rkMπ(P)(F ) = 0

then the claim is obvious. Let H be the closure of S. Using Lemma 3.3, we have that

rkMπ(P)(H) = rkMπ(P)(H
geo) + |H \Hgeo| ≥ rkMπ(P)(H

geo) + |S| − |S ∩Hgeo|.

On the other hand, we have that rkMπ(P)(H) ≤ rkMπ(P)(F ) < |S|, so rkMπ(P)(H
geo) < |S∩Hgeo|.

Either Hgeo = F and we are done, or we conclude by induction.
In the case when |S| ≥ rkMπ(P)(F ), if we setH to be the closure of S then the argument above

shows that |S∩Hgeo| ≥ rkMπ(P)(H
geo), so we are done unless rkMπ(P)(H

geo) = 0 (when S∩Hgeo

may be empty). In this case, we have that rkMπ(P)(H) ≥ |S| ≥ rkMπ(P)(F ) by Lemma 3.3, so
H = F is geometric. □

Lemma 3.11. With G as in Lemma 3.9, the nested sets of G are given by chains of flats F = {F1 ⊊
· · · ⊊ Fk ⊊ Fk+1 = E} of P and a subset S of the non-loops of Mπ(P) such that:
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(1) For all T ⊆ S, rkP(π(T )) ≥ |T |, and
(2) for all F ∈ F and all nonempty T ⊆ S \ π−1(F ), rkP(F ∪ π(T )) > rkP(F ) + |T |.

Proof. Let S and F = {F1 ⊊ · · · ⊊ Fk ⊊ Fk+1 = E} be a pair satisfying the two condition of
the lemma. We check that the corresponding set is nested. The incomparable subsets are either
given by a collection T ⊆ S, or a flat F ∈ F and T ⊆ S \ π−1(F ).

The closure of T ⊆ S in Mπ(P) × 0 is T if T is independent, and it is clMπ(P)(T ) ∪ 0 if T is
dependent. In the first case, T is not in G if |T | > 1. If T is dependent, then (1) guarantees that
rkMπ(P)(T ) < rkP(π(T )), so the closure is not in G. Similarly, if we have T ⊆ S \ π−1(F ), then
the closure of π−1(F ) ∪ T cannot be geometric.

Now let N be a nested set, which consists of a subset S of the non-loops of Mπ(P) and flats
of the form π−1(F )∪ 0 for F a flat of P. As the join of two geometric flats is a geometric flat, the
flats of P such that π−1(F ) ∪ 0 lies in N must form a chain F .

Suppose there is a nonempty subset T ⊆ S with rkP(π(T )) < |T |. Let F = clP(π(T )) be
the closure of π(T ), which is a flat of P of rank less than |T | with π−1(F ) containing T . By
Lemma 3.10, there is T ′ ⊆ T and a geometric flat G such that T ′ spans G and |T ′| > rkMπ(P)(G).
Then the closure of T ′ in Mπ(P)× 0 is G ∪ 0, contradicting that N is nested.

Now suppose that there is F ∈ F and T ⊆ S \ π−1(F ) with rkP(F ∪ π(T )) ≤ rkP(F ) + |T |.
Let G = π−1(clP(π(T ) ∪ F )). Applying Lemma 3.10 to the contraction Mπ(P)/π

−1(F ), we find
a geometric flat H ⊃ π−1(F ) and T ′ ⊆ T ∩H such that T ′ ∪ π−1(F ) spans H . This contradicts
that N is nested. □

Proof of Theorem 3.8. Let G be the building set on the lattice of flats of Mπ(P) × 0 given by
Lemma 3.9. Let H be the building set on the lattice of flats of Mπ(P) × 0 given by F ∪ 0 for
F a flat of Mπ(P) and {j} for j ∈ E not a loop of Mπ(P). That this is a building set follows
from Lemma 3.9 by viewing Mπ(P) as a polymatroid with cage (1, . . . , 1). By [FY04, Theorem
4] the support of ΣMπ(P)×0,G coincides with the support of ΣMπ(P)×0,H. By [EHL, Lemma 5.14],
under the isomorphism RE → RE∪0/R obtained by sending ej to ej , the support of ΣMπ(P)×0,H
coincides with the support of ΣMπ(P). Under this isomorphism, ΣMπ(P)×0,G is identified with
ΣP by Lemma 3.11. □

3.3. Augmented Bergman classes of polymatroids. We begin by reviewing briefly balanced
fans and their Chow homology classes; for details and proofs we point to [FS97] and [AHK18,
Section 5].

A pure-dimensional simplicial rational fan Σ of dimension d is balanced if for any cone τ ∈ Σ

of codimension 1, one has
∑

σ⊋τ uσ\τ ∈ τ , where uσ\τ denotes the primitive vector of the unique
ray in σ that is not in τ . Suppose a balanced fan Σ is a subfan of a complete unimodular fan
Σ̃. Let Ad(XΣ̃) be the d-th graded piece of the Chow ring of the toric variety XΣ̃, which is
spanned by {[Zσ] : σ a d-dimensional cone in Σ̃}, where Zσ is the torus-orbit closure in XΣ̃

corresponding to σ. One then obtains a linear functional wΣ ∈ Hom(Ad(XΣ̃),Z) determined by
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wΣ([Zσ]) = 1 if σ ∈ Σ and wΣ([Zσ]) = 0 otherwise. By the Poincaré duality property of the
Chow ring A•(XΣ̃), the functional wΣ defines an element [Σ] ∈ Ad(XΣ).

Returning to polymatroids, let P be a polymatroid on E with cage a and rank r. As the
support of the augmented Bergman fan ΣP coincides with the support of a Bergman fan, [GS21,
Theorem 3.8] implies that ΣP is a balanced subfan of the polystellahedral fan with cage a.

Definition 3.12. The augmented Bergman class of P is the Chow homology class [ΣP] ∈ Ar(Xa)

obtained by considering ΣP as a balanced subfan of the polystellahedral fan with cage a.

We will repeatedly use the following relation between the classes associated to a polymatroid
and its multisymmetric lift. Recall the birational map u : XE → Xa induced by refinement of
respective fans (Proposition 2.2).

Lemma 3.13. The pullback u∗[ΣP] is equal to the augmented Bergman class [ΣMπ(P)] of the
multisymmetric lift.

Proof. The lemma follows from applying the formula [FS97, Corollary 3.7] for computing pull-
backs in terms of Minkowski weights to Proposition 2.2 and Theorem 3.8. □

We use the lemma to compute how augmented Bergman classes of polymatroids multiply as
elements in the Chow ring A•(Xa). We will need the following combinatorial notions.

Given two polymatroids P1 and P2 on E with cage a, we define the polymatroid union P1 ∨P2

to be the polymatroid with cage a whose independence polytope is (I(P1)+I(P2))∩
∏

i∈E [0, ai].
That this is indeed the independence polytope of a polymatroid follows from [Edm70, (35)].
Define the polymatroid intersection of P1 and P2 to be P1∧P2 := (P⊥

1 ∨P⊥
2 )

⊥. If we view Mπ(Pi) as
a polymatroid with cage (1, . . . , 1), by Lemma 3.2 we have that Mπ(P1)∨Mπ(P2) = Mπ(P1∨P2).
Therefore Mπ(P1) ∧Mπ(P2) = Mπ(P1 ∧ P2) by Proposition 3.6.

Theorem 3.14. Let P1 and P2 be polymatroids with cage a and ranks r1 and r2, respectively.
Then, we have

[ΣP1
] · [ΣP2

] =

[ΣP1∧P2
] if (n− r1) + (n− r2) = n− rank(P1 ∧ P2)

0 otherwise.

When a = (1, . . . , 1), the above theorem is [EHL, Theorem 1.6]. Our proof is a reduction to
this case.

Proof. Applying Lemma 3.13 and using that Mπ(P1)∧Mπ(P2) = Mπ(P1∧P2), one obtains from
[EHL, Theorem 1.6] that

u∗[ΣP1
] · u∗[ΣP2

] =

u∗[ΣP1∧P2 ] if (n− r1) + (n− r2) = n− rank(P1 ∧ P2)

0 otherwise.

The result now follows from the injectivity of u∗ (Lemma 2.12). □
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Corollary 3.15. The augmented Bergman classes of polymatroids with cage a span A•(Xa) as
an abelian group.

Proof. Recall that A•(Xa) is generated as a ring by the simplicial generators {hS}, and in par-
ticular, the monomials in the {hS} span A•(Xa) as an abelian group. By Theorem 3.14, we are
done once we show that each simplicial generator hS is an augmented Bergman class.

For each nonempty subset S ⊆ E, let HS be the polymatroid on E with cage a whose dual
polymatroid has the simplex ∆0

S as its independence polytope. By Proposition 3.6, the multi-
symmetric lift Mπ(HS) is the matroid on E whose unique circuit is π−1(S). In [EHL, Section 7.2],
it is shown that the augmented Bergman class of this matroid is equal to hπ−1(S) ∈ A1(XE). We
thus conclude that [ΣHS

] = hS by Lemma 2.12 and Lemma 3.13. □

Remark 3.16. Arguing as in [EHL, Section 7.2], one can show that the set of monomials

{hd1

F1
· · ·hdk

Fk
: ∅ ⊊ F1 ⊊ · · · ⊊ Fk ⊆ E, d1 ≤ |π−1(F1)| and di < |π−1(Fi\Fi−1)| for all 2 ≤ i ≤ k}

form a Z-basis for A•(Xa). Moreover, combining with Theorem 3.14, one can further show that
these monomials are equal to the augmented Bergman classes of polymatroids whose multi-
symmetric lifts are Γa-fixed Schubert matroids on ground set E. In particular, A•(Xa) is generated
by the augmented Bergman classes of realizable polymatroids with cage a. This basis can also
be obtained from the techniques of [DF10] and Theorem 1.6.

3.4. Augmented Chow rings of polymatroids. This subsection records the properties of the
augmented Chow ring of a polymatroid, but is not logically necessary for subsequent sections
of this paper. The non-augmented version of the following theorem appeared in [PP23, CHL+]

Theorem 3.17. Let ℓ ∈ A1(XΣP
) be an element corresponding to a strictly convex piecewise

linear function on ΣP. Then the following hold:

(1) (Poincaré duality) There is an isomorphism degP : A
r(XΣP

) → Z such that, for 0 ≤ k ≤
r/2, the pairing

Ak(XΣP
)×Ar−k(XΣP

) → Z, (x, y) 7→ degP(xy)

is unimodular.
(2) (Hard Lefschetz) For every 0 ≤ k ≤ r/2, the map

Ak(XΣP)⊗Q → Ar−k(XΣP)⊗Q, x 7→ ℓr−2kx

is an isomorphism.
(3) (Hodge-Riemann) For every 0 ≤ k ≤ r/2, the bilinear form

Ak(XΣP)⊗Q×Ak(XΣP)⊗Q → Q, (x, y) 7→ (−1)k degP(ℓ
r−2kxy)

is positive definite on the kernel of multiplication by ℓr−2k+1.

Proof. The support of ΣP is the same at the support of the Bergman fan of Mπ(P)× 0. The result
then follows from [ADH23, Theorem 1.6] and [AHK18]. For more details, see [CHL+, Proof of
Corollary 4.7]. □
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As XΣP is a subvariety of Xa, there is a restriction map A•(Xa) → A•(XΣP). We often extend
the degree map of Theorem 3.17 to the whole Chow ring degP : A

•(XΣP) → Z by declaring it to
be zero on the lower-degree graded components. The degree map satisfies the following version
of the projection formula: for any x ∈ A•(Xa), the degree of the image of x in A•(XΣP

) is equal
to the degree in A•(Xa) of x · [ΣP].

Corollary 3.18. The kernel of A•(Xa) → A•(XΣP
) is ann([ΣP]), so we may identify A•(P) with

A•(XΣP).

Proof. By Poincaré duality, an element x ∈ Ak(Xa) is in the kernel of the map to A•(XΣP) if and
only if, for all y ∈ An−r−k(Xa), deg(x · [ΣP] · y) = 0. By Poincaré duality on A•(Xa), we see that
x · [ΣP] = 0. Therefore the kernel of A•(Xa) → A•(XΣP

) is ann([ΣP]). □

Corollary 3.19. We have that

A•(P) =
Z[xF , yi : F flat, i ∈ E non-loop]

I1 + I2 + I3 + I4
, where

I1 = ⟨xF1
xF2

: F1, F2 incomparable flats⟩, I2 = ⟨
∏
i∈S

yai
i : ai > 0,

∑
ai > rkP(S)⟩,

I3 = ⟨
∏
i∈T

yai
i xF : T ∩ F = ∅, ai > 0, rkP(F ∪ T ) ≤ rkP(F ) +

∑
ai⟩, and I4 = ⟨yi −

∑
F ̸∋i

xF ⟩.

Proof. As XΣP
is a toric variety, its Chow ring is generated by classes corresponding to rays of

ΣP, with monomial relations coming from minimal non-faces of the simplicial complex given
by the faces of ΣP and a linear relation for each element of E. The rays of ΣP correspond to
non-loops of E and flats of P. For j1, j2 non-loops in E with π(j1) = π(j2), the relation ej1 − ej2
implies that the corresponding divisor classes are equal.

Every non-face of the complex of cones in ΣP contains either {F1, F2} for F1, F2 incom-
parable, {j1, . . . , jk} with rkP(π(j1, . . . , jk)) < k, or {j1, . . . , jℓ, F} for π−1(F ) disjoint from
{j1, . . . , jℓ} and rkP(F ∪ π({j1, . . . , jℓ})) ≤ rkP(F ) + ℓ. Putting this all together implies the
result. □

3.5. Augmented wonderful varieties of polymatroids. We sketch the geometric origins of the
notions introduced in this section. Recall that, given a realization L ⊆ V =

⊕
i∈E Vi of a poly-

matroid P, its augmented wonderful variety WL is the closure of L in
∏

∅⊊S⊆E P(
⊕

i∈S Vi ⊕ k).
In the proof of Proposition 2.3, we described Xa as a sequence of blow-ups from P(V ⊕k) along
centers disjoint from V ⊂ P(V ⊕ k). Hence, we have a natural inclusion of V into Xa, and the
variety WL is equivalently the closure of L ⊆ V in Xa.

Proposition 3.20. Let L ⊆
⊕

i∈E Vi be a realization of a polymatroid P with cage a. Then the
homology class [WL] is equal to [ΣP].

Proof. Because GLa =
∏

i∈E GL(Vi) is connected, its action on A•(Xa) is trivial, so for any g ∈
GLa, we have that [WL] = [g · WL] = [Wg·L]. If we choose a general g ∈ GLa, then since k
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is infinite, g · L is general with respect to the (fixed) choice of isomorphisms Vi
∼→ k

π−1(i), so
g · L ⊆ k

E is a realization of Mπ(P).
By [EHL, Corollary 5.11(3)], the homology class of the closure of g · L in XE is [ΣMπ(P)]. As

u : XE → Xa is an isomorphism over g · L, we have u∗[ΣMπ(P)] = [Wg·L]. By Lemma 3.13,
[ΣMπ(P)] = u∗[ΣP], so the result follows because u∗u∗ is the identity (Lemma 2.12). □

Remark 3.21. The closure of L in XΣP ⊂ Xa is WL, and the restriction map A•(XΣP) → A•(WL)

is an isomorphism. Indeed, the iterated blow-up description of WL implies that A•(WL) is
generated as a ring by the restriction of hE and the classes of strict transforms of exceptional di-
visors onWL, so the restriction mapA•(Xa) → A•(WL) is surjective. AsWL is the union of strict
transforms of exceptional divisors and L, the inclusion WL ↪→ Xa factors through XΣP

. There-
fore the restriction map A•(Xa) → A•(WL) factors through A•(XΣP

), so A•(XΣP
) → A•(WL)

is surjective. By [GS21, Proposition 3.5], A•(WL) satisfies Poincaré duality. A surjective map
between Poincaré duality algebras of the same dimension is an isomorphism, so we conclude
by Theorem 3.17(1).

4. THE EXCEPTIONAL ISOMORPHISM

In this section, we deduce the isomorphism
⊕

r≥0 Valr(a) ≃
⊕

r≥0Ar(Xa) of graded abelian
groups in Theorem 1.6. An intermediary object is the Grothendieck ring K(Xa) of vector bun-
dles on Xa, which admits a polyhedral description as a polytope algebra.

4.1. The polytope algebra. Let us review the polytope algebra [McM89] and its relationship to
the K-ring of a smooth projective toric variety [Mor93], following [EHL, Appendix A].

For a subset S ⊆ Rℓ, recall that 1S : Rℓ → Z denotes its indicator function. Let Σ be a
projective fan in Rℓ that is unimodular over Zℓ. It defines a projective toric variety XΣ. A
(lattice) polytope Q ⊆ Rℓ is said to be a (lattice) deformation of Σ if its normal fan ΣQ coarsens Σ.

Definition 4.1. Let I(Σ) be the subgroup of Z(Rℓ) generated by {1Q | Q a lattice deformation of Σ},
and let transl(Σ) be the subgroup of I(Σ) generated by {1Q − 1Q+u | u ∈ Zℓ}. We define the
polytope algebra to be the quotient

I(Σ) = I(Σ)/ transl(Σ).

For a lattice deformation Q, denote by [Q] its class in the polytope algebra I(Σ). The multipli-
cation in the polytope algebra is induced by Minkowski sum, that is, by [Q1] · [Q2] = [Q1 +Q2].
As mentioned in Section 2.3, a correspondence between lattice deformations of Σ and nef toric
divisors on XΣ [CLS11, Chapter 6] associates to each lattice deformation Q a nef divisor DQ.
This identifies the polytope algebra with the K-ring as follows.

Theorem 4.2. [EHL, Theorem A.10] There is an isomorphism I(Σ) ∼→ K(XΣ) defined by [Q] 7→
[OXΣ(DQ)].

This isomorphism implies that a refinement of fans induces an injection of polytope algebras.
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Proposition 4.3. Let Σ and Σ′ be projective unimodular fans such that Σ refines Σ′, so a lattice
deformation Q of Σ′ is also a lattice deformation of Σ. Then, the map I(Σ′) → I(Σ) that sends
[Q] ∈ I(Σ′) to [Q] ∈ I(Σ) is injective.

Proof. Let f : XΣ → XΣ′ be the corresponding toric birational map of the toric varieties induced
by the map of fans Σ → Σ′. The given map I(Σ′) → I(Σ), under the isomorphism of Theo-
rem 4.2, is the pullback map f∗ : K(XΣ′) → K(XΣ). Its injectivity now follows from [CLS11,
Theorem 9.2.5] and the projection formula. □

Applying Theorem 4.2 to the polystellahedral variety Xa, noting that deformations of the
polystellahedral fan Σa are exactly expansions of polymatroids on E (Proposition 2.7), we have
the following.

Corollary 4.4. The map sending an expanded polymatroid π∗(P) on E to [OXa(Dπ∗(P))] defines
an isomorphism I(Σa) ≃ K(Xa).

We will thus use these two notions, the polytope algebra and the K-ring, interchangeably
for the polystellahedral varieties. We will use Proposition 4.3 in conjunction with the follow-
ing method of “breaking up” a K-class on a polystellahedral variety into smaller pieces when
considered as a K-class on the stellahedral variety.

Proposition 4.5. Let P be a polymatroid on E of rank r ≤ n, and let P′ be the polymatroid with
cage a defined by I(P′) = I(P) ∩

∏
i∈E [0, ai]. Then, the class [I(π∗(P))] ∈ I(ΣE) is equal to a

linear combination [I(Mπ(P
′))] +

∑
k ak[I(Mk)] where the Mk are matroids on E of rank strictly

less than r.

That P′ is a polymatroid is explained above Theorem 3.14. We will need the following lemma.

Lemma 4.6. [EHL, Lemma 7.3] An intersection of the independence polytope I(P) ⊂ RE with
an integral translate of the unit cube [0, 1]E , if nonempty, is an integral translate of I(M) for
some matroid M on E.

Proof of Proposition 4.5. By tiling RE by integral translates of the unit cube [0, 1]E, we obtain a
polyhedral subdivision of I(π∗(P)), with every cell of the subdivision being integral translates
of I(M) for some matroid M on E by Lemma 4.6. By Lemma 3.2, the polytope I(Mπ(P

′)) is one
of the maximal interior cells of this subdivision. All other interior cells of the subdivision are of
the form I(M) + v for 0 ̸= v ∈ ZE

≥0, which implies that such matroids M are of rank strictly less
than r since π∗(P) has rank r. □

4.2. The exceptional isomorphism. We now use the map u : XE → Xa to construct an excep-
tional ring isomorphism ϕa : K(Xa)

∼→ A•(Xa). Its “exceptional” nature is that it differs from
the Chern character map, which is an isomorphism ch : K(X)⊗Q → A•(X)⊗Q for any smooth
projective variety X . Similar exceptional isomorphisms appeared in [BEST23, EHL, LLPP]. We
prepare by recalling the case of a = (1, . . . , 1) established in [EHL].
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Theorem 4.7. [EHL, Theorem 1.8] There is a unique ring isomorphism ϕE : K(XE) → A•(XE)

such that ϕE([OXE
(hS)]) = 1 + hS for all nonempty S ⊆ E. Moreover, for any matroid M on E of

rank r, the map ϕE satisfies
ϕE([I(M)]) = ξ0 + ξ1 + · · ·+ ξr

where ξi ∈ Ai(XE) for all i and ξr = [ΣM⊥ ].

The generalization to cage a is as follows. Recall that we have a birational toric map u : XE →
Xa induced by the fact that the fan Σa is a coarsening of ΣE.

Theorem 4.8. There exists a (necessarily unique) isomorphism ϕa : K(Xa)
∼→ A•(Xa) such that

we have a commuting diagram

K(Xa) A•(Xa)

K(XE) A•(XE).

ϕa

u∗ u∗

ϕE

Moreover, for any polymatroid P on E with cage a and rank r, the map ϕa satisfies

ϕa
(
[I(π∗(P))]

)
= ξ0 + ξ1 + · · ·+ ξr

where ξi ∈ Ai(Xa) for all i and ξr = [ΣP⊥ ].

Proof. That the two vertical maps are injections follows from Lemma 2.12 and Proposition 4.3.
With these injections, we now need to show that the map ϕE restricts to give a well-defined map
ϕa that is surjective. Recall that the Chow ring A•(Xa) is generated by the simplicial generators
hS . We claim thatK(Xa) is also generated as a ring by the line bundles [OXa(hS)]. Both the well-
definedness and the surjectivity of ϕa would then follow from Theorem 4.7 since u∗hS = hπ−1(S)

by Lemma 2.12.
For the claim, one notes that for any deformation Q of a projective unimodular fan Σ, the

inverse [Q]−1 of the class [Q] ∈ I(Σ) is a polynomial in [Q]. See for instance [EHL, Proof of
Lemma A.12]. The claim thus follows because the simplicial generators form a basis of A1(Xa).

For the second statement about ϕa
(
[I(π∗(P))]

)
, consider [I(π∗(P))] as an element of K(XE)

via the injection u∗. Proposition 4.5 and Theorem 4.7 imply that ϕE([I(π∗(P))]) = ξ0 + · · · + ξr

where ξi ∈ Ai(XE) and ξr = [ΣMπ(P)⊥ ]. Lastly, Lemma 3.13 and Proposition 3.6 imply that
[ΣMπ(P)⊥ ] = u∗[ΣP⊥ ]. □

Remark 4.9. Let χ : K(Xa) → Z be the sheaf Euler characteristic map. We sketch how one can
show, arguing similarly to [EHL, Section 8.1], that the isomorphism ϕa satisfies

χ(ξ) = degXa

(
ϕa(ξ) ·

∏
i∈E

(1 + yi)
ai

)
for all ξ ∈ K(Xa).

By conjugating the isomorphism ϕa with the map that sends the K-class of a vector bundle to
its dual and the map that is multiplication by (−1)k on Ak(Xa), one obtains an isomorphism ζa

such that ζa([OWL
]) = [WL] for any realization L ⊆ V of a polymatroid with cage a. Combining

Proposition 3.20 with Remark 3.16, one shows that A•(Xa) is spanned as an abelian group by
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{[WL] : L ⊆ V }, and hence ζa satisfies χ(ξ) = degXa

(
ζa(ξ) · (1 + hE + · · · + hnE)

)
. One then

computes that the anti-canonical divisor ofXa is hE+
∑

i∈E aiyi, and by Serre duality concludes
the desired formula.

5. PROOFS OF MAIN THEOREMS

We now use Theorem 4.8 to prove Theorem 1.6 and Theorem 1.3.

5.1. The valuative group is isomorphic to the Chow homology group.

Proof of Theorem 1.6. Since B(P⊥) = −B(P) + a and I(π∗(P)) =
(
p−1
π (B(P)) + RE

≤0

)
∩ RE

≥0,
the assignment 1B(P) 7→ 1I(π∗(P⊥)) gives a well-defined map

⊕n
r=0 Valr(a) → I(Σa), because

all the operations — negation, translation, inverse image, Minkowski sum, and restriction —
behave well with respect to indicator functions. Hence, we have a map of abelian groups⊕n

r=0 Valr(a) → K(Xa) defined by 1B(P) 7→ [I(π∗(P⊥))]. Let ψ be the composition of this
map with the map ϕa : K(Xa) → A•(Xa) in Theorem 4.8. Note that ψ is upper-triangular with
respect to the gradings on

⊕n
r=0 Valr(a) and A•(Xa).

Corollary 3.15, stating that A•(Xa) is spanned by {[ΣP] : P a polymatroid with cage a}, im-
plies surjectivity of ψ. For injectivity, suppose we have polymatroids P1, . . . ,Pk with cage a and
integers c1, . . . , ck such that

∑k
j=1 cj [ΣPj

] = 0. Then by Lemma 3.13, the validity of Theorem 1.6
when a = (1, . . . , 1), established in [EHL, Theorem 1.5], implies that

∑
j cj1B(Mπ(Pj)) = 0. Since

each Pj has cage a, and since the image under the projection pπ of the unit cube [0, 1]E is the
box

∏
i∈E [0, ai] ⊂ RE , Lemma 3.2 implies that pπ

(
B(Mπ(Pj))

)
= B(Pj). We thus conclude∑

j cj1B(Pj) = 0, proving the injectivity of ψ. Therefore ψ is an isomorphism, and so the map
that sends 1B(P) to [ΣP] is an isomorphism. □

Let ψ be the map as constructed in the proof above. Noting that polymatroid duality induces
an involution of

⊕n
r=0 Valr(a), by composing ψ with the inverse ϕ−1

a of the isomorphism in
Theorem 4.8, we conclude the following.

Corollary 5.1. The map of abelian groups
⊕n

r=0 Valr(a) → K(Xa) defined by 1B(P) 7→ [I(π∗(P))]

is an isomorphism.

5.2. The Hall–Rado formula. We first note a reinterpretation of the Hall–Rado condition.

Lemma 5.2. [McD75, Theorem 2] A collection of subsets S1, . . . , Sr of E satisfies the Hall–Rado
condition with respect to a polymatroid P = (E, rk) of rank r if and only if there exists a map
f : [r] → E with f(i) ∈ Si such that

∑r
i=1 ef(i) ∈ B(P).

Proof of Theorem 1.3. For a nonempty subset S ⊆ E, we showed in the proof of Corollary 3.15
that if HS is the polymatroid whose dual polymatroid has the simplex ∆0

S as its independence
polytope, then [ΣHS

] = hS . Applying this to Theorem 4.8, we have ϕa([I(π
∗(H⊥

S ))]) = 1 + hS .
Thus, as the degree map degXa

is zero on Ai(Xa) for i < n, Theorem 4.8 implies that

degXa

(
ϕa([I(π

∗(P⊥))][I(π∗(H⊥
S1
))] · · · [I(π∗(H⊥

Sr
))])

)
= degXa

(
[ΣP] · hS1

· · ·hSr

)
.
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Let P̃ be the polymatroid of rank n onE whose independence polytope is I(P⊥)+∆0
S1
+· · ·+∆0

Sr
.

Since multiplication in the polytope algebra is Minkowski sum and expansion commutes with
Minkowski sum, we have that [I(π∗(P̃))] equals the class [I(π∗(P⊥))][I(π∗(H⊥

S1
))] · · · [I(π∗(H⊥

Sr
))]

in the left-hand-side of the equation above. By Lemma 5.2 and the fact thatB(P⊥) = −B(P)+a,
we have that a ∈ I(P̃) if and only if S1, . . . , Sr satisfies the Hall–Rado condition with respect to
P. The theorem now follows from the following Lemma 5.3. □

Lemma 5.3. For P̃ a polymatroid of rank n on E, not necessarily with cage a, we have that

degXa
(ϕa([I(π

∗(P̃))])) =

1 if a ∈ I(P̃)

0 otherwise.

Proof. Let P̃′ be the polymatroid with cage a defined by I(P̃′) = I(P̃) ∩
∏

i∈E [0, ai]. By Proposi-
tion 4.5 and the commuting diagram in Theorem 4.8, we have that

degXa
(ϕa([I(π

∗(P̃))])) = degXE
([ΣMπ(P̃′)⊥ ]),

which is zero unless Mπ(P̃
′) has rank n. When Mπ(P̃

′) has rank n, that is, it is the boolean
matroid on E, we have that [ΣMπ(P̃′)⊥ ] is the class of a point in A0(XE) = An(XE), and hence

degXE
([ΣMπ(P̃′)⊥ ]) = 1 in this case. Now, note that Mπ(P̃

′) has rank n, or equivalently (1, . . . , 1) ∈
I(Mπ(P̃

′)), if and only if a ∈ I(P̃′) by Lemma 3.2, and by construction a ∈ I(P̃′) if and only if
a ∈ I(P̃). □

Proof of Corollary 1.4. Follows from Lemma 5.2 and Theorem 1.6. □

Remark 5.4. At least when P is realizable, Corollary 1.4 implies Theorem 1.3, as follows. For a
realization L ⊆

⊕
i∈E Vi of P, let VS =

⊕
i∈S Vi for ∅ ⊊ S ⊆ E. Collecting the projection maps

L ↪→
⊕

i∈E Vi → VS , we obtain an inclusion

L ↪→
⊕

∅⊊S⊆E

VS ,

which is a realization of a polymatroid P′ with ground set {S : ∅ ⊊ S ⊆ E}. Let {fS} denote
the set of standard basis vectors of R{S:∅⊊S⊆E}, to avoid confusion with eS =

∑
i∈S eS ∈ RE .

A collection of subsets S1, . . . , Sr of E satisfies fS1
+ · · · + fSr

∈ B(P′) if and only if it satisfies
the Hall–Rado condition (with respect to P), so applying Corollary 1.4 recovers Theorem 1.3.

Remark 5.5. One can also prove Corollary 1.4 by using Theorem 1.6 to reduce to the case of
realizable polymatroids, when Corollary 1.4 is [CCRMMn, Proposition 7.15] (and can also be
deduced from [Li18]). By Remark 3.16, in order to check that two valuative functions are equal,
it suffices to check on realizable polymatroids. The valuativity of [ΣP] implies that the volume
polynomial of A•(P) is valuative, and it is clear from the definition of valuativity that the basis
generating function of a polymatroid is valuative.
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6. POLYPERMUTOHEDRA

Let π : E → E be with cage a. The polystellahedral fan Σπ has the distinguished ray ρ∅ =

R≥0(−eE). The star of the fan Σπ at the ray ρ∅ is the polypermutohedral fan Σπ introduced in
[CHL+] as the Bergman fan of the boolean polymatroid with cage a. Explicitly, the cones of Σπ

are in bijection with pairs S ≤ F , where F = {∅ ⊊ F1 ⊊ · · · ⊊ Fk ⊊ Fk+1 = E} is a flag of
proper subsets of E and S is a subset of E containing no fiber of π. Let Xa be the associated toric
variety, which we call the polypermutohedral variety with cage a, with the embedding ι : Xa ↪→ Xa

as the toric divisor corresponding to the ray ρ∅. We set X∅ = pt.

Suppose P is a polymatroid with cage a and rank r. We note the following fact about the
pullback ι∗[ΣP] ∈ Ar−1(Xa). The augmented Bergman fan ΣP contains the ray ρ∅ if and only if
P is loopless. Hence, if P has a loop, then ι∗[ΣP] = 0. If P is loopless, the star of ΣP at the ray
ρ∅ is the Bergman fan ΣP of P introduced in [CHL+, Definition 1.6]. It is an (r − 1)-dimensional
balanced subfan of Σπ , and the resulting the Bergman class [ΣP] ∈ Ar−1(Xa) equals the pullback
ι∗[ΣP].

Using Bergman fans and Bergman classes of loopless polymatroids, we establish analogues
of the main theorems Theorem 1.6 and Theorem 1.3 in the polypermutohedral setting.

6.1. The valuative group of loopless polymatroids. Define a subgroup of Valr(a) by

Val◦r(a) = the subgroup generated by {1B(P) : P a loopless polymatroid with cage a and rank r}.

Note that Val◦0(a) = 0. We have the following analogue of Theorem 1.6.

Theorem 6.1. For any 1 ≤ r ≤ n, the map that sends a loopless polymatroid P with cage a and
rank r to the Bergman class [ΣP] induces an isomorphism Val◦r(a)

∼→ Ar−1(Xa).

We will deduce Theorem 6.1 from Theorem 1.6 by identifying the kernel of the map Valr(a)
∼→

Ar(Xa)
ι∗→ Ar−1(Xa) with the subgroup of Valr(a) generated by polymatroids with loops. An

alternate proof that does not rely on Theorem 1.6 but proceeds by developing the polypermuto-
hedral analogue of Theorem 4.8 is sketched in Remark 6.3.

Before proving Theorem 6.1, we relate the Poincaré polynomial of the polystellahedral variety
to the Poincaré polynomials of polypermutohedral varieties. For J ⊆ E, let a \ J be the vector
obtained by removing the entries corresponding to J . Recall that X∅ is a point.

Lemma 6.2. We have that
n∑

i=0

rankAi(Xa)t
i = tn rankA0(X∅) +

∑
∅⊆J⊊E

t|π
−1(J)|

n−|π−1(J)|−1∑
i=0

rankAi(Xa\J)t
i.

Proof. As the Poincaré polynomial of a smooth projective toric variety is the h-polynomial of its
fan, it is enough to show that

f(Σa)(t) = (1 + t)n +
∑

∅⊆J⊊E

t(1 + t)|π
−1(J)|f(Σa\J)(t),
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where f(Σ) is the f -polynomial of a fan Σ. We prove this bijectively. To each cone σ of some Σa\J

corresponding to a pair S ≤ F , we obtain 2|π
−1(J)| cones of Σa by adding J to every element

of the flag and then adding all 2|π
−1(J)| possible subsets of π−1(J) to S. When J ̸= E and we

add k elements to S, this gives a cone of dimension dimσ + k + 1. When J = E and we add k

elements to S, this gives a cone of dimension k. □

Proof of Theorem 6.1. For any i ∈ E, a polymatroid base polytope B(P) is always contained in
the half-space {x ∈ RE : xi ≥ 0}, and it is contained in the hyperplane {x ∈ RE : xi = 0} if and
only if P has i as a loop. Thus, the claim in the proof of [BEST23, Lemma 5.9] implies that we
have a decomposition

Valr(a) =
⊕
J⊆E

Val◦r(a \ J)

given by sending a loopless polymatroid P of rank r on E \ J to the polymatroid on E with
rk(S) = rkP(S ∩ J). We now induct on the size of E, where the base case |E| = 1 is straightfor-
ward. Comparing the decomposition of Valr(a) above with Lemma 6.2, we see that the induc-
tion hypothesis implies rankAr−1(Xa) = rankVal◦r(a).

By the construction of the permutohedral fan Σπ as the star of ray ρ∅ in Σπ , every ray of Σπ is
the image of a ray in Σπ that forms a cone with ρ∅. Hence, the pullback ι∗ : A•(Xa) → A•(Xa) is
surjective because ι∗ : A1(Xa) → A1(Xa) is. We thus have a surjection ι∗ : Ar(Xa) → Ar−1(Xa)

that satisfies ι∗[ΣP] = [ΣP] if P is loopless and ι∗[ΣP] = 0 otherwise. Therefore the composition

Val◦r(a) → Ar(Xa) → Ar−1(Xa)

is a surjection of finite free abelian groups of the same rank, and hence is an isomorphism. □

Remark 6.3. We sketch an alternate proof of Theorem 6.1. First, arguing as in [EFLS, Proof of
Theorem D], one shows an isomorphism

⊕n
r=1 Val

◦
r(a) ≃ K(Xa) when a = (1, . . . , 1), and uses

it to deduce Theorem 6.1 for the a = (1, . . . , 1) case. Now, using that polypermutohedral fans
are coarsenings of the permutohedral fan ΣE, just as polystellahedral fans are coarsenings of the
stellahedral fan, one similarly deduces the polypermutohedral analogue of Theorem 4.8. Then,
one deduces Theorem 6.1 the same way that we proved Theorem 1.6 here.

6.2. The dragon Hall–Rado formula. Let Xa be the polypermutohedral variety, with the em-
bedding ι : Xa ↪→ Xa as the toric divisor corresponding to the ray ρ∅. The following theorem
generalizes [BES23, Theorem 5.2.4].

Theorem 6.4. For a polymatroid P = (E, rkP) of rank r, a collection of subsets S1, . . . , Sr−1 is
said to satisfy the dragon Hall–Rado condition if

rk
( ⋃

j∈J

Sj

)
≥ |J |+ 1 for all nonempty J ⊆ [r − 1].

Then, if P is loopless, we have

degXa
(hS1 · · ·hSr−1 [ΣP][Xa]) =

1 if the dragon Hall–Rado condition is satisfied

0 otherwise.
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Proof. Note that, inA•(Xa), we have that x∅ = −
∑

∅⊊S⊆E(−1)|S|hS . Then, for any S1, . . . , Sr−1,

(1) degXa
(hS1

· · ·hSr−1
[ΣP][Xa]) = −

∑
∅⊊S⊆E

(−1)|S| degP(hS1
. . . hSr−1

hS).

Suppose we have sets S1, . . . , Sr−1 that satisfy the dragon Hall–Rado condition. Because P is
loopless, every term in the above sum corresponds to r sets that satisfy the Hall–Rado condition,
and so each term is (−1)|S|. Because the sum is over nonempty sets, this gives the result.

Suppose that S1, . . . , Sr−1 fails the dragon Hall–Rado condition. There is some nonempty
subset T of E such that S1, . . . , Sr−1, T fails the Hall–Rado condition; we may take T = Si for
some i. Let T1, T2 be nonempty subsets of E such that S1, . . . , Sr−1, T1 and S1, . . . , Sr−1, T2 both
fail the Hall–Rado condition. We claim that S1, . . . , Sr−1, T1 ∪ T2 fails the Hall–Rado condition.
Indeed, if there is a function f : [r] → E as in Lemma 5.2 with f(r) ∈ T1 ∪T2, then f(r) lies in T1
or T2, contradicting the assumption.

This implies that the set {T : ∅ ⊊ T ⊆ E, S1, . . . , Sr−1, T fails Hall–Rado} is nonempty and
has a unique maximal element. Furthermore, this set is downward closed: if S1, . . . , Sr−1, T fails
the Hall–Rado condition and ∅ ⊊ T ′ ⊆ T , then S1, . . . , Sr−1, T

′ fails the Hall–Rado condition.
This implies that the sum in (1) is zero. □

Remark 6.5. Theorem 6.4 can be alternatively proved along the lines of Theorem 1.3, by using
the polypermutohedral analogue of Theorem 4.8 and a reformation of the dragon Hall–Rado
condition in terms of a matching condition as in [BES23, Proposition 5.2.3].
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