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ABSTRACT. Hilbert polynomials have positivity properties under favorable conditions. We establish a
similar “K-theoretic positivity” for matroids. As an application, for a multiplicity-free subvariety of a
product of projective spaces such that the projection onto one of the factors is generically finite onto
its image, we show that a transformation of its K-polynomial is Lorentzian. This partially answers a
conjecture of Castillo, Cid-Ruiz, Mohammadi, and Montaño. As another application, we show that the
h∗-vector of a simplicially positive divisor on a matroid is a Macaulay vector, affirmatively answering a
question of Speyer for a new infinite family of matroids.

1. INTRODUCTION

For a d-dimensional lattice polytope Q, Stanley [Sta80] showed that the h∗-vector (h∗
0(Q), . . . , h∗

d(Q))

defined by ∑
k≥0

|{lattice points in kQ}|qk =
h∗
0(Q) + h∗

1(Q)q + · · ·+ h∗
d(Q)qd

(1− q)d+1

is nonnegative, and it is furthermore a Macaulay vector (Definition 4.2) if, for every k, all lattice
points in kQ are sums of lattice points in Q. Via standard results in toric geometry [CLS11, Chapter
9], this result can be formulated geometrically as “K-theoretic positivity” in the following way.

Let X be a smooth projective toric variety with fan Σ, and let χ : K(X) → Z be the sheaf Euler
characteristic map on the Grothendieck ring K(X) of vector bundles on X . For a nef line bundle
L associated to a lattice polytope Q whose normal fan coarsens Σ, toric vanishing theorems imply
that χ(X,L⊗k) = dimH0(X,L⊗k) = |{lattice points in kQ}| (for k ≥ 0), and that the graded ring
R•

L :=
⊕

k≥0 H
0(X,L⊗k) is Cohen–Macaulay. See Proposition 4.3 for a detailed review. Quotienting

R•
L by a linear system of parameters, the vector (h∗

0(L), . . . , h∗
d(L)) defined by∑

k≥0

χ(X,L⊗k)qk = Hilbert series of R•
L =

h∗
0(L) + h∗

1(L)q + · · ·+ h∗
d(L)qd

(1− q)dimQ+1

is the Hilbert function of a graded artinian ring. In particular, the vector (h∗
0(L), . . . , h∗

d(L)) is non-
negative, and it is furthermore a Macaulay vector if R•

L is generated in degree 1.

Here, we establish a similar positivity property for matroids. We begin in the more general setting
of polymatroids. For a nonnegative integer m, let [m] = {1, . . . ,m}, and let a = (a1, . . . , am) be a
sequence of nonnegative integers.

Definition 1.1. A polymatroid P on [m] with cage a is a function rkP : 2
[m] → Z≥0 satisfying

(1) (Submodularity) rkP(I1) + rkP(I2) ≥ rkP(I1 ∩ I2) + rkP(I1 ∪ I2) for any I1, I2 ⊆ [m],
(2) (Monotonicity) rkP(I1) ≤ rkP(I2) for any I1 ⊆ I2 ⊆ [m],
(3) (Normalization) rkP(∅) = 0, and
(4) (Cage) rkP(i) ≤ ai for any i ∈ [m].

We say that rkP is the rank function of the polymatroid P, and that P has rank r = rkP([m]).
1
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A matroid is a polymatroid with cage (1, . . . , 1). See [Wel76] for the fundamentals of matroid
theory. In [LLPP24], analogues of K-rings for matroids were introduced, modeled after the following
geometry of realizable matroids. Let k be a field. A realization of a matroid M on a finite set E is a
linear subspace L ⊆ k

E such that rkM(S) = dim
(
image of L under the projection kE → k

S
)

for all
S ⊆ E. A realization L ⊆ k

E defines a smooth projective irreducible variety WL called the augmented
wonderful variety [BHM+22], defined by

WL = the closure of the image of L in
∏

∅⊊S⊆E

P
(
k
S ⊕ k

)
,

where the map L → P(kS ⊕ k) is the composition of the projection L → k
S with the projective

completion k
S ↪→ P(kS ⊕ k). For ∅ ⊊ S ⊆ E, let LS be the line bundle on WL obtained by pulling

back O(1) from P(kS⊕k). These line bundles {LS}∅⊊S⊆E generate the Picard group of WL, and their
K-classes {[LS ]}∅⊊S⊆E generate the Grothendieck ring of vector bundles K(WL) as a ring [LLPP24,
Theorem 5.2].

For an arbitrary (not necessarily realizable) matroid M, the authors of [LLPP24] introduced the
augmented K-ring K(M) of M. The following are its key properties:

(i) It is equipped with an “Euler characteristic map” χ(M,−) : K(M) → Z.
(ii) Each nonempty subset S ⊆ E defines an element [LS ] ∈ K(M) such that {[LS ]}∅⊊S⊆E

generates K(M) as a ring. A line bundle in K(M) is a Laurent monomial in the [LS ].
(iii) When M has a realization L ⊆ k

E , identifying the [LS ] in K(M) and K(WL) gives an isomor-
phism K(M) ≃ K(WL) such that χ(M,−) = χ(WL,−).

See Section 2.2 for the definition of K(M) and further properties of of K(M) and χ(M,−).

To state our main theorem about K(M), we prepare with the following constructions:

• For a matroid M on a finite set E and subsets S1, . . . , Sm ⊆ E, the function rk : 2[m] → Z de-
fined by rk(I) = rkM(

⋃
i∈I Si) is a polymatroid, which we call the restriction polymatroid of M

to S1, . . . , Sm. Every polymatroid is a restriction polymatroid of a matroid; see Definition 2.3.
• For a polymatroid P with cage (a1, . . . , am), define a subvariety YP ⊆ Pa1 × · · · × Pam as

follows. For i ∈ [m] and an integer 0 ≤ j ≤ ai, let Li(j) be the j-dimensional linear subvariety
{[x0, . . . , xai ] ∈ Pai : xk = 0 if k > j} of Pai . We define

YP =
⋃

(b1,...,bm)∈B(P)

L1(b1)× · · · × Lm(bm)

where the union runs over all lattice points (b1, . . . , bm) ∈ Zm in the base polytope of P defined
as B(P) = {(x1, . . . , xm) ∈ Rm

≥0 :
∑

i∈[m] xi = rkP([m]) and
∑

i∈I xi ≤ rkP(I) for all I ⊆ [m]}.
Note that the variety YP and the restrictions to YP of the line bundles O(k1, . . . , km) on Pa1 ×
· · · × Pam does not depend on the choice of the cage a.

Theorem 1.2. For a polymatroid P and a matroid M on E with subsets S1, . . . , Sm ⊆ E such that the
restriction polymatroid is P, one has

χ(M,L⊗k1

S1
⊗ · · · ⊗ L⊗km

Sm
) = χ(YP,O(k1, . . . , km)) for all k1, . . . , km.
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This theorem originates from the following geometry. Let X ⊆ Pa1 × · · · × Pam be an irreducible
multiplicity-free subvariety (i.e., the coefficients of its multidegree are 0 or 1). The function rkP : 2

[m] →
Z defined by rkP(I) = dim

(
image of X under the projection to

∏
i∈I Pai

)
is a polymatroid P by

[BH20, Corollary 4.7]. Brion [Bri03] showed that any such X has a flat degeneration to YP.
For example, if a matroid M has a realization L ⊆ k

E , and if the dimension of the projection of WL

to P(kS1 ⊕ k)× · · · × P(kSm ⊕ k) is equal to the dimension of L, then the projection is an irreducible
multiplicity-free subvariety X whose polymatroid P is the restriction polymatroid of M to S1, . . . , Sm.
Thus, if furthermore the projection is an isomorphism WL ≃ X , Brion’s flat degeneration implies
Theorem 1.2 in this special case. We prove Theorem 1.2 in general by using properties of polymatroid
valuativity [DF10, EL24] (Definition 2.1) and the fact that multiplicity-free subvarieties have rational
singularities in characteristic 0 [BF22, Theorem 4.3].

On the other hand, combining Brion’s flat degeneration with Theorem 1.2 implies the following.

Corollary 1.3. Let P, M, and (S1, . . . , Sm) be as above. If X ⊆ Pa1 × · · · × Pam is any irreducible
multiplicity-free subvariety with rkP(I) = dim

(
Image(X →

∏
i∈I Pai)

)
for all I ⊆ [m], then one has

χ(M,L⊗k1

S1
⊗ · · · ⊗ L⊗km

Sm
) = χ(X,O(k1, . . . , km))

for all line bundles O(k1, . . . , km) on Pa1 × · · · × Pam .

As an application, we use Corollary 1.3 to study Snapper polynomials of multiplicity-free sub-
varieties via matroid theory. For a projective variety X and line bundles L1, . . . ,Lm on X , the
function assigning to each tuple of integers (t1, . . . , tm) the Euler characteristic χ(X,L⊗t1

1 ⊗· · ·⊗L⊗tm
m )

is a polynomial [Sna59], which is often called the Snapper polynomial. This property also holds
for χ(M,−), allowing us to define Snapper polynomials for matroids, for which we establish the
following.

For a sequence k = (k1, . . . , km) of nonnegative integers, set |k| =
∑

i ki, and denote tk =

tk1
1 · · · tkm

m and t[k] =
(
t1+k1

k1

)
· · ·
(
tm+km

km

)
, where

(
t
k

)
= t(t−1)···(t−k+1)

k! .

Theorem 1.4. For a matroid M on E and subsets S1, . . . , Sm of E whose restriction polymatroid has
rank r, define a polynomial H(t1, . . . , tm) by

H(t1, . . . , tm) =
∑
k

akt
k such that χ

(
M,L⊗t1

S1
⊗ · · · ⊗ L⊗tm

Sm

)
=
∑
k

(−1)r−|k|akt
[k].

Suppose at least one of S1, . . . , Sm satisfies rkM(Si) = r. Then, the homogenization H̃(t, t0) =∑
k akt

kt
r−|k|
0 by an auxiliary variable t0 is denormalized Lorentzian in the sense of [BH20].

Theorem 1.4 positively answers [CCRMM, Conjecture 7.18 and Question 7.21] about the “twisted
K-polynomial” of a multiplicity-free subvariety X ⊆ Pa1 ×· · ·×Pam when, for some i, the dimension
of the image of the projection X → Pai is equal to the dimension of X . In Section 3.2, we explain
how [CCRMM, Question 7.21] is equivalent to asking whether Theorem 1.4 remains true without
the condition “at least one of S1, . . . , Sm satisfies rkM(Si) = r,” which was needed in our proof. See
Remark 3.4 for further discussion, and see Remark 3.5 for another special case of this question.

As another application, we deduce properties of matroids by using geometric properties of YP,
namely, that YP is Cohen–Macaulay [CCRC23] and is a compatibly Frobenius split subvariety of
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the product of projective spaces [BK05]. To connect to previous questions in matroid theory, it is
convenient to phrase our statements in terms of the non-augmented K-ring K(M) of a loopless matroid
M on E (see Section 2.4), for which an analogue of Theorem 1.2 holds (Corollary 2.16). Like K(M), the
ring K(M) is equipped with a map χ(M,−) : K(M) → Z, and each nonempty subset S ⊆ E defines
an element [LS ] ∈ K(M) such that {[LS ]} generates K(M). When M has a realization L ⊆ k

E , these
objects again coincide with those of the (non-augmented) wonderful variety WL of [DCP95].

Theorem 1.5. For a loopless matroid M and a line bundle L in K(M) (i.e., a Laurent monomial in the
LS), define the h∗-vector (h∗

0(M,L), . . . , h∗
d(M,L)) to be the coefficients of the polynomial

h∗(M,L; q) =
d∑

k=0

h∗
k(M,L)qk such that

∑
k≥0

χ(M,L⊗k)qk =
h∗(M,L; q)
(1− q)d+1

where d = degree of the polynomial χ(M,L⊗t). If L is simplicially positive (i.e., L =
⊗

S L⊗kS

S for
some nonnegative integers kS), then the h∗-vector (h∗

0(M,L), . . . , h∗
d(M,L)) is a Macaulay vector and

is in particular nonnegative.

One verifies that the h∗-vector is equivalently defined by the equation

χ(M,L⊗q) =

d∑
k=0

h∗
k(M,L)

(
q + d− k

d

)
,

from which one sees that (−1)dχ(M,L−1) = h∗
d(M,L). We apply Theorem 1.5 in this form to answer

affirmatively a question of Speyer [Spe09] for new infinite families of matroids using a result of Fink,
Shaw, and Speyer; see Section 5.1.

When M has a realization L ⊆ k
E , the simplicially positive line bundles form a full dimensional

subcone of the nef cone of WL, but it is usually strictly smaller than the nef cone. In Section 4.3, we
conjecture that the conclusion of Theorem 1.5 holds for a larger family of line bundles. This would
answer Speyer’s question affirmatively for all matroids. We also establish and conjecture some other
properties of h∗-vectors of matroids.

Organization. In Section 2, we recall properties of polymatroids and (augmented) K-rings of ma-
troids, and we use them to prove Theorem 1.2. In Section 3, we prove Theorem 1.4 and discuss its
consequences. In Section 4, we prove Theorem 1.5. In Section 5, we discuss some applications and
some further properties.

Acknowledgements. We thank Andrew Berget, Dan Corey, Alex Fink, June Huh, Nick Proudfoot,
Kris Shaw, and David Speyer for helpful conversations. We also thank BIRS for their hospitality in
hosting the workshop “Algebraic Aspects of Matroid Theory.” We thank the referee for a careful
reading and helpful comments. The first author is supported by NSF DMS-2246518. The second
author is supported by an ARCS fellowship.

2. THE COMPARISON THEOREM

We give background on polymatroids in Section 2.1, and we collect properties of the augmented
K-ring of a matroid in Section 2.2. Then, in Section 2.3, we prove Theorem 1.2 comparing the Euler
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characteristic maps χ on K(M) and YP. Analogues for the non-augmented K-ring of a matroid are
given in Section 2.4.

2.1. Polymatroids. We review realizability, valuativity, and lifts for polymatroids. We begin with
realizations. Let P be a polymatroid with cage (a1, . . . , am). A realization of P over k is a subspace
L ⊆ V1 ⊕ · · · ⊕ Vm, where Vi is a vector space over k of dimension ai, such that

rkP (S) = dim

(
the image of L under the projection to

⊕
i∈S

Vi

)
for all S ⊆ [m]. When such an L exists, we say P is realizable over k. When P is a matroid (i.e.,
a polymatroid of cage (1, . . . , 1)), this specializes to realizability of matroids as discussed in the
introduction.

We will obtain Theorem 1.2 by reducing to the case of realizable matroids. This reduction step will
be facilitated by the notion of valuativity [AFR10, DF10].

Definition 2.1. For a polymatroid P on [m], let 1P : Rm → Z be the indicator function of its base
polytope B(P). The valuative group of polymatroids with cage a = (a1, . . . , am), denoted Vala, is the
subgroup of Z(Rm) generated by 1P for P a polymatroid on [m] with cage a.

A function from the set of polymatroids with cage a to an abelian group is said to be valuative if it
factors through Vala.

By [DF10] or [EL24, Remark 3.16], Vala is generated by polymatroids which are realizable over C.
In particular, this gives the following useful result.

Corollary 2.2. Let f1 and f2 be functions from the set of polymatroids with cage a to an abelian group
G. If f1 and f2 are valuative, and if f1(P) = f2(P) for any polymatroid P with cage a that is realizable
over C, then f1(P) = f2(P) for all polymatroids P with cage a.

Lastly, we recall multisymmetric lifts of polymatroids, a construction which has appeared many
times in the literature [Hel72, McD75, Lov77, Ngu86, BCF23] with many different names. We use the
terminology and description given in [CHL+, EL24].

Definition 2.3. Let P be a polymatroid with cage a = (a1, . . . , am) on [m]. The multisymmetric lift of
P is a matroid M on a ground set E of size a1 + · · · + am which is equipped with a distinguished
partition E = S1 ⊔ · · · ⊔ Sm into parts of size a1, . . . , am with the following characterizing property:
rkM is preserved by the action of the product of symmetric groups SS1

× · · · ×SSm
, and

rkP(I) = rkM (∪i∈ISi) for all I ⊆ [m].

Note that the multisymmetric lift depends on the choice of cage a, and that the restriction polyma-
troid of the multisymmetric lift M to the subsets S1, . . . , Sm appearing in the distinguished partition
is the polymatroid P.

The construction of the multisymmetric lift respects realizability. When P is realized by L ⊆⊕
i∈[m] Vi over an infinite field k, the multisymmetric lift of P can be realized by generically choosing

a basis for each Vi to identify
⊕

i∈[m] Vi with ka1+···+am .
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2.2. Augmented K-rings of matroids. Let M be a matroid on a ground set E.

Definition 2.4. The augmented K-ring K(M) of M is the Grothendieck ring of vector bundles on the
toric variety XΣM of the augmented Bergman fan ΣM of M.

The definition of the augmented Bergman fan can be found in [BHM+22], but it won’t be needed.
In [LLPP24], some some additional structures on K(M) are constructed. The ring K(M) is equipped
with an “Euler characteristic map” χ(M,−) : K(M) → Z. Additionally, each nonempty subset S of E
defines an element [LS ] ∈ K(M). A line bundle in K(M) is a Laurent monomial in the [LS ]. We record
the properties of K(M) that we will need here.

Proposition 2.5. The augmented K-ring K(M) of M satisfies the following properties.

(i) The elements {[LS ]}∅⊊S⊆E generate K(M) as a ring.
(ii) When M has a realization L ⊆ k

E , identifying the [LS ] in K(M) and K(WL) gives an isomor-
phism K(M) ≃ K(WL) such that χ(M,−) = χ(WL,−).

Proof. These statements follow from [LLPP24, Theorem 5.2 and Proposition 5.6]. For (i), the original
statement in [LLPP24] is in terms of the LF for F a nonempty flat of M, but we set LS = LclM(S)

where clM denotes the closure operator of the matroid M. □

We caution that the map χ(M,−) is generally different from the sheaf Euler characteristic map
χ(XΣM

,−) of the toric variety XΣM
. Next, we review a formula for χ(M,−) given in [LLPP24], stated

in terms of the following definition.

Definition 2.6. We say that a sequence (S1, . . . , Sm) of nonempty subsets of E satisfies the Hall–Rado
condition (with respect to M) if

rkM

(⋃
i∈I

Si

)
≥ |I| for every I ⊆ [m].

Moreover, we say that k = (k1, . . . , km) ∈ Zm
≥0 satisfies the Hall–Rado condition if the sequence

(Sk1
1 , . . . , Skm

m ), where Ski
i denotes Si repeated ki times, satisfies the condition, or, equivalently, if

rkM

(⋃
i∈I

Si

)
≥
∑
i∈I

ki for every I ⊆ [m].

If P denotes the restriction polymatroid of M to S1, . . . , Sm, note then that k satisfies the Hall–Rado
condition if and only if it is a lattice point in the independence polytope of P, defined as

I(P) = {(x1, . . . , xm) ∈ Rm
≥0 :

∑
i∈I

xi ≤ rkP(I) for all I ⊆ [m]}.

The independence polytope I(P) relates to the base polytope B(P) by

I(P) = {x ∈ Rm
≥0 : y − x ∈ Rm

≥0 for some y ∈ B(P)},

or, equivalently, I(P) = (B(P) + Rm
≤0) ∩ Rm

≥0, where the + denotes Minkowski sum.
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Notation 2.7. To state the formula for χ(M,−), it is convenient to introduce the following notation.
For a nonnegative integer k, let t(k) denote the polynomial

(
t+k−1

d

)
= t(t+1)···(t+k−1)

k! . Recall the
previously introduced notation t[k] =

(
t+k
k

)
. The binomial identity

(
t+k
k

)
=
(
t+k−1
k−1

)
+
(
t+k−1

k

)
relates

these two notations by t[k] − t[k−1] = t(k), or, equivalently, by t(k) + t(k−1) + · · ·+ t(1) + 1 = t[k].

Proposition 2.8. [LLPP24, Corollary 7.5] For a sequence k = (kS)S∈S of nonnegative integers in-
dexed by a collection S of nonempty subsets of E, denote t(k) =

∏
t
(kS)
S . We have that

χ(M,
⊗
S

L⊗tS
S ) =

∑
k satisfies Hall–Rado

t(k).

In particular, if L is a line bundle which is the tensor product of line bundles of the form LSi

for some subsets S1, . . . , Sk of the ground set of M, then χ(M,L) only depends on the restriction
polymatroid of S1, . . . , Sk. We record this observation as the following corollary, which will allow us
to reduce the proof of Theorem 1.2 to the case when M is the multisymmetric lift of P.

Corollary 2.9. Let M1 and M2 be matroids, let S1, . . . , Sm be subsets of the ground set of M1, and
let T1, . . . , Tm be subsets of the ground set of M2. Suppose that the restriction polymatroid of M1 to
S1, . . . , Sm is the same as the restriction polymatroid of M2 to T1, . . . , Tm. Then, for any k1, . . . , km,

χ(M1,L⊗k1

S1
⊗ · · · ⊗ L⊗km

Sm
) = χ(M2,L⊗k1

T1
⊗ · · · ⊗ L⊗km

Tm
).

Another crucial feature of the Snapper polynomials of matroids is their valuativity, which will
allow us to reduce Theorem 1.2 to the case of realizable polymatroids.

Proposition 2.10. Let a = (a1, . . . , am) and k = (k1, . . . , km) be sequence of integers, with ai ≥ 0. For
a polymatroid P with cage a, let M be its multisymmetric lift with distinguished partition S1⊔· · ·⊔Sm

of its ground set. Then the function which assigns to a polymatroid P with cage a the quantity
χ(M,L⊗k1

S1
⊗ · · · ⊗ L⊗km

Sm
) is valuative.

Proof. By [EL24, Lemma 3.2], the function that sends a polymatroid of cage a to the class of its
multisymmetric lift in the valuative group of matroids is valuative. By [LLPP24, Lemma 6.4], for
fixed Si and kj , the function that sends a matroid M to χ(M,L⊗k1

S1
⊗· · ·⊗L⊗km

Sm
) is a valuative invariant

of matroids. Putting these together implies the result. □

2.3. Multiplicity-free subvarieties and the proof of Theorem 1.2. An integral subvariety X of a
product of projective spaces Pa1 × · · · ×Pam is said to be multiplicity-free if the intersection number of
any monomial in the hyperplane classes of the factors with the fundamental class of X is either 0 or
1. By [BH20, Corollary 4.7], the function rkP : 2

[m] → Z defined by

rkP(I) = dim
(
image of X under the projection to

∏
i∈I

Pai
)

is a polymatroid P, which we refer to as the polymatroid of X . The K-class of the structure sheaf
[OX ] ∈ K(Pa1 × · · · × Pam) is then determined by the following theorem.

Proposition 2.11. [Bri03] There is a flat degeneration of X to YP inside of Pa1×· · ·×Pam . In particular,
[OX ] = [OYP ].
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The second statement follows from the first because the pairing

K(Pa1 × · · · × Pam)×K(Pa1 × · · · × Pam) → Z given by (a, b) 7→ χ(Pa1 × · · · × Pam , ab)

is nondegenerate, and Euler characteristics are locally constant in proper flat families. This implies
that the class of a subvariety in K(Pa1 × · · · × Pam) is locally constant in proper flat families.

We now state a formula for [OYP
] ∈ K(Pa1 × · · · × Pam). This formula originates in the work

of Knutson, who studied the more general problem of calculating the K-class of a reduced union
of Schubert varieties inside a homogeneous space. He showed that one can compute the K-class
in terms of Möbius inversion on the poset of Schubert varieties. The special case of products of
projective spaces was also proven in [CCRMM, Theorem 7.12]. For each tuple b = (b1, . . . , bm) with
bi ≤ ai, let Yb be a Pb1 × · · · × Pbm embedded linearly into Pa1 × · · · × Pam ; the class [OYb ] does not
depend on the choice of an embedding. The classes {[OYb ]} form a basis for K(Pa1 × · · · × Pam).

Proposition 2.12. [Knu] Write [OYP
] =

∑
b cb[OYb ]. If

∑
bi > rk(P), then cb = 0. If

∑
bi = rk(P),

then

cb =

1 if b ∈ B(P)

0 otherwise.

If
∑

bi < rk(P), then cb = 1−
∑

b′>b cb′ .

Proposition 2.13. The function which assigns a polymatroid P with cage (a1, . . . , am) to [OYP
] ∈

K(Pa1 × · · · × Pam) is valuative.

Proof. We show that, for every b = (b1, . . . , bm) with bi ≤ ai, the function assigns a polymatroid
P with cage (a1, . . . , am) to cb is valuative. This is clear if

∑
bi ≥ rk(P). The recursive formula

cb = −
∑

b′>b cb′ then implies that it holds in general. □

We first prove Theorem 1.2 in the case when P is realizable over C.

Proposition 2.14. Let V1, . . . , Vm be vector spaces over C of dimension a1, . . . , am, and let L ⊆ V1 ⊕
· · · ⊕ Vm be a realization of a polymatroid P with cage (a1, . . . , am). Let M be the multisymmetric lift
of P, whose ground set is equipped with the distinguished partition S1 ⊔ · · · ⊔ Sm. Let WL be the
augmented wonderful variety of a realization of M. Then, for any (k1, . . . , km),

χ(M,L⊗k1

S1
⊗ · · · ⊗ L⊗km

Sm
) = χ(YP,O(k1, . . . , km)).

Proof. Let Y be the image of WL under the projection p to Pa1 × · · · × Pam , or, equivalently, Y is the
closure of L inside P(V1 ⊕ k) × · · · × P(Vm ⊕ k). As WL is also a compactification of L, the map
WL → Y is birational. By [BF22, Theorem 4.3], which is based on [Bri01, Theorem 5], Y has rational
singularities. As WL is smooth, we have that Rp∗OWL

= OY . By the projection formula, we have
that

Rp∗(L⊗k1

S1
⊗ · · · ⊗ L⊗km

Sm
) = O(k1, . . . , km).

Because χ(M,−) agrees with χ(WL,−), we have that

χ(M,L⊗k1

S1
⊗ · · · ⊗ L⊗km

Sm
) = χ(WL,L⊗k1

S1
⊗ · · · ⊗ L⊗km

Sm
) = χ(Y,O(k1, . . . , km)).



K-THEORETIC POSITIVITY FOR MATROIDS 9

To conclude, we note that Y is an irreducible multiplicity-free subvariety by [Li18] or [EL24, Corol-
lary 1.4]. By Proposition 2.11, [OY ] = [OYP

] ∈ K(Pa1 × · · · × Pam) as Y is multiplicity-free, which
implies the result. □

Proof of Theorem 1.2. Fix (k1, . . . , km). We may assume M is the multisymmetric lift of P by Corol-
lary 2.9. When P is realizable over C, the statement follows from Proposition 2.14. By Proposi-
tion 2.10, the function that assigns a polymatroid P with cage (a1, . . . , am) to χ(M,L⊗k1

S1
⊗ · · · ⊗

L⊗km

Sm
) is valuative, and by Proposition 2.13, the same is true with the function that assigns P to

χ(YP,O(k1, . . . , km)). Corollary 2.2 thus implies the desired equality. □

2.4. Non-augmented K-rings. We now discuss the analogue of Theorem 1.2 for (non-augmented)
K-rings of matroid. This section is not used until Section 4.3. Let M be a loopless matroid. The
(non-augmented) Bergman fan ΣM of a matroid M is the star fan of a particular ray in the augmented
Bergman fan ΣM; see [EHL23, Definition 5.12] for details. In other words, its toric variety XΣM

is a
toric divisor on XΣM

. We define the (non-augmented) K-ring of M, denoted K(M), to be the K-ring of
XΣM

. As XΣM
is a divisor on XΣM , there is a restriction map K(M) → K(M). The restriction of [LS ]

is denoted [LS ].

The facts about the augmented K-ring (Proposition 2.5) have analogues for the non-augmented
K-ring K(M) [LLPP24]. More precisely, we have:

(i) K(M) is equipped with an “Euler characteristic map” χ(M,−) : K(M) → Z.
(ii) K(M) is generated as a ring by the restrictions [LS ] of the classes [LS ].

(iii) When M has a realization L ⊆ k
E , let WL be the wonderful variety [DCP95] defined as

WL = the closure of the image of PL in
∏

∅⊊S⊆E

P(kS)

where PL → P(kS) is the projectivization of the projection L → k
S , and let LS be the pullback

of O(1) from P(kS). Then, identifying the [LS ] in K(M) and K(WL) gives an isomorphism
K(M) ≃ K(WL) such that χ(M,−) = χ(WL,−).

We also have a formula for the Euler characteristic map χ(M,−) : K(M) → Z analogous to Propo-
sition 2.8. We say that a sequence (S1, . . . , Sm) of nonempty subsets of E satisfies the dragon Hall–Rado
condition (with respect to M) if

rkM

(⋃
i∈I

Si

)
≥ 1 + |I| for every ∅ ≠ I ⊆ [m].

Moreover, we say that k = (k1, . . . , km) ∈ Zm
≥0 satisfies the dragon Hall–Rado condition if the sequence

(Sk1
1 , . . . , Skm

m ), where Ski
i denotes Si repeated ki times, satisfies the condition, or, equivalently if

rkM

(⋃
i∈I

Si

)
≥ 1 +

∑
i∈I

ki for every ∅ ≠ I ⊆ [m].

This defines a polymatroid on {S : ∅ ⊊ S ⊆ E} whose bases are the k satisfying the dragon-Hall–
Rado condition with

∑
kS = rk(M)−1. We call this the dragon-Hall–Rado polymatroid. The significance

of the dragon-Hall–Rado condition for us comes from the following formula for χ(M,−).
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Proposition 2.15. [LLPP24, Collary 7.5] We have that

χ(M,
⊗
S

L⊗tS
S ) =

∑
k satisfies dragon-Hall–Rado

t(k).

By comparing this with Proposition 2.8 and using Theorem 1.2, we obtain the following non-
augmented analogue of the theorem.

Corollary 2.16. Let M be a matroid with subsets S1, . . . , Sm of the ground set, and let P be the
restriction of the dragon-Hall–Rado polymatroid to S1, . . . , Sm. Then, for any line bundle L which is
a tensor product of the LSi

, we have χ(M,L) = χ(YP,L).

3. LORENTZIAN PROPERTY

We briefly summarize Lorentzian polynomials and then prove Theorem 1.4. Then, we explain the
application to K-polynomials of multiplicity-free subvarieties.

3.1. Lorentzian Snapper polynomials. Lorentzian polynomials were introduced in [BH20] as a gen-
eralization of stable polynomials in optimization theory and volume polynomials in algebraic geom-
etry.

Definition 3.1. A homogeneous polynomial f =
∑

k ckt
k ∈ R[t1, . . . , tm] of degree d with nonnega-

tive coefficients is Lorentzian if

(1) the support {k ∈ Zm
≥0 : ck > 0} of f equals B(P) ∩ Zm for some polymatroid P on [m], and

(2) any (d−2)-th partial derivative of f is a quadratic form with at most one positive eigenvalue.

The normalization N(f) of a polynomial f ∈ R[t1, . . . , tm] is the polynomial obtained by replacing
each term ckt

k in f with ck
tk

k! where k! = k1! · · · km!. We say that f is denormalized Lorentzian if N(f)

is Lorentzian.

For an irreducible complete variety, the volume polynomial of a collection of nef divisors is
Lorentzian [BH20, Theorem 4.6]. We now prove Theorem 1.4, which states that the Snapper polyno-
mial of the line bundles {LS} on a matroid is also Lorentzian after a minor transformation.

As before, for k ∈ Z≥0, denote t(k) =
(
t+k−1

k

)
and t[k] =

(
t+k
k

)
, and for k ∈ Zm

≥0, denote t(k) =

t
(k1)
1 · · · t(km)

m and t[k] = t
[km]
1 · · · t[km]

m . Let us recall the notation in Theorem 1.4 that H̃(t, t0) is the
homogenization of the polynomial H(t) defined by

H(t1, . . . , tm) =
∑
k

akt
k such that χ

(
M,L⊗t1

S1
⊗ · · · ⊗ L⊗tm

Sm

)
=
∑
k

(−1)r−|k|akt
[k]

for a matroid M on E and S1, . . . , Sm ⊆ E whose restriction polymatroid has rank r.

Proof of Theorem 1.4. By Corollary 2.9 and using the multisymmetric lift, we may assume that the
matroid M on E has rank r also. When one of S1, . . . , Sm has full rank, say Sm, the restriction
polymatroid of M to S1, . . . , Sm is the same as if Sm = E. So, we may set Sm = E. The polynomial
of interest is

H(t, tE) =
∑
k,ℓ

ak,ℓt
ktℓE such that χ

(
M,L⊗t1

S1
⊗ · · · ⊗ L⊗tm−1

Sm−1
⊗ L⊗tE

E

)
=
∑
k,ℓ

(−1)r−|k|−ℓak,ℓt
[k]t

[ℓ]
E
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where the summation is over (k, ℓ) ∈ Zm−1
≥0 × Z≥0. Let H̃(t, tE , t0) be its homogenization. We need

show that H̃ is denormalized Lorentzian.
For (k, ℓ) ∈ Zm−1

≥0 × Z≥0 with |k| ≤ r, note that (k, ℓ) satisfies the Hall–Rado condition, i.e.,
(k, ℓ) ∈ I(P), if and only if (k, ℓ′) ∈ I(P) for all ℓ′ such that |k| + ℓ′ ≤ r. Thus, from Proposition 2.8,
we compute

χ
(
M,L⊗t1

S1
⊗ · · · ⊗ L⊗tm−1

Sm−1
⊗ L⊗tE

E

)
=

∑
(k,ℓ)∈I(P)

t(k)t
(ℓ)
E

=
∑

(k,ℓ)∈B(P)

t(k)t[ℓ]E =
∑

(k,ℓ)∈B(P)

t
[ℓ]
E

m−1∏
i=1

(
t
[ki]
i − t

[ki−1]
i

)
,

where we used the binomial identity t[k] = t(k) + t(k−1) + · · · + t(1) + 1 for the second equality, and
the binomial identity t(k) = t[k] − t[k−1] for the third (observed in Notation 2.7). That is, we find

H(t, tE) =
∑

(k,ℓ)∈B(P)

tℓE

m−1∏
i=1

(
tki
i + tki−1

i

)
,

so that H̃(t, tE , t0) =
∑

(k,ℓ)∈B(P)

tℓE

m−1∏
i=1

(
tki
i + t0t

ki−1
i

)
.

(1)

Normalizing, we thus have

N(H̃)(t, tE , t0) =
∑

(k,ℓ)∈B(P)

tℓE
ℓ!

·

(
m−1∏
i=1

(
1 + t0

∂

∂ti

))(tk

k!

)
.

The exponential generating function over the lattice points of the base polytope of a polymatroid
is Lorentzian [BH20, Theorem 3.10], and the operator (1 + t0

∂
∂ti

) preserves Lorentzian polynomials
[BH20, Proposition 2.7]. Hence, N(H̃) is Lorentzian, i.e., H̃ is denormalized Lorentzian. □

Remark 3.2. In general, the Snapper polynomial of very ample divisors on an irreducible projective
variety may not similarly give a denormalized Lorentzian polynomial. For example, on P1 × P1,
consider the line bundles L1 = O(2, 2) and L2 = O(1, 1). We have that

χ(X,L⊗t1
1 ⊗ L⊗t2

2 ) = (2t1 + t2 + 1)2 = 8t
[2]
1 + 4t

[1]
1 t

[1]
2 + 2t

[2]
2 − 12t

[1]
1 − 5t

[1]
2 + 4.

The normalization of the homogenization of this polynomial (after removing the alternating signs
and turning t[k] into tk) is

4t21 + 4t1t2 + t22 + 12t0t1 + 5t0t2 + 2t20,

whose Hessian matrix has signature (+,+,−). See [FH, Section 5.2] for a related example.

3.2. Applications. We now explain applications of Theorem 1.4 to K-polynomials. The connection
stems from the following formal consequences of some binomial identities, whose proofs we omit.

For a polynomial χ(t1, . . . , tm) ∈ Q[t1, . . . , tm] where each monomial has degree at most (a1, . . . , am),
we have ∑

k≥0

χ(k1, . . . , km)tk =
K(χ, t)

(1− t1)a1 · · · (1− tk)am
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for some polynomial K(χ; t) of degree at most (a1, . . . , am). The polynomial K(χ; 1− t1, . . . , 1− tm),
denoted K(χ;1− t), is equivalently described as

K(χ,1− t) =
∑
k

ca−kt
k where χ(t1, . . . , tm) =

∑
k

ckt
[k].

Now, suppose a subvariety X ⊆ Pa1 ×· · ·×Pam has the property that χ(X,OX(k)) = h0(X,O(k))

for all k ∈ Zm
≥0. For instance, an irreducible multiplicity-free subvariety satisfies this property [Bri03].

In this case, with χ(t1, . . . , tm) as the polynomial χ(X,O(t1, . . . , tm)), the polynomial K(χ,1 − t) =∑
k ca−kt

k encodes the K-class [OX ] ∈ K(
∏m

i=1 Pai) of the structure sheaf of X , that is,

[OX ] =
∑
k

ca−k[OH1
]k1 · · · [OHm

]km

where OHi denotes the structure sheaf of Pa1 × · · · × Pai−1 ×Hi × Pai+1 × · · · × Pam for a hyperplane
Hi ⊂ Pai . Note that, in the notation of Proposition 2.12, we have [OYa−k

] = [OH1 ]
k1 · · · [OHm ]km .

The polynomial K(χ,1−t) is sometimes called the twisted K-polynomial. The authors of [CCRMM]
showed that, for an irreducible multiplicity-free subvariety X ⊆

∏
i Pai , its coefficients have alternat-

ing signs, i.e., (−1)dimX−|k|ck ≥ 0. Over C, Brion [Bri02] showed, more generally, that an irreducible
subvariety X with rational singularities in a flag variety G/P has the property that the expansion of
[OX ] ∈ K(G/P ) in terms of the structure sheaves of Schubert subvarieties has alternating signs.

For a polymatroid P of rank r on [m], not necessarily arising from an irreducible multiplicity-free
subvariety, the authors of [CCRMM] defined the polynomial gP(t0, t1, . . . , tm) by

gP(t0, t1, . . . , tm) =
∑

k∈I(P)∩Zm

ck(−t0)
r−|k|tk

where the ck are defined by the recursive formula given in Proposition 2.12.

Corollary 3.3. Let P be a polymatroid of rank r on [m] such that rkP(i) = r for some i ∈ [m]. Then gP

is a denormalized Lorentzian polynomial. In particular, its support is the set of lattice points of the
base polytope of a polymatroid.1

Proof. Combining Proposition 2.12 and Theorem 1.2, we find that gP is exactly the polynomial H̃ in
Theorem 1.4. Hence, the corollary is a restatement of Theorem 1.4. □

When the condition “rkP(i) = rkP([m]) for some i ∈ [m]” in the corollary is removed, the statement
about the support is [CCRMM, Conjecture 7.18], and whether gP is denormalized Lorentzian is
[CCRMM, Question 7.21].

Remark 3.4. A subset A ⊂ Zm is M-convex if it can be translated to be the set of lattice points of the
base polytope of a polymatroid on [m]. By noting that reflecting an M-convex subset by a coordinate
hyperplane give an M-convex subset, one can observe the following. Let χ(t1, . . . , tm) =

∑
k ckt

[k]

be a polynomial of total degree r, and let K(χ,1 − t) =
∑

k ca−kt
k as before. One has implications

(i) =⇒ (ii) ⇐⇒ (iii) of the following statements:

1When the support of the homogenization f̃ of an inhomogeneous polynomial f satisfies this property, the authors of
[CCRMM] say that the support of the polynomial f is a generalized polymatroid.
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(i) The homogeneous polynomial
∑

k ck(−t0)
r−|k|tk is denormalized Lorentzian.

(ii) The homogeneous polynomial
∑

k ck(−t0)
r−|k|tk has M-convex support.

(iii) The homogenization of K(χ,1− t) has M-convex support.

The main result of [CCRMM] states that, when χ(t1, . . . , tm) = χ(X,O(t1, . . . , tm)) for an irreducible
multiplicity-free subvariety X ⊆ Pa1 × · · · × Pam , the polynomial

∑
k ck(−t0)

r−|k|tk has M-convex
support. Corollary 3.3 implies furthermore that if the projection X → Pai onto one of the factors is
generically finite onto its image for some i, then the twisted K-polynomial is dually Lorentzian in the
sense of [RSW].

Remark 3.5. Let P be the restriction polymatroid of a matroid M on E to the collection S1, . . . , Sm,
and let H̃ be the polynomial defined in Theorem 1.4. Using results in [EHL23], one can show that
when P is a matroid, Theorem 1.4 holds without the assumption “rkP(i) = rkP([m]) for some i ∈
[m].” We sketch a proof here. Let r be the rank of P.

Replacing E by S1 ∪ · · · ∪ Sm, we assume rkM(E) = rkP([m]) = r. Consider the polynomial

H ′(t, tE) =
∑
k,ℓ

ak,ℓt
ktℓE such that χ

(
M,L⊗t1

S1
⊗ · · · ⊗ L⊗tm

Sm
⊗ L⊗tE

E

)
=
∑
k,ℓ

(−1)r−|k|−ℓak,ℓt
[k]t

[ℓ]
E

where the summation is over (k, ℓ) ∈ Zm
≥0 × Z≥0. Let H̃ ′(t, tE , t0) be its homogenization. Because

0[ℓ] = 1, and H̃ and H̃ ′ both have degree r, setting −tE = t0 in H̃ ′ gives the originally desired H̃(t, t0).
Combining this with the formula (1), we find that

the coefficient of tktr−|k|
0 in H̃(t, t0) is

∑
J⊆[m] such that
k+eJ∈B(P)

(−1)|J|

where eJ =
∑

J∈J ej ∈ Rm denotes the sum of the standard basis vectors of J .
Now, if P is a matroid N on [m], the displayed equation implies that

H̃(t, t0) =
∑

I⊆[m]
eI∈I(N)

TN/I(0, 1)t
eI t

r−|I|
0

where TN/I is the Tutte polynomial of the contraction matroid N/I . The right-hand-side polyno-
mial

∑
I∈I(N) TN/I(0, 1)t

eI t
r−|I|
0 is obtained from a denormalized Lorentzian polynomial in variables

x, z, w, u1, . . . , um provided in [EHL23, Theorem 1.4 and Remark 8.9] via the following two steps.
One keeps only the terms exactly divisible by wm−r, and then sets x = 0, z = t0, ui = ti. Both
steps preserve denormalized Lorentzian polynomials, and hence H̃(t, t0) is denormalized Lorentzian
when P is a matroid N.

4. h∗-VECTORS FOR MATROIDS

In this section, we define and study h∗-vectors of line bundles in K(M). Let M be a loopless
matroid. For a line bundle L on XΣM

, it follows from Proposition 2.8 that the function t 7→ χ(M,L⊗t)

is a polynomial in t, which we call the Snapper polynomial of L on M.
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Definition 4.1. For a loopless matroid M on a ground set E and a line bundle L in K(M), we define
its h∗-vector (h∗

0(M,L), . . . , h∗
d(M,L)) by

∑
k≥0

χ(M,L⊗k)qk =
h∗(M,L; q)
(1− q)d+1

where h∗(M,L; q) =
d∑

k=0

h∗
k(M,L)qk,

and d is the degree of the Snapper polynomial of L.

Theorem 1.5 states that the h∗-vector is a Macaulay vector when L =
⊗

S⊆E L⊗kS

S with kS ≥ 0 for
all S. In this section, we prove this theorem.

In Section 4.1, we review Macaulay vectors and their relation to Cohen–Macaulayness and coho-
mology vanishing. In Section 4.2, we use properties of YP to prove Theorem 1.5. A generalization of
Theorem 1.5 is conjectured in Section 4.3. Results on the degree of Snapper polynomials, necessary
for studying h∗-vectors, are given in Section 4.4.

4.1. Macaulay vectors. Recall that the Hilbert function of a graded algebra over a field k is the
sequence of the k-dimensions of the graded pieces. For the numerical properties we consider, we
may extend scalars to an extension of k, so we may assume k is infinite as needed.

Definition 4.2. A sequence (h0, h1, . . . , hd) is a Macaulay vector if (h0, h1, . . . , hd, 0, 0, . . . ) is the Hilbert
function of a graded artinian k-algebra A• which is generated in degree 1 and has A0 = k.

Macaulay vectors are also called M-vectors and O-sequences. Macaulay gave an explicit descrip-
tion of these vectors as follows [BH93, Theorem 4.2.10]. Given positive integers n and d, there is a
unique expression

n =

(
kd
d

)
+

(
kd−1

d− 1

)
+ · · ·+

(
kδ
δ

)
, kd > kd−1 > · · · > kδ ≥ 1.

Set n⟨d⟩ =
(
kd+1
d+1

)
+ · · ·+

(
kδ+1
δ+1

)
. Then (1, a1, . . . , ad) is a Macaulay vector if and only if 0 ≤ at+1 ≤ a

⟨t⟩
t

for all t ≥ 1.

Macaulay vectors often appear in the following way. Suppose R• is a graded Cohen–Macaulay
algebra of Krull dimension d + 1 with R0 = k. If the quotient of R• by the ideal generated by R1 is
artinian, then R• admits a linear system of parameters [BH93, Propositions 1.5.11 and 1.5.12]. In this
case, the quotient by a linear system of parameters is a graded artinian algebra A• with the property
that ∑

k≥0

(dimkR
k)qk =

dimkA
0 + (dimkA

1)q + · · ·+ (dimkA
d)qd

(1− q)d+1
.

See for instance [BH93, Remark 4.1.11]. In particular, if R• is generated in degree 1, then the numera-
tor of its Hilbert series

∑
k≥0(dimkR

k)qk is a polynomial whose coefficients form a Macaulay vector.
For the proof of Theorem 1.5, we record the following cohomological criterion for a section ring to
be Cohen–Macaulay.

Proposition 4.3. Let L be an ample line bundle on a geometrically connected and geometrically
reduced projective k-variety X of dimension d. Suppose that Hi(X,L⊗k) = 0 for all i > 0 when
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k ≥ 0, and Hi(X,L⊗k) = 0 for all i < d when k < 0. Then, the section ring

R•
L :=

⊕
k≥0

H0(X,L⊗k)

is a graded Cohen–Macaulay k-algebra with R0
L = k. If furthermore R•

L is generated in degree 1,
then the sequence (h0, . . . , hd) defined by

(2)
∑
k≥0

χ(X,L⊗k)qk =
h0 + h1q + · · ·+ hdq

d

(1− q)d+1

is a Macaulay vector.

Proof. The sequence (h0, . . . , hd) is well-defined via (2) because χ(X,L⊗k) is a polynomial in k (see
[Sta12, Section 4.3]). Because X is geometrically connected, geometrically reduced, and proper over
Speck, we have R0

L = k. Because all of the higher cohomology vanishes, we have χ(X,L⊗k) =

dimH0(X,L⊗k) for k ≥ 0. Therefore the second statement follows from the first by our discussion
above about Macaulay vectors.

It remains to show that R•
L is a Cohen–Macaulay graded ring. That is, we show that the local

cohomology Hi
m(R

•
L;R

•
L) with respect to the irrelevant ideal m of R•

L vanishes for i < d + 1. The
vanishing when i = 0, 1 is automatic since R•

L is the section ring of O(1) on X = ProjR•
L. For i ≥ 2,

we have Hi
m(R

•
L;R

•
L) =

⊕
k∈Z H

i−1(ProjR•
L,L⊗k) by [BS98, Theorem 20.4.4]. As X = ProjR•

L, the
sheaf cohomology vanishing hypothesis gives desired vanishing of local cohomology. □

4.2. Properties of YP and Theorem 1.5. Let P be a polymatroid with cage (a1, . . . , am), and let YP ⊆
Pa1 × · · · × Pam be the subvariety defined in the introduction. We note that YP is Cohen–Macaulay
and compatibly Frobenius split, and we use these properties of prove Theorem 1.5.

Proposition 4.4. The variety YP is Cohen–Macaulay.

Proof. When there is a multiplicity-free subvariety X ⊆ Pa1 × · · · × Pam whose polymatroid is
P, the Cohen–Macaulayness of YP is proven in [Bri03] via a geometric argument. For arbitrary
P, the proposition is [CCRC23, Proof of Theorem 5.6], which was obtained by using properties of
“polymatroid ideals” in [HH11, Chapter 12.6]. □

Note that YP is defined over SpecZ, with an embedding in a product of projective spaces over
SpecZ. Viewing the product of projective spaces as a homogeneous space, YP is a reduced union of
Schubert varieties, and hence it is a compatibly Frobenius split subvariety of the product of projective
spaces when base changed to any positive characteristic field k [BK05, Proposition 1.2.1, Theorem
2.3.10]. Together with Proposition 4.4, this gives the following strong cohomology vanishing results
for YP.

Proposition 4.5. Let L be the restriction of a very ample line bundle from the product of projective
spaces to YP. Then, we have Hi(YP,L⊗k) = 0 for all i > 0 when k ≥ 0, and Hi(YP,L⊗k) = 0 for all
i < rk(P ) when k < 0. Moreover, YP is geometrically reduced and geometrically connected, and the
section ring R•

L =
⊕

k≥0 H
0(YP,L⊗k) is generated in degree 1.
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Proof. The cohomology vanishing follows from [BK05, Theorem 1.2.8(ii), Theorem 1.2.9] because YP

is Cohen–Macaulay. By [BK05, Theorem 1.2.8(ii)], YP is projectively normal in the embedding given
by L, so R•

L is generated in degree 1. It remains to check that YP is geometrically reduced and
geometrically connected. That it is geometrically reduced is obvious; it is geometrically connected
because each component of YP contains the point [1, 0, . . . , 0]× [1, 0, . . . , 0]× · · · × [1, 0, . . . , 0]. □

Proof of Theorem 1.5. Let L =
⊗m

i=1 L
⊗ki

Si
for some subsets S1, . . . , Sm of the ground set E of the

matroid M and integers ki > 0. Let P be the restriction of the dragon-Hall–Rado polymatroid to
the subsets S1, . . . , Sm. By Corollary 2.16, we have that χ(M,L⊗ℓ) = χ(YP,O(k1, . . . , km)⊗ℓ). Note
that O(k1, . . . , km) is the restriction of an ample divisor from the product of projective spaces to
YP. By Proposition 4.5, we have that YP and O(k1, . . . , km) satisfy the conditions of Proposition 4.3,
including the generation of

⊕
k≥0 H

0(YP,O(k1, . . . , km)⊗k) in degree 1. Hence, we conclude that
h∗(M,L) is a Macaulay vector. □

4.3. Line bundles from polymatroids. We conjecture a generalization of Theorem 1.5. In Section 5,
we explain how the conjecture contains a question of Speyer [Spe09] as a special case, and how
Theorem 1.5 answers the question for a new family of cases. To do so, it is convenient to phrase the
line bundles in K(M) in terms of divisors in the non-augmented Chow ring A•(M).

Definition 4.6. [FY04] Let M be a loopless matroid on a ground set E. The non-augmented Chow ring
of M is the graded ring

A•(M) =
Z[zF : F a nonempty flat of M]

⟨zF zF ′ : F ⊆ F ′ and F ⊇ F ′⟩+ ⟨
∑

F∋i zF : i ∈ E⟩
.

An element of A1(M) is called a divisor class on M. Equivalently, A•(M) is the Chow ring of the toric
variety XΣM

of the non-augmented Bergman fan ΣM of M.

For a nonempty subset S ⊆ E, define an element hS ∈ A1(M) by

hS =
∑
F⊇S

−zF .

Because K(M) = K(XΣM
) and A•(M) = A•(XΣM

), one has a Chern class map c : K(M) → A•(M)×, a
homomorphism from the additive group of K(M) to the units in A•(M), see [Ful98, Section 15.3]. It
has the characterizing property that

c(LS) = 1 + hS for all nonempty S ⊆ E.

That is, we have c1(LS) = hS . More generally, for a polymatroid P on E, let us define the line bundle
LB(P) in K(M) via the property

c1(LB(P)) =
∑
F

(
rkP(E \ F )− rkP(E)

)
zF .

One recovers LS via the polymatroid whose rank function is rk(I) = 1 if I ∩ S ̸= ∅ and 0 otherwise.

Remark 4.7. These constructions have the following geometric origin. When M has a realization
L ⊆ k

E , the Chow ring A•(M) coincides with the Chow ring of the wonderful variety WL [DCP95],
and the Chern class map K(M) → A•(M) coincides with the Chern class map K(WL) → A•(WL).
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When furthermore M is the Boolean matroid U|E|,E , whose realization is L = k
E , the wonderful

variety WL is a toric variety XE known as the permutohedral variety. In this case, under the standard
correspondence between nef divisor classes on toric varieties and polytopes [CLS11, Chapter 6], the
divisor class c1(LB(P)) corresponds to the base polytope B(P). Moreover, every nef divisor class is
equal to c1(LB(P)) for some polymatroid P. See [BEST23, Section 2.7] and references therein.

We conjecture the following positivity for h∗-vectors of line bundles from polymatroids.

Conjecture 4.8. Let M be a loopless matroid on E, and let P be a polymatroid on E. Then, the
h∗-vector h∗(M,LB(P)) is a Macaulay vector and is in particular nonnegative.

Theorem 1.5 states that Conjecture 4.8 holds when c1(LB(P)) is a nonnegative linear combination
of the hS . Several other cases in which Conjecture 4.8 holds are discussed in Section 5.2.

4.4. Degree of Snapper polynomials and numerical dimension. To study h∗-vectors arising from
line bundles LB(P) in Conjecture 4.8, one needs some tools to understand the degree of the Snapper
polynomial, since the degree is essential in the definition of h∗(M,LB(P)). One such tool is given in
terms of the following.

Definition 4.9. The numerical dimension of a line bundle L in K(M) is the largest nonnegative integer
k such that c1(L)k ̸= 0 in A•(M).

Our main result for numerical dimensions is the following.

Theorem 4.10. Let M be a loopless matroid or rank r on a ground set E.

(1) For L a line bundle in K(M), the degree of the Snapper polynomial χ(M,L⊗t) is at most the
numerical dimension of c1(L). Moreover, the degree equals r− 1 if and only if the numerical
dimension is r − 1.

(2) For P a polymatroid on E such that the base polytope B(P) is full dimensional (i.e., (|E|−1)-
dimensional), then its numerical dimension is r− 1, so the degree of the Snapper polynomial
of LB(P) is r − 1.

To prove Theorem 4.10(1), we develop a version of the Hirzebruch–Riemann–Roch theorem for K
and Chow rings of matroids. For this, we recall that the Chow ring A•(M) is equipped with a degree
map deg

M
: Ar−1 ∼→ Z that satisfies Poincaré duality. See [AHK18, Section 6] for details.

Proposition 4.11. There is a ring homomorphism ch: K(M) → A(M)Q which induces an isomor-
phism K(M)Q → A•(M)Q defined by

ch([L]) = exp(c1(L)) = 1 + c1(L) + c1(L)2/2! + · · · .

There is a class ToddM ∈ A•(M)Q such that, for any ξ ∈ K(M)Q,

χ(M, ξ) = deg
M

(
ch(ξ) · ToddM

)
.

Moreover, the degree 0 part of ToddM is 1.
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Proof. We first recall K(M) = K(XΣM
) and A•(M) = A•(XΣM

), i.e., the K and Chow rings of the
toric variety XΣM

(respectively). Hence, that the Chern character map ch is well-defined and is
an isomorphism after tensoring with Q is a general fact about algebraic varieties [Ful98, Example
15.2.16]. Because K(M) is generated by classes of line bundles [LLPP24, Theorem 5.2], the formula
ch([L]) = exp(c1(L)) determines ch. By [AHK18, Theorem 6.19], the pairing A•(M)Q ⊗ A•(M)Q → Q
given by (x, y) 7→ deg

M
(x·y) is a perfect pairing. Therefore there is some class ToddM ∈ A•(M)Q such

that the linear functional x 7→ χ(M, ch−1(x)) on A•(M)Q is given by x 7→ deg
M
(x ·ToddM). Lastly, the

degree 0 part of ToddM, which is some number in Q, must be 1 because Proposition 2.15 implies that
the leading term of the polynomial χ(M,L⊗t

E ) is tr−1/(r − 1)!, whereas

deg
M

(
c1(LE)

r−1
)
= deg

M

(
(−zE)

r−1
)
= deg

M

(( ∑
i∈F⊊E

zF
)r−1

)
for any fixed i ∈ E

= 1 by [AHK18, Proposition 5.8]. □

Proof of Theorem 4.10. Let L be a line bundle of numerical dimension d. Because c1(L⊗t) = tc1(L), we
have that

χ(M,L⊗t) = deg
M
((1 + tc1(L) + t2c1(L)2/2! + · · · ) · ToddM).

Since c1(L)d+1 = 0, we see that the right-hand side is a polynomial in t whose leading term is
tℓdeg

M
(c1(L)ℓ · ToddM)/ℓ! for the largest 0 ≤ ℓ ≤ d such that deg

M
(c1(L)ℓ · ToddM) ̸= 0. Moreover,

because the degree 0 part of ToddM is 1, we have

χ(M,L⊗t) = deg
M
(c1(L)r−1)

tr−1

(r − 1)!
+O(tr−2).

Thus, L has numerical dimension r − 1 if and only if the Snapper polynomial has degree r − 1. We
have proven the first statement (1).

For second statement (2), we only need show that the numerical dimension of LB(P) is r−1 if B(P)

is full dimensional. When B(P) is full dimensional, the line bundle LB(P) in K(U|E|,E) of the boolean
matroid corresponds to a nef and big line bundle on the projective toric variety XE (see Remark 4.7).
By [Laz04, Corollary 2.2.7], we can write the first Chern class as the sum of an ample class and an
effective divisor class (inside A•(XE)⊗Q). Restricting this to A•(M), we get that c1(LB(P)) = A+E,
where A is the restriction of an ample class from XE and E is the restriction of an effective class.

We now prove by induction on k that deg
M
(c1(LB(P))

kAr−1−k) > 0, using Proposition 4.12 stated
below. The case k = 0 is Proposition 4.12(1). For k > 0, Proposition 4.12(2) gives that

deg
M
(c1(LB(P))

kAr−1−k) = deg
M
(c1(LB(P))

k−1Ar−k) + deg
M
(c1(LB(P))

k−1EAr−1−k)

≥ deg
M
(c1(LB(P))

k−1Ar−k),

which is positive by induction. □

Proposition 4.12. Let M be a loopless matroid of rank r.

(1) Let A ∈ A1(M) be the restriction of an ample class from XE . Then deg
M
(Ar−1) > 0.

(2) Let P1, . . . ,Pr−2 be polymatroids. Then, for any class E ∈ A1(M) which is a restriction of an
effective divisor class on XE , deg

M
(c1(LP1

) · · · · c1(LPr−2
) · E) ≥ 0.
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One can deduce the proposition as a general statement about combinatorially nef divisors on a fan
with nonnegative Minkowski weights. To avoid developing such notions here, we indicate a proof
in terms of the Hodge–Riemann relations for A(M) proven in [AHK18].

Proof. The first statement is the Hodge–Riemann relations in degree 0 for A(M) [AHK18, Theorem
1.4]. The second statement is a consequence of the mixed Hodge–Riemann relations in degree 0
[AHK18, Theorem 8.9], when one notes that the divisors c1(LB(Pi)

) are nef (thus, a limit of ample
classes), and that the star of a ray in the Bergman fan of the matroid is a product of Bergman fans of
matroids [AHK18, Proposition 3.5]. □

5. APPLICATIONS, EXAMPLES, AND PROBLEMS

In Section 5.1, we study a question of Speyer [Spe09] as an application of results developed in
the previous section. It is for this application that we have focused on the non-augmented setting,
although analogous statements for the augmented setting also hold. Examples for Conjecture 4.8 and
some further general properties of h∗-vectors of matroids are given in Section 5.2, along with future
directions.

5.1. Application to Speyer’s g-polynomial. In this section, we apply Theorem 1.5 to study Speyer’s
g-polynomial of a matroid [Spe09]. For a loopless and coloopless matroid M of rank r on [n], the
g-polynomial gM(t) is a polynomial of degree at most r defined in terms of the K-theory of the
Grassmannian Gr(r, n), first defined for matroids realizable over a field of characteristic 0 in [Spe09]
and then for all matroids in [FS12].

An outstanding problem about the g-polynomial is to show that it always has nonnegative coef-
ficients. In [Spe09], Speyer used the Kawamata–Viehweg vanishing theorem to show the nonnega-
tivity for matroids realizable over a field of characteristic 0. This allowed him to bound the number
of cells of each dimension in a subdivision of the hypersimplex into matroid polytopes when all of
the cells correspond to matroids realizable in characteristic 0. Nonnegativity of gM(t) for all matroids
would bound the complexity of any such subdivision in general. The nonnegativity was proved
for all sparse paving matroids in [FS24, Theorem 13.16]. Using Theorem 1.5 we give a new infinite
family of matroids for which the nonnegativity holds.

We begin by explaining how the nonnegativity of the coefficients of the g-polynomial is a special
case of Conjecture 4.8. For a loopless and coloopless matroid M of rank r, let ω(M) be the tr coefficient
of gM(t). In forthcoming work, Alex Fink, Kris Shaw, and David Speyer show the following result.

Proposition 5.1. Suppose that ω(M) ≥ 0 for all connected matroids. Then all coefficients of gM(t) are
nonnegative for all loopless and coloopless matroids.

The following result was communicated to the authors by Alex Fink, Kris Shaw, and David Speyer.

Proposition 5.2. Let M be a matroid of rank r with c connected components, and denote by B(M⊥)

the base polytope of the dual matroid M⊥ of M. Then, we have

ω(M) = (−1)r−cχ(M,L−1
B(M⊥)

).
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Proof. We sketch a proof using results from [LLPP24] and [BEST23]. By [LLPP24, Theorem 1.8], we
have

χ(M,L−1
B(M⊥)

) = deg
M
(ζM([L−1

B(M⊥)
]) · (1 + hE + h2

E + · · · )),

where ζM is defined in [LLPP24]. Computing in the equivariant Chow groups of the permutohedral
variety XE using [LLPP24, Proposition 5.6] and [BEST23, Theorem 10.1] (see [EHL23, Corollary 6.5]),
we have that ζM([L−1

B(M⊥)
]) is the restriction to A•(M) of the class denoted c(Q∨

M) in [BEST23]. Then
the result follows from [BEST23, Theorem 10.12]. □

Now, recall the formal identity satisfied by the h∗-vector

(3) h∗
d(M,L) = (−1)dχ(M,L−1)

(see for instance [Sta12, Section 4.3]). Moreover, when M is connected, the polytope B(M⊥) is full
dimensional, so Theorem 4.10 implies that the degree d of the Snapper polynomial is r−1. Therefore,
the two preceding propositions show that the nonnegativity of the coefficients of gM(t) is a special
case of Conjecture 4.8 with P = M⊥.

We now make explicit how Theorem 1.5 proves the positivity of ω(M) in some special cases. The
first step is to express LB(M⊥) as a Laurent monomial in the [LS ], or, equivalently, write c1(LB(M⊥))

as a linear combination of the hS . To do so, for a matroid M, we recall its β-invariant [Cra67], defined
by two properties:

• β(U0,1) = 0, β(U1,1) = 1, and β(M) = 0 if M is disconnected, and
• the recursive relation: for any i which is not a loop or coloop of M ,

β(M) = β(M/i) + β(M \ i).

Equivalently, the β-invariant is the coefficient of x in the Tutte polynomial of M.

Proposition 5.3. Let M be a matroid on [n]. Then, the polytope B(M⊥) satisfies

c1(LB(M⊥)) =
∑

F connected flat
of rkM(F )≥2

∑
clM(S)=F

(−1)|S|−rkM(S)+1β(M|S)hF ∈ A•(M).

Proof. Let ∆S be the simplex Conv({ei : i ∈ S}). Then [ABD10, Theorem 2.6] expressed B(M⊥) as a
signed Minkowski sum of these simplices as follows:

B(M⊥) =
∑

S⊆[n],|S|≥2

(−1)|S|−rkM(S)+1β(M|S)∆S +
∑

i loop of M

∆i.

This gives an expression for c1(LB(M⊥)) on the permutohedral toric variety as a sum of the simplicial
generators hS . As hS = hclM(S) in A•(M) and hi = 0, we obtain the desired expression. □

Theorem 5.4. Let M be a loopless and coloopless matroid of rank r such that, for all connected flats
F of M of rank at least 2, we have

∑
clM(S)=F (−1)|S|−rkM(S)+1β(M|S) ≥ 0. Then ω(M) ≥ 0.

Proof. First suppose that M is connected, so the polytope B(M⊥) is full dimensional. By Theo-
rem 4.10(2), the degree of the Snapper polynomial of LB(M⊥) is r − 1 in this case. By Theorem 1.5
along with (3), we thus have ω(M) = (−1)r−1χ(M,L−1

B(M⊥)
) = h∗

r−1(M,LB(M⊥)) ≥ 0.
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Now suppose that M = M1 ⊕ · · · ⊕Mc, with each Mi connected. The hypothesis implies that each
LB(M⊥

i ) is simplicially positive for each i, and so ω(Mi) ≥ 0. By [FS12, Proposition 7.2], gM(t) =

gM1(t) · · · gMc(t). Because the ti coefficient of gM(t) vanishes for i > rk(M),

ω(M) = ω(M1) · · ·ω(Mc) ≥ 0. □

In particular, Theorem 5.4 states that if LB(M⊥) is simplicially positive, then ω(M) ≥ 0. While it
appears that this is not often satisfied, Theorem 5.4 does show that ω(M) ≥ 0 for many matroids. We
give two examples.

Example 5.5. For a nonempty subset S ⊆ E, let HS be the corank 1 matroid on E with S as its
unique circuit. A co-transversal matroid is a matroid M that arises as the matroid intersection M =

HS1
∧ · · · ∧ HSc

for some (not necessarily distinct) subsets S1, . . . , Sc. In this case, one verifies that
c1(LB(M⊥)) =

∑c
i=1 hSi

∈ A•(M). In particular, LB(M⊥) is simplicially positive, so Theorem 5.4
applies to all co-transversal matroids.

Co-transversal matroids are realizable over an infinite field of arbitrary characteristic, so we could
have used [Spe09, Proposition 3.3] or Example 5.9 below. We now construct an infinite family of
matroids to which Theorem 5.4 applies but which are not realizable over a field of characteristic 0, as
follows. We will use the notion of principal extensions, whose definition and properties can be found
in [Oxl92, §7.2].

Lemma 5.6. Let M be a loopless matroid on E, and fix a nonempty flat G. Denote by M′ = M +G ⋆

the principal extension of M by G. Then, writing

c1(LB(M⊥)) =
∑

F a flat of M

cFhF ∈ A•(M),

we have that the expression for c1(LB((M′)⊥)) ∈ A•(M′) is roughly “obtained by increasing the
coefficient of cG by 1,” or precisely,

c1(LB((M′)⊥)) = hG∪⋆ +
∑
F⊇G

cFhF∪⋆ +
∑
F ̸⊇G

cFhF .

Proof. We use the fact that c1(LB(M⊥)) =
∑

F rkM(F )zF (see [BEST23, Section 2.7 and Remark III.1]),
so that the coefficients cF are defined by the property that

∑
F ′⊆F cF ′ = rkM(F ) for all flats F of M.

Now, we recall that the set of flats of M′ is partitioned into three categories [Oxl92, Corollary 7.2.5]:

(i) {F : F a flat of M such that F ̸⊇ G}, in which case rkM′(F ) = rkM(F ),
(ii) {F ∪ ⋆ : F a flat of M such that F ⊇ G}, in which case rkM′(F ∪ ⋆) = rkM(F ), and

(iii) {F∪⋆ : F a flat of M such that F ̸⊇ G and F is not covered by an element in [G,E]}, in which
case rkM′(F ∪ ⋆) = rkM(F ) + 1.

Thus, in A•(M′), since h⋆ = 0 so that −zE∪⋆ =
∑

∅⊆F⊊E zF∪⋆, we have

hG∪⋆ =
∑

∅⊆F⊊E

zF∪⋆ +
∑

G⊆F⊊E

−zF∪⋆ =
∑
F ̸⊇G

zF∪⋆.

The claimed expression for c1(LB((M′)⊥)) in all three cases of flats now follows, as the above expres-
sion for hG∪⋆ contributes only to the case (iii) and not to cases (i) or (ii). Explicitly, we have:
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(i) In this case, the coefficient of zF is
∑

F ′⊆F cF ′ = rkM(F ) = rkM′(F ).
(ii) In this case, the coefficient of zF∪⋆ is again

∑
F ′⊆F cF ′ = rkM(F ) = rkM′(F ∪ ⋆).

(iii) In this case, the coefficient of zF∪⋆ is 1 +
∑

F ′⊆F cF ′ = 1 + rkM(F ) = rkM′(F ∪ ⋆). □

Given any matroid M, repeatedly applying the lemma provides a method to construct a matroid
M̃ for which Theorem 5.4 applies. Moreover, a matroid is realizable over an infinite field k if and
only if its principal extensions are realizable over the same field k. Thus, the matroid M̃ has the same
realizability property as M over infinite fields. In particular, the lemma produces infinite families
of matroids that are not realizable or realizable only over certain positive characteristics for which
LB(M⊥) is simplicially positive, so Theorem 5.4 applies.

5.2. Examples and problems. We present several cases in which Conjecture 4.8 holds.

Example 5.7. When M is the boolean matroid, the discussion in Remark 4.7 implies that h∗(M,LB(P))

is the usual h∗-vector of the base polytope B(P), and hence is nonnegative. Moreover, because base
polytopes of polymatroids have the property that every lattice point in kB(P) is a sum of k lattice
points in B(P) (see [Wel76, Chapter 18.6, Theorem 3]), h∗(M,LB(P)) is a Macaulay vector.

Example 5.8. Let ∇ = Conv({(0, 1, . . . , 1), (1, 0, 1, . . . , 1), . . . , (1, 1, . . . , 1, 0)}), the base polytope of
the uniform matroid of corank 1, so c1(L∇) ∈ A1(M) is the class usually denoted β. Then [LLPP24,
Lemma 8.5] implies that

χ(M,L⊗t
∇ ) =

∑
i

fr−1−i(BC>(M))

(
t

r − 1− i

)
,

where fj(BC>(M)) is the number of j-dimensional faces of the reduced broken circuit complex of M
under any ordering >. As

(
t

r−1−i

)
=
∑i

j=0(−1)j
(
i
j

)(
t+i
r−1

)
, we may express the Snapper polynomial

in terms of the h-vector of the reduced broken circuit complex:

χ(M,L⊗t
∇ ) =

∑
i

hr−1−i(BC>(M))

(
t+ i

r − 1

)
.

Comparing this with the definition of h∗(M,L∇), we see that hi(BC>(M)) = h∗
i (M,L∇). By [Bjö92],

the reduced broken circuit complex is shellable and hence Cohen–Macaulay, so its h-vector is a
Macaulay vector. This argument is closely related to [PS06].

Example 5.9. Let M be a connected matroid that has a realization L ⊆ k
E over a field of characteristic

0. Then the base polytope of the dual matroid B(M⊥) is full dimensional. It follows from [BF22,
Theorem 5.1] and [BEST23, Theorem 7.10] that, for all k > 0, the restriction map H0(XE ,L

⊗k
B(M⊥)

) →
H0(WL,L⊗k

B(M⊥)
) is surjective and that Hi(WL,L⊗k

B(M⊥)
) = 0 for i > 0. Therefore, by [Wel76, Chapter

18.6, Theorem 3], the ring
R• :=

⊕
k≥0

H0(WL,L⊗k
B(M⊥)

)

is generated in degree 1. This implies that ProjR• is the image of WL under the complete linear
system of LB(M⊥). This is called the space of visible contours of L. It is known that ProjR• has rational
singularities [Tev07, Theorem 1.4 and 1.5]. In particular,

Hi(WL,L⊗k
B(M⊥)

) = Hi(ProjR•,O(k))
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for all i and k. Because B(M⊥) is full dimensional, the line bundle LB(M⊥) is nef and big. By the
Kawamata–Viehweg vanishing theorem, Hi(WL,L⊗k

B(M⊥)
) = Hi(ProjR•,O(k)) = 0 for k < 0 and

i < dimWL. As WL is rational, Hi(WL,OWL
) = 0 for i > 0. Then Proposition 4.3 implies that R• is

Cohen–Macaulay, and so h∗(M,LB(M⊥)) is a Macaulay vector.

Lastly, we discuss the valuativity of h∗-vectors of matroids and conjecture a monotonicity prop-
erty for them. When P is full dimensional, Theorem 4.10 implies that the degree of the Snapper
polynomial of LB(P) depends only on the rank of M. From the formula for h∗(M,LB(P)) and the
valuativity of χ(M,L⊗k

B(P)) for fixed P and k [LLPP24, Lemma 6.4], we obtain the following corollary.

Corollary 5.10. Let P be a polymatroid such that B(P) is full dimensional. Then the function that
assigns to a loopless matroid M the polynomial h∗(M,LB(P)) is valuative.

However, the degree of the Snapper polynomial of LB(P) on M is not in general determined by
the rank of M. The numerical dimension of LB(P) is also not determined by the rank of M.

Question 5.11. Let P be a polymatroid. What is the degree of the Snapper polynomial of LB(P) on
M? Is it equal to the numerical dimension of LB(P)? Is h∗(M,LB(P)) valuative?

We also conjecture the following monotonicity property for h∗-vectors, inspired by Stanley’s mono-
tonicity result for h∗-vectors of polytopes [Sta93], which implies the following conjecture when M is
the boolean matroid.

Conjecture 5.12. Let P1,P2 be polymatroids with B(P1) ⊆ B(P2). Then for any loopless matroid M,
h∗
i (M,LB(P1)

) ≤ h∗
i (M,LB(P2)

) for all i.

If the degree of the Snapper polynomial of L is rk(M)− 1, then
∑

h∗
i (M,L) = deg

M
(c1(L)r−1), so

the following result gives evidence for Conjecture 5.12.

Proposition 5.13. Let P1,P2 be polymatroids with B(P1) ⊆ B(P2). Then

deg
M
(c1(LB(P1)

)r−1) ≤ deg
M
(c1(LB(P2)

)r−1).

Proof. Because B(P1) ⊆ B(P2), the difference of the divisor class in A1(XE) corresponding to B(P2)

with the divisor class corresponding to B(P1) is an effective divisor class, see [BEST23, Section 2.7].
Then,

c1(LB(P2)
)r−1 − c1(LB(P1)

)r−1

= (c1(LB(P2)
)− c1(LB(P1)

)) · (c1(LB(P2)
)r−2 + c1(LB(P2)

)r−3c1(LB(P1)
) + · · ·+ c1(LB(P1)

)r−2).

By Proposition 4.12, the degree of this class is nonnegative. □
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