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ABSTRACT. Delta-matroids are “type B” generalizations of matroids in the same way that maximal
orthogonal Grassmannians are generalizations of Grassmannians. A delta-matroid analogue of the
Tutte polynomial of a matroid is the interlace polynomial. We give a geometric interpretation for
the interlace polynomial via the K-theory of maximal orthogonal Grassmannians. To do so, we
develop a new Hirzebruch–Riemann–Roch-type formula for the type B permutohedral variety.

1. INTRODUCTION

For a nonnegative integer n, let [n] = {1, . . . , n}, and for a subset S ⊆ [n], let eS =
∑

i∈S ei be
the sum of the corresponding standard basis vectors in Rn. Let [n̄] = {1̄, . . . , n̄}, and consider
[n, n̄] = [n] ⊔ [n̄] equipped with the involution i 7→ ī. Writing eī = −ei, let eS =

∑
i∈S ei for a

subset S ⊆ [n, n̄]. A subset S ⊆ [n, n̄] is admissible if {i, ī} ̸⊂ S for all i ∈ [n]. Note that a maximal
admissible subset of [n, n̄] has cardinality n.

Definition 1.1. A delta-matroid D on [n, n̄] is a nonempty collection F of maximal admissible
subsets of [n, n̄] such that each edge of the polytope

P (D) = the convex hull of {eB∩[n] : B ∈ F} ⊂ Rn

is a parallel translate of ei or ei ± ej for some i, j ∈ [n].

The collection F is called the feasible sets of D, and P (D) is called the base polytope of D. One
often works with the following translation of the twice-dilated base polytope

P̂ (D) = 2P (D)− (1, . . . , 1) = the convex hull of {eB : B ∈ F} ⊂ Rn.

Delta-matroids generalize matroids as the “minuscule type B matroids” in the theory of Coxeter
matroids [GS87, BGW03], and as “2-matroids” in the theory of multimatroids [Bou97]. The
Tutte polynomial of a matroid [Tut67, Cra69] admits a delta-matroid analogue called the interlace
polynomial, introduced in [ABS04, BH14].

Definition 1.2. For a delta-matroid D on [n, n̄] with feasible sets F and a subset S ⊆ [n], let

dD(S) = min
B∈F

(
|S ∪ (B ∩ [n])| − |S ∩B ∩ [n]|

)
, the lattice distance between eS and P (D).

Then, the interlace polynomial IntD(v) ∈ Z[v] of D is defined as

IntD(v) =
∑
S⊆[n]

vdD(S).

1
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Similar to the Tutte polynomial of a matroid, the interlace polynomial has several alternative
definitions: it satisfies a deletion-contraction recursion [BH14, Theorem 30], it is an evaluation
of the rank generating function of a delta-matroid [Lar], and IntD(v − 1) has an activities de-
scription [Mor19]. Additionally, its evaluation at q = 0 gives the number of feasible sets. Here,
we show that Fink and Speyer’s geometric interpretation of Tutte polynomials via the K-theory
of Grassmannians [FS12] also generalizes to interlace polynomials. Let us first recall their result.

Each r-dimensional linear space L ⊆ k
n over a field k gives rise to a matroid M on [n] and a

point [L] in the Grassmannian Gr(r;n). The torus T = (k∗)n acts on Gr(r;n), and we consider
the torus-orbit-closure T · [L] of L. The K-class of the structure sheaf [O

T ·[L]
] in Grothendieck

ringK(Gr(r;n)) of vector bundles on Gr(r;n) depends only on M, and it admits a combinatorial
formula which makes sense for any matroid M of rank r on [n]. This formula is used to define a
class y(M) ∈ K(Gr(r;n)) such that y(M) = [O

T ·[L]
] whenever M has a realization L.

Now, consider the diagram

Fl(1, r, n− 1;n)

Gr(r;n) Fl(1, n− 1;n)

Pn−1 × Pn−1

π1n

πr

where πr and π1n are the natural forgetful maps. Then [FS12, Theorem 5.1] states that

π1n∗π
∗
r

(
y(M) · [O(1)]

)
= TM(α, β),

where O(1) is the line bundle on Gr(r;n) defining the Plücker embedding, α and β are the K-
classes of the structure sheaves of hyperplanes in each of the Pn−1 factors, and TM is the Tutte
polynomial of M. This result was subsequently generalized to Tutte polynomials of morphisms
of matroids in [CDMS22, DES21]. Here, we establish a similar geometric interpretation for the
interlace polynomials of delta-matroids via theK-theory of maximal orthogonal Grassmanians.

Let k2n+1 have coordinates labelled n̄, . . . , 1̄, 0, 1, . . . , n. Let q be the nondegenerate quadratic
form on k

2n+1 given by q(x) = x1x1̄ + · · · + xnxn̄ + x20. For 0 ≤ r ≤ n, let OGr(r; 2n + 1)

be the orthogonal Grassmannian, which is the subvariety of Gr(r; 2n + 1) consisting of isotropic
r-dimensional subspaces, i.e.,

OGr(r; 2n+ 1) = {r-dimensional linear subspaces L ⊂ k
2n+1 such that q|L is identically zero}.

The action of the torus T = (k∗)n on k2n+1 given by

(t1, . . . , tn) · (xn̄, . . . , x1̄, x0, x1, . . . , xn) = (t−1
n xn̄, . . . , t

−1
1 x1̄, x0, t1x1, . . . , tnxn)

preserves the quadratic form q, and hence induces a T -action on OGr(r; 2n + 1). One has the
T -equivariant Plücker embedding OGr(r; 2n+ 1) ↪→ Gr(r; 2n+ 1) ↪→ P(

∧r
k
2n+1).

The maximal orthogonal Grassmannian is OGr(n; 2n + 1). Points on OGr(n; 2n + 1) realize
delta-matroids in the same way that points on the usual Grassmannian realize matroids. More
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precisely, [EFLS24, Proposition 6.2] [GS87] showed that the torus-orbit-closure T · [L] of a point
[L] ∈ OGr(n; 2n + 1), considered as a T -invariant subvariety of P(

∧n
k
2n+1) via the Plücker

embedding, has moment polytope µ(T · [L]) equal to P̂ (D), where D is a delta-matroid with the
set of feasible sets

{maximal admissible B ⊂ [n, n̄] such that the B-th Plücker coordinate of L is nonzero}.

Using this polyhedral property, we construct for any (not necessarily realizable) delta-matroid D

an element y(D) in the Grothendieck ringK(OGr(n; 2n+1)) of vector bundles on OGr(n; 2n+1)

(see Proposition 2.2).1

To relate the K-class y(D) to the the interlace polynomial, we consider the orthogonal partial
flag variety OFl(1, n; 2n + 1) ⊂ OGr(1; 2n + 1) × OGr(n; 2n + 1). Note that OGr(1; 2n + 1) is a
smooth quadric inside of Gr(1; 2n+ 1) = P2n. We have the diagram

OFl(1, n; 2n+ 1)

OGr(n; 2n+ 1) OGr(1; 2n+ 1)

P2n.

π1

πn

Let O(1) denote the ample line bundle that generates the Picard group of OGr(n; 2n + 1). Its
square O(2) defines the Plücker embedding OGr(n; 2n + 1) ↪→ Gr(n; 2n + 1) ↪→ P(

∧n
k
2n+1).

This fact about O(2) follows from the description of the Picard group of OGr(n; 2n+1) in terms
of the representation theory of SO(2n + 1); see [BL00, Section 2.8] for a summary of general
theory, and [FH91, Chapter 19.4] for features particular to SO(2n + 1). The line bundle O(1)

defines the Spinor embedding of OGr(n; 2n+ 1) into P2n−1. Recall that K(P2n) ≃ Z[u]/(u2n+1),
where u is the structure sheaf of a hyperplane in P2n. So we may represent any class in K(P2n)

uniquely as a polynomial in u of degree at most 2n.

Theorem A. Let IntD(v) ∈ Z[v] be the interlace polynomial of a delta-matroid D. We have

π1∗π
∗
n

(
y(D) · [O(1)]

)
= u · IntD(u− 1) ∈ K(P2n).

To prove the theorem, in Proposition 4.1 we transport the pullback-pushforward π1∗π
∗
n(−)

computation to a sheaf Euler characteristic χ(−) computation on a smooth projective toric va-
riety XBn

known as the type B permutohedral variety (Definition 2.6). Then, to carry out the
sheaf Euler characteristic computation, we establish the following new Hirzebruch–Riemann–
Roch-type formula for XBn

. Let A•(XBn
) be the Chow ring of XBn

, with the degree map∫
XBn

: An(XBn)
∼→ Z.

1We caution that, unlike the matroid case in [FS12], the class y(D) of a delta-matroid D with a realization [L] ∈
OGr(n; 2n + 1) may not be equal to the K-class of the structure sheaf [O

T ·[L]
], although it is closely related, see

Proposition 2.9 and Proposition 2.3. For a detailed discussion of [O
T ·[L]

], see Remark 2.10 and Section 5 .
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Theorem B. There is an injective ring homomorphism ψ : K(XBn) → A•(XBn), which becomes
an isomorphism after tensoring with Z[ 12 ]. For any [E ] ∈ K(XBn), the map ψ satisfies

χ(XBn
, [E ]) = 1

2n

∫
XBn

ψ([E ]) · (1 + γ + γ2 + · · ·+ γn)

where γ is the anti-canonical divisor of XBn .

The map ψ in Theorem B is unrelated to the usual Chern character. It also differs from the
Hirzebruch–Riemann–Roch-type isomorphism of [EFLS24, Theorem C], which is not as suitable
for proving Theorem A.

Question 1.3. The g-polynomial [Spe09] of a matroid is an invariant of matroids that can be
(conjecturally) used to give strong bounds on the number of pieces in a matroid polytope sub-
division. The coefficients of the g-polynomial are certain linear combinations of the coefficients
that are used to express y(M) in terms of structure sheaves of Schubert varieties in K(Gr(r;n)).
In [FS12, Theorem 6.1], the authors express the g-polynomial in terms of a computation similar
to the one in Theorem A. Is there an invariant of delta-matroids which gives strong bounds on
the number of pieces in a delta-matroid polytope subdivision?

The paper is organized as follows. In Section 2, we discuss equivariant K-theory and define
y(D). We also discuss a key tool, the theory of valuative invariants of delta-matroids, which we
repeatedly use to reduce statements to the case of realizable delta-matroids. In Section 3, we
prove Theorem B and discuss certain class in K(XBn

) which will be used in the proof of Theo-
rem A. In Section 4, we prove Theorem A. In Section 5, we give some examples and questions.

Acknowledgements. We thank Alex Fink, Steven Noble, Kris Shaw, and David Speyer for help-
ful conversations. We thank the referee for their helpful comments. The first author is partially
supported by the US National Science Foundation (DMS-2001854 and DMS-2246518). The sec-
ond author is supported by an NDSEG graduate fellowship.

2. K-CLASSES OF DELTA-MATROIDS

Throughout, we will use localization for the torus-equivariantK-theory of toric varieties and
flag varieties, for which one can consult [FS12, §2.2], [DES21, §2.2], or [CDMS22, §8] along with
the references therein. Let T = (k∗)n for k an algebraically closed field, and denote by KT (X)

the T -equivariant K-ring of vector bundles on a T -variety X . Identifying the character lattice
of T with Zn, we write KT (pt) = Z[T±1

1 , . . . , T±1
n ] for the equivariant K-ring of a point pt. For

m = (m1, . . . ,mn) ∈ Zn, we write Tm = Tm1
1 · · ·Tmn

n .
For a countable-dimensional T -representation V ≃

⊕
i k · vi, where T acts on vi by t · vi =

tmivi, the Hilbert series Hilb(V ) =
∑

i T
mi is the sum of the characters of the action, which is

often a rational function. For an affine semigroup S ⊆ Zn, we write Hilb(S) = Hilb(k[S]) =∑
m∈S T

−m. Note the minus sign, which arise because for χm ∈ k[S], we have t ·χm = t−mχm.
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2.1. K-classes on the maximal orthogonal Grassmannian. We begin by recalling some facts
about the T -action on OGr(n; 2n + 1), whose verification is routine and is omitted. Recall that
we have set eī = −ei.

• The T -fixed points OGr(n; 2n + 1)T of OGr(n; 2n + 1) are in bijection with maximal
admissible subsets, where such a subsetB ⊂ [n, n̄] corresponds to the isotropic subspace

LB = {x ∈ k
2n+1 : x0 = 0 and xj = 0 for all j ∈ [n, n̄] \B}.

Polyhedrally, by identifying B ⊂ [n, n̄] with eB∩[n] ∈ Rn, we may further identify the
T -fixed points with the vertices of the unit cube [0, 1]n ⊂ Rn.

• Each T -fixed point LB admits a T -invariant affine chart UB ≃ An(n+1)/2, on which T

acts with characters in the finite set

TB = {−ei : i ∈ B} ∪ {−ei − ej : i ̸= j ∈ B}.

In particular, for v ∈ TB with B′ ⊂ [n, n̄] such that eB′ = eB + 2v, we have an 1-
dimensional T -orbit in OGr(n; 2n + 1) whose boundary points are LB and LB′ . All
1-dimensional T -orbits of OGr(n; 2n+ 1)) arise in this way.

Now, the localization theorem applied to KT (OGr(n; 2n+ 1)) states the following:

Theorem 2.1. [VV03, Corollary 5.11] The restriction map

KT (OGr(n; 2n+ 1)) → KT (OGr(n; 2n+ 1)T ) =
∏

LB∈OGr(n;2n+1)T

Z[T±1
1 , . . . T±1

n ]

is injective, and its image is(fB)B ∈
∏

LB∈OGr(n;2n+1)T

Z[T±1
1 , . . . T±1

n ] :
for v ∈ TB with B′ ⊂ [n, n̄] such that eB′ = eB + 2v

fB − fB′ ≡ 0 mod (1− Tv)

 .

For an equivariant K-class [E ] ∈ KT (OGr(n; 2n+1)) and a maximal admissible subset B, we
write [E ]B ∈ Z[T±1

1 , . . . , T±1
n ] for the B-th factor of the image of [E ] under the restriction map in

Theorem 2.1.

For a matroid M on a ground set [n], Fink and Speyer defined a T -equivariant K-class y(M)

on a Grassmannian Gr(r;n). We now define an analogous T -equivariant K-class y(D) for a
delta-matroid D. For a feasible set B of D, denote by coneB(D) the tangent cone of P (D) at the
vertex eB∩[n], i.e.,

coneB(D) = R≥0{P (D)− eB∩[n]}.

Since coneB(D) is a rational strongly convex cone whose set of primitive rays is a subset of TB ,
the multigraded Hilbert series

Hilb(coneB(D) ∩ Zn) =
∑

m∈coneB(D)∩Zn

T−m

is a rational function whose denominator divides
∏

v∈TB
(1− T−v) [Sta12, Theorem 4.5.11].
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Proposition-Definition 2.2. For a delta-matroid D on [n, n̄], define y(D) ∈ KT (OGr(n; 2n+1)T )

by

y(D)B =

Hilb(coneB(D) ∩ Zn) ·
∏

v∈TB
(1− T−v) if B a feasible set of D

0 if otherwise

for any maximal admissible subsetB ⊂ [n, n̄]. Then y(D) lies in the subringKT (OGr(n; 2n+1)).

We omit the proof of the proposition, as it is essentially identical to the proof of the anal-
ogous statement [FS12, Proposition 3.2] for matroids. Alternatively, it can be deduced from
Theorem 2.8 and Proposition 2.9. Let us note however the following difference from the ma-
troid case. For a matroid M on [n], the class y(M) in [FS12] has the property that if [L] ∈ Gr(r;n)

realizes M, then y(M) equals [O
T ·[L]

], theK-class of the structure sheaf of the torus-orbit closure.
This property often fails for delta-matroids because delta-matroid base polytopes often do not
enjoy certain polyhedral properties enjoyed by matroid base polytopes, namely normality and
very ampleness.

Recall that a lattice polytope P ⊂ Rn (with respect to the lattice Zn) is normal if for all positive
integer ℓ one has (ℓP ) ∩ Zn = {m1 + · · ·+mℓ : mi ∈ P ∩ Zn for all i = 1, . . . , ℓ}. If P is normal,
then it is very ample, meaning that for every vertex v of P , one has(

R≥0{P − v}
)
∩ Zn = Z≥0{(P − v) ∩ Zn}.

Proposition 2.3. For a delta-matroid D realized by [L] ∈ OGr(n; 2n + 1), the T -equivariant
K-class [O

T ·[L]
] of the structure sheaf of the torus-orbit-closure of L satisfies

[O
T ·[L]

]B =

Hilb
(
Z≥0{(P (D)− eB∩[n]) ∩ Zn}

)∏
v∈TB

(1− T−v) if B a feasible subset of D

0 if otherwise

for any maximal admissible subset B. In particular, the T -equivariant K-class y(D) equals
[O

T ·[L]
] if and only if P (D) is very ample.

Proof. For a finite subset A ⊂ Zn, let YA be the projective toric variety defined as the closure of
the image of the map T → P|A |−1 given by t 7→ (tm)m∈A . Writing e0 = 0 ∈ Zn, let us consider

A (L) =

{
eS :

S ⊂ [n, n̄] ∪ {0} with |S| = n such that
the S-th Plücker coordinate of L is nonzero

}
.

There is an embedding of P|A |−1 into P(
∧n

k
2n+1) which identifies the orbit closure T · [L] ⊂

P(
∧n

k
2n+1) with YA (L). We now claim that

A (L) = {m+m′ − (1, . . . , 1) : m,m′ ∈ P (D) ∩ Zn} ⊂ P̂ (D).

That is, up to translation by −(1, . . . , 1), the set A (L) is the set of all sums of two (not necessarily
distinct) lattice points in P (D). When B is a feasible set of D, in the T -invariant affine chart UB

around LB , the coordinate ring O
T ·[L]

(UB) equals the semigroup algebra k[Z≥0{m − eB : m ∈
A (L)}], which the claim implies equals k[Z≥0{(P (D)− eB∩[n])∩Zn}], and thus the proposition
follows from [MS05, Theorem 8.34] (see also [FS10, Theorem 2.6]).
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For the claim, we first note that A (L) is contained in P̂ (D) ∩ Zn and contains all vertices of
P̂ (D) because the moment polytope µ(T · [L]) equals P̂ (D) by [EFLS24, Proposition 6.2]. The
Plücker embedding OGr(n; 2n + 1) ↪→ P(

∧n
k
2n+1) is given by the square O(2) of the very

ample generator O(1) of the Picard group of OGr(n; 2n + 1). Because homogeneous spaces are
projectively normal, we find that T · [L] is isomorphic to YA for some subset A ⊆ P (D)∩Zn that
includes all vertices of P (D). But all lattices points of P (D) are its vertices, so A = P (D) ∩ Zn.
Therefore, the projective embedding of T · [L] given by O(2) is isomorphic to Y2A where 2A =

{m+m′ : m,m′ ∈ A }, which after translating each element by −(1, . . . , 1) is exactly A (L). □

The polytope P (D) can fail to be very ample in various degrees. See Section 5 for a series of
examples. In particular, the class y(D) may not equal [O

T ·[L]
] when L realizes D.

Remark 2.4. Proposition 2.3 also implies that the class [O
T ·[L]

] depends only on the delta-
matroid D, independently of the realization L of D. The analogous statement fails when delta-
matroids are considered as “type C Coxeter matroids,” a.k.a. symplectic matroids. More pre-
cisely, in [BGW98], realizations of delta-matroids are points on the Lagrangian Grassmannian
LGr(n; 2n) consisting of maximal isotropic subspaces with respect to the standard symplec-
tic form on k

2n. However, in this case, the K-class of the torus-orbit-closure of a point [L] ∈
LGr(n; 2n) may not be determined by the delta-matroid that L realizes. See the following ex-
ample. This is related to the fact that the parabolic subgroup corresponding to OGr(n; 2n+1) is
minuscule, but the parabolic subgroup corresponding to LGr(n; 2n) is not [BL00, Section 2.11].

Example 2.5. Let C4 (with coordinates labeled by (1, 2, 1̄, 2̄) be equipped with the standard sym-
plectic form. The torus T = (C∗)2 acts on C4 by (t1, t2)·(x1, x2, x1̄, x2̄) = (t1x1, t2x2, t

−1
1 x1̄, t

−1
2 x2̄).

For each z ∈ C, consider the 2-dimensional subspace Lz spanned by (1, 0, 1, z) and (0, 1, z, 1),
which is isotropic. For all z ̸= ±1, every Plücker coordinate corresponding to a maximal admis-
sible subset is nonzero. Thus, the moment polytope µ(T · [Lz]) always equals [−1, 1]2 ⊂ R2 as
long as z ̸= ±1. However, when z = 0, one computes that T · [Lz] ≃ P1 × P1, whereas T · [Lz] is
a toric surface with four conical singularities when z ̸= ±1 and z ̸= 0. As a result, one verifies
that the [O

T ·[L0]
] ̸= [O

T ·[L3]
], even as non-equivariant K-classes.

2.2. K-classes on the type B permutohedral variety. We explain how the geometry of the type
B permutohedral variety XBn relates to the class y(D) on OGr(n; 2n + 1), which we will use to
prove Theorem A. We begin by briefly reviewing the relation between delta-matroids and XBn ,
details of which can be found in [EFLS24, Section 2].

Definition 2.6. Let W be the signed permutation group on [n, n̄], which is the subgroup of the
permutation group S[n,n̄] defined as

W = {w ∈ S[n,n̄] : w(i) = w(i) for all i ∈ [n]}.

The Bn permutohedral fan ΣBn is the complete fan in Rn, unimodular with respect to the lattice
Zn, whose maximal cones are labeled by elements of W , with the maximal cone σw being

R≥0{ew(1), ew(1) + ew(2), . . . , ew(1) + ew(2) + · · ·+ ew(n)} for each w ∈W.
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Let XBn be the (smooth projective) toric variety of the fan ΣBn , which contains T as its open
dense torus. For each w ∈W , let ptw be the T -fixed point of XBn corresponding to the maximal
cone σw. We follow [Ful93, CLS11] for toric variety conventions.

The normal fan of a delta-matroid polytope P (D) is always a coarsening of ΣBn
[ACEP20,

Section 4.4]. Hence, under the standard correspondence between nef toric line bundles and
polytopes, the polytope P (D) defines a line bundle whoseK-class we denote [P (D)] ∈ K(XBn).
See [CLS11, Chapter 6] and [EFLS24, Section 2.2] for details. The assignment D 7→ [P (D)] is
valuative in the following sense.

Definition 2.7. For a subset S ⊂ Rn, let 1S : Rn → Z be defined by 1S(x) = 1 if x ∈ S and
1S(x) = 0 if otherwise. Define the valuative group of delta-matroids on [n, n̄] to be

I(DMatn) = the subgroup of Z(Rn) generated by {1P (D) : D a delta-matroid on [n, n̄]}.

A function f on delta-matroids valued in an abelian group is valuative if it factors through
I(DMatn).

We record the following useful consequence of [EFLS24, Theorem D].

Theorem 2.8. Let D = {D a delta-matroid on [n, n̄] : D has a realization L with [O
T ·[L]

] = y(D)}.
Then, the delta-matroids in D generate both the K-ring K(XBn), considered as an abelian
group, and the valuative group I(DMatn). That is, the set {[P (D)] : D ∈ D} generates K(XBn

),
and the set {1P (D) : D ∈ D} generates I(DMatn).

Proof. We first note that the set D includes the family of delta-matroids known as Schubert delta-
matroids [EFLS24, Definition 2.6]. Indeed, Schubert delta-matroids are realizable [EFLS24, Ex-
ample 6.3], and their base polytopes, being isomorphic to a polymatroid polytope, are normal
[Wel76, Chapter 18.6, Theorem 3]. Hence, by Proposition 2.3, the set D includes all Schubert
delta-matroids. Now, Schubert delta-matroids generate both K(XBn

) [EFLS24, Theorem D]
and I(DMatn) [EFLS24, Proposition 2.7]. □

Lastly, the K-class y(D) relates to the geometry of XBn in the following way. When D

has a realization [L] ∈ OGr(n; 2n + 1), there exists a unique T -equivariant map φL : XBn
→

OGr(n; 2n + 1) such that the identity point of the torus T ⊂ XBn
is mapped to [L] [EFLS24,

Proposition 7.2]. Note that its image is the torus-orbit-closure T · [L].

Proposition 2.9. The assignment D 7→ y(D) is the unique valuative map such that y(D) =

φL∗[OXBn
] whenever D has a realization L.

Proof. The assignment D 7→ y(D) is valuative because taking the Hilbert series of the tangent
cone at a chosen point is valuative. When D has a realization L and P (D) is very ample, the
map φL, considered as a map XBn

→ T · [L] of toric varieties, is induced by a map of tori with
a connected kernel. Hence, in this case we have φL∗[OXn

] = [O
T ·[L]

] by [CLS11, Theorem 9.2.5]
and [O

T ·[L]
] = y(D) by Proposition 2.3. The uniqueness then follows from Theorem 2.8.
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To see that y(D) = φL∗[OXBn
] whenever D has a realization L, even if P (D) is not very ample,

we compute the pushforward using the Atiyah–Bott formula. First, for a maximal admissible
B ⊂ [n, n̄], the construction of the map φL shows that the fiber φ−1

L (LB) is

φ−1
L (LB) =


ptw ∈ XT

Bn
:
w ∈W such that the dual cone of

R≥0{P (D)− eB∩[n]} contains σw

 if B a feasible set of D

∅ if otherwise.

We note that, because the normal fan of P (D) is a coarsening of ΣBn
, for B a feasible set

of D, the cones {σw : ptw ∈ φ−1
L (LB)} form a polyhedral subdivision of the dual cone of

R≥0{P (D) − eB∩[n]}. Now, the desired result follows from combining [CG10, Theorem 5.11.7]
and the generalized Brion’s formula [Ish90, Theorem 2.3], [Bri88]. □

Remark 2.10. One could have defined aK-class on OGr(n; 2n+1) for an arbitrary delta-matroid
D via the formula in Proposition 2.3 instead of Proposition-Definition 2.2. Abusing notation,
denote this alternate K-class by [OT ·D], even though D may not be realizable. Proposition 2.3
states that y(D) = [OT ·D] exactly when P (D) is very ample (with respect to Zn). Unlike D 7→
y(D), the assignment D 7→ [OT ·D] enjoys the feature that [OT ·D] = [O

T ·[L]
] whenever D has a

realization L, but it is not valuative by Proposition 2.9. Moreover, Theorem A fails when [OT ·D]

is used in place of y(D), and we do not know a description of π1∗π∗
n

(
[OT ·D] · [O(1)]

)
in terms of

known delta-matroid invariants. See Section 5 for examples and questions about [OT ·D].

3. THE EXCEPTIONAL HIRZEBRUCH–RIEMANN–ROCH FORMULA

In this section, we prove Theorem B. We first construct ψ and prove that it is an isomorphism
after inverting 2. Then, we discuss how ψ relates to the isotropic tautological classes of delta-
matroids constructed in [EFLS24], which we use to finish the proof of Theorem B.

3.1. The isomorphism. We follow the notation and conventions in [EFLS24, Sections 2.1 and
3.1], recalling what is necessary. For a variety with a T -action, we will denote the Chow ring
and equivariant Chow ring by A•(X) and A•

T (X) respectively. We use the language of moment
graphs; see [FS10, Section 2.4] or [Mac07, Lecture 2].

We first define the moment graph Γ associated to the T -action on XBn
. The vertex set V (Γ)

is the signed permutation group W , which indexes the torus-fixed points of XBn
, and the edges

E(Γ) are given by (w,wτ) for a transposition τ ∈ {(1, 2), (2, 3), . . . , (n − 1, n), (n, n̄)}, indexing
T -invariant P1’s joining torus-fixed points of XBn . Denote τi,i+1 := (i, i + 1) and τn := (n, n̄).
We have edge labels c(w,wτ) which are characters of T up to sign (i.e., elements of Zn/± 1) by
taking c(w,wτn) = ±ew(n) ∈ Zn/± 1 and c(w,wτi,i+1) = ±(ew(i) − ew(i+1)) ∈ Zn/± 1, recalling
the convention that ei = −ei. For an edge label c(ij), write c(ij)k for the k-component.

By the identification of the character lattice of T with Zn, we write KT (pt) = Z[T±1
1 , . . . , T±1

n ]

and A•
T (pt) = Z[t1, . . . , tn]. By equivariant localization we have

KT (XBn) = {(fv)v∈V (Γ) : fi − fj ≡ 0 (mod 1−
n∏

k=1

T
c(ij)k
k ) for all (i, j) ∈ E(Γ)} ⊂

⊕
v∈Γ

KT (pt),
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A•
T (XBn

) = {(fv)v∈V (Γ) : fi − fj ≡ 0 (mod

n∑
k=1

c(ij)k · tk) for all (i, j) ∈ E(Γ)} ⊂
⊕
v∈Γ

A•
T (pt).

Note that both compatibility conditions are invariant under c(ij) 7→ −c(ij). These are algebras
over the rings Z[T±1

1 , . . . , T±1
n ] and Z[t1, . . . , tn] respectively, which are identified as subrings of

KT (XBn
) and A•

T (XBn
) via the constant collections of (fv)v∈V . Additionally, we have that

K(XBn) = KT (XBn)/(T1 − 1, . . . , Tn − 1) and A•(XBn) = A•
T (XBn

)/(t1, . . . , tn).

Finally, there areW -actions onKT (XBn) by (w ·f)w′(T1, . . . , Tn) = fw−1w′(Tw(1), . . . , Tw(n)), and
on AT (XBn) by (w · f)w′(t1, . . . , tn) = fw−1w′(tw(1), . . . , tw(n)), where we set

Ti = T−1
i and ti = −ti.

This action descends to the usual action of W ⊂ AutXBn
on K(XBn

) and A•(XBn
).

Theorem 3.1. There is an injective ring map

ψT : KT (XBn
) → A•

T (XBn
)[1/(1± ti)] := A•

T (XBn
)[{ 1

1−ti
, 1
1+ti

}1≤i≤n]

obtained by

(1) (ψT (f))w(t1, . . . , tn) = fw

(
1 + t1
1− t1

, . . . ,
1 + tn
1− tn

)
.

This map descends to a non-equivariant map ψ : K(XBn
) → A•(XBn

), which is injective and
becomes an isomorphism after tensoring with Z[ 12 ].

Finally, ψT and ψ are W -equivariant in the sense that they intertwine the W -actions:

ψT (w · f) = w · ψT (f) and ψ(w · f) = w · ψ(f).

Proof. The map ψT is defined via the composition

KT (XBn
) → KT (X

T
Bn

) → A•
T (X

T
Bn

)[{ 1
1−ti

, 1
1+ti

}1≤i≤n],

where the second map is given by (1). We claim the image of this composition lands in the im-
age of the injective map A•

T (XBn
) → A•

T (X
T
Bn

)[{ 1
1−ti

, 1
1+ti

}1≤i≤n]. If this is the case, then ψT is
an injective ring homomorphism, as the maps in the composition are injective ring homomor-
phisms. We therefore need to check that the compatibility conditions are preserved by ψT . Let
p(z) = 1+z

1−z .

• If c(ij) = ±ek, then fi(T1, . . . , Tn) = fj(T1, . . . , Tn) when we set Tk = 1. Because p(0) =
1, this implies that fi(p(t1), . . . , p(tn)) = fj(p(t1), . . . , p(tn)) when we set tk = 0.

• If c(ij) = ±(ek − eℓ), then fi(T1, . . . , Tn) = fj(T1, . . . , Tn) when we set Tk = Tℓ. This
implies that fi(p(t1), . . . , p(tn)) = fj(p(t1), . . . , p(tn)) when we set ti = tj .

• If c(ij) = ±(ek+eℓ), then fi(T1, . . . , Tn) = fj(T1, . . . , Tn) when we set Tk = T−1
ℓ . Because

p(z) = p(−z)−1, this implies that fi(p(t1), . . . , p(tn)) = fj(p(t1), . . . , p(tn)) when we set
tk = −tℓ.
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We now check that the map ψT descends to a map ψ : K(XBn) → A•(XBn). Note that, under the
map A•

T (XBn) → A•(XBn), we have 1 ± ti 7→ 1, so there is an induced map A•
T (XBn)[

1
1±ti

] →
A•(XBn

). To obtain the map ψ, we have to show that, under the composition KT (XBn
) →

A•(XBn
)[ 1

1±ti
] → A•(XBn

), the ideal (T1−1, . . . , Tn−1) gets mapped to 0. Indeed, ψT (Ti−1) =
2ti
1−ti

, which gets mapped to 0 under the map A•
T (XBn

)[ 1
1±ti

] → A•(XBn
) because ti maps to 0.

We now check thatψ is an isomorphism after inverting 2. Note that, under the mapKT (XBn
) →

A•
T (XBn)[

1
1±ti

][ 12 ], the element 1+Ti maps to the unit 2
1−ti

, and hence, by the universal property
of localization, we have a map KT (XBn)[

1
1+Ti

][ 12 ] → A•
T (XBn)[

1
1±ti

][ 12 ]. We claim that this is an
isomorphism.

Indeed, first note that it is clearly injective by definition of ψT , so we just have to check sur-
jectivity. For g ∈ A•(XBn

)[ 1
1±ti

][ 12 ], it is easy to see that gw(T1−1
T1+1 , . . . ,

Tn−1
Tn+1 ) ∈ KT (pt)[

1
1+Ti

][ 12 ],
and arguing as before, we see that

w 7→ gw

(
T1 − 1

T1 + 1
, . . . ,

Tn − 1

Tn + 1

)
gives a preimage of g in KT (XBn

)[ 1
1+Ti

][ 12 ].
Now the ideal (T1 − 1, . . . , Tn − 1) ⊂ KT (XBn

)[ 1
1+Ti

][ 12 ] maps to the ideal (−2t1
1−t1

, . . . , −2tn
1−tn

) =

(t1, . . . , tn) ⊂ A•(XBn
)[ 1

1±ti
][ 12 ]. Hence we obtain that ψ ⊗ Z[ 12 ] is the isomorphism

K(XBn
)

[
1

2

]
= KT (XBn

)

[
1

2

]
/(T1 − 1, . . . , Tn − 1) = KT (XBn

)

[
1

1 + Ti

] [
1

2

]
/(T1 − 1, . . . , Tn − 1)

∼= A•
T (XBn)

[
1

1± ti

] [
1

2

]
/(t1, . . . , tn)

= A•
T (XBn

)

[
1

2

]
/(t1, . . . , tn) = A•(XBn

)

[
1

2

]
.

Finally, we check W -equivariance. Let ϵi(w) equal 1 if w(i) ∈ {1, . . . , n} and −1 if w(i) ∈
{1, . . . , n}. Then, for f ∈ KT (XBn

), we verify the W -equivariance of ψT by computing

(w · ψT (f))w′ = fw−1w′

(
1 + tw(1)

1− tw(1)
, . . . ,

1 + tw(n)

1− tw(n)

)
, and

(ψT (w · f))w′ = fw−1w′

((
1 + ϵ1(w)tw(1)

1− ϵ1(w)tw(1)

)ϵ1(w)

, . . . ,

(
1 + ϵn(w)tw(n)

1− ϵn(w)tw(n)

)ϵn(w)
)

which are equal as p(z) = 1+z
1−z has p(z) = p(−z)−1. TheW -equivariance then descends to ψ. □

Remark 3.2. Although we state the theorem above forXBn , we note that the only hypothesis on
the moment graph Γ used in the proof up to the verification of W -equivariance is that all edge
labels lie in the set {±ek : 1 ≤ k ≤ n}∪{±(ek+eℓ) : 1 ≤ k < ℓ ≤ n}∪{±(ek−eℓ) : 1 ≤ k < ℓ ≤ n}.

Remark 3.3. The map ψ : K(XBn
) → A•(XBn

) differs from the previous Hirzebruch–Riemann–
Roch-type isomorphisms for XBn established in [EFLS24], but is related as follows. Let ϕB

and ζB be the exceptional isomorphisms K(XBn)
∼→ A•(XBn) as in [EFLS24, Theorem C] and

[EFLS24, Proposition 3.7]. Comparing the formulas for their T -equivariant maps, one can show
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that ψ is the unique ring map such that

ψ([L]) = ϕB([L]) · ζB([L]) for any line bundle L on XBn
.

3.2. Isotropic tautological classes. We now discuss the “isotropic tautological class” [ID] ∈
K(XBn

) of a delta-matroid D, which was introduced in [EFLS24]. We show how this class is
related to [P (D)] via the ψ map, which will allow us to use the relationship between [ID] and
interlace polynomials established in [EFLS24, Theorem 7.15].

By pulling back the tautological sequence 0 → S → O⊕2n+1
Gr(n;2n+1) → Q → 0 involving the tau-

tological subbundle and quotient bundle on the Grassmannian, one has a short exact sequence

(2) 0 → I → O⊕2n+1
OGr(n;2n+1) → Q → 0

of vector bundles on OGr(n; 2n + 1). For a realization [L] ∈ OGr(n; 2n + 1) of a delta-matroid
D, pulling back this sequence via φL yields T -equivariant vector bundles IL and QL on XBn .
In general, we have the following T -equivariant K-classes for a delta-matroid [EFLS24, Propo-
sition 7.4]. Denote Tī = T−1

i for i ∈ [n], and let Bw(D) denote the w-minimal feasible set of D for
w ∈ W , which is the feasible set corresponding to the vertex of P (D) that minimizes the inner
product with any vector v in the interior of σw.

Definition 3.4. For a delta-matroid D on [n, n̄], define [ID] ∈ KT (XBn
) to be the isotropic tauto-

logical class of D, given by

[ID]w =
∑

i∈Bw(D)

Ti for all w ∈W.

Define [QD] ∈ KT (XBn
) as [O⊕2n+1

XBn
]− [ID], that is,

[QD]w = 1 +
∑

i∈[n,n̄]\Bw(D)

Ti.

We will use the following fundamental computation relating Chern classes of isotropic tau-
tological classes and interlace polynomials. For [E ] ∈ K(XBn), let ci(E) denote its i-th Chern
class, and denote by c(E , q) =

∑
i≥0 ci(E)qi its Chern polynomial. Recall that γ is the class of

the anti-canonical divisor on XBn
, which is the line bundle on XBn

corresponding to the cross
polytope.

Theorem 3.5. [EFLS24, Theorem 7.15] Let D be a delta-matroid on [n, n̄]. Then∫
XBn

c(I∨
D, v) ·

1

1− γ
= (1 + v)n IntD

(
1− v

1 + v

)
.

Many constructions using isotropic tautological classes are valuative (cf. [BEST23, Proposi-
tion 5.6]), which is often useful when combined with Theorem 2.8.

Lemma 3.6. Any function that maps a delta-matroid D to a fixed polynomial expression in the
exterior powers of [ID] or [QD] or their duals is valuative, and similarly for a fixed polynomial
expression in the Chern classes of [ID] or [QD].
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Proof. Let Z2[n,n̄]

be the free abelian group with basis given by subsets of [n, n̄]. By [EHL23,
Proposition A.4] (see also [McM09, Theorem 4.6]), the function

{delta-matroids on [n, n̄]} →
⊕
w∈W

Z2[n,n̄]

given by D 7→
∑
w∈W

eBw(D)

is valuative. Any such polynomial expression depends only on Bw(D) for each w ∈ W , and so
it factors through this map and is therefore valuative. □

We also note the following property of Chern classes of [ID] and [QD].

Proposition 3.7. Let D be a delta-matroid. Then c(ID) = c(Q∨
D) and c(ID)c(I∨

D) = 1.

Proof. We claim that one has the following short exact sequence of vector bundles

0 → I → Q∨ → OOGr(n;2n+1) → 0.

The claim implies the proposition for realizable delta-matroids, and by valuativity (Theorem 2.8
and Lemma 3.6), for all delta-matroids. For the claim, let b be the map k

2n+1 → (k2n+1)∨

given by the bilinear pairing of the quadratic form q, that is, b(x) : y 7→ q(x + y) − q(x) − q(y).
Note that if L ⊆ k

2n+1 is isotropic, then b(L) ⊆ (k2n+1/L)∨ ⊆ (k2n+1)∨, since b(ℓ)(ℓ′) =

q(ℓ + ℓ′) − q(ℓ) − q(ℓ′) = 0 for all ℓ, ℓ′ ∈ L. When chark ̸= 2, the map b is an isomorphism,
and when chark = 2, its kernel is span(e0), which is not isotropic. Hence, the map b gives
an injection of vector bundles 0 → I → Q∨, whose quotient line bundle is necessarily trivial
because det I ≃ detQ∨ from (2).

Alternatively, one can prove the proposition via localization as follows. InKT (XBn), we have
that [ID]+1 = [Q∨

D], which gives that c(ID) = c(Q∨
D), and therefore that c(I∨

D) = c(QD). Because
[ID] + [QD] = [O⊕2n+1

XBn
], we have that c(ID)c(QD) = 1, and substituting gives the result. □

In order to prove Theorem B, it remains to prove the Hirzebruch–Riemann–Roch-type for-
mula. We prepare by doing the following computation, which will be used in the proof of
Theorem A as well. Recall that P̂ (D) = 2P (D)− (1, . . . , 1).

Proposition 3.8. Let D be a delta-matroid. Then ψ([P (D)]) = c(I∨
D).

Proof. The class in KT (XBn
) defined by the line bundle corresponding to P̂ (D) under the usual

correspondence between polytopes and nef toric line bundles on a toric variety has

[P̂ (D)]w =
∏

i∈Bw(D)

Tī.

Therefore, we see that

ψT ([P̂ (D)])w =
∏

a∈Bw(D)∩[n]

1− ta
1 + ta

·
∏

ā∈Bw(D)∩[n̄]

1 + ta
1− ta

.

On the other hand, by the definition of [ID] and [QD], we have that

cT (ID)w =
∏

i∈Bw(D)

(1 + ti), and cT (QD)w =
∏

i∈Bw(D)

(1− ti).
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We see that ψT ([P̂ (D)]) = cT (QD)/c
T (ID). Because c(I∨

D) = c(ID)−1 = c(QD) by Proposi-
tion 3.7, we get that

ψ([P̂ (D)]) = ψ([P (D)]2) = c(I∨
D)

2.

In a graded ring, a class which has degree zero part equal to 1 has at most one square root with
degree zero part equal to 1. Using this, we conclude that ψ([P (D)]) = c(I∨

D). □

Proof of Theorem B. We have already constructed ψ, so it suffices to show that, for any [E ] ∈
K(XBn),

χ(XBn , [E ]) =
1

2n

∫
XBn

ψ([E ]) · 1

1− γ
.

By Theorem 2.8, K(XBn) is spanned by the classes [P (D)] for D a delta-matroid, so it suffices to
check this for [E ] = [P (D)]. Note that χ(XBn , [P (D)]) is the number lattice points in P (D), which
is the number of feasible sets of D. It follows from Proposition 3.5 that 1

2n

∫
XBn

c(I∨
D) · 1

1−γ is the
number of feasible sets of D as well, so the result follows from Proposition 3.8. □

4. THE PUSH-PULL COMPUTATION

Our strategy to prove Theorem A is based on transferring the computation of π1∗π∗
n(y(D) ·

[O(1)]) to a computation on OGr(n; 2n + 1). This idea first appeared in [FS12, Lemma 4.1]
and was also used in [DES21]. This is implemented in Proposition 4.1. We then reduce to a
computation on XBn , following the strategy in [BEST23, Section 10.2].

Proposition 4.1. For ϵ ∈ K(OGr(n; 2n+ 1)), define a polynomial

Rϵ(v) =
∑
i≥0

χ(OGr(n; 2n+ 1), ϵ · [
∧iQ∨])vi.

Then π1∗π∗
nϵ = Rϵ(u− 1) ∈ K(P2n), where u = [OH ] ∈ K(P2n) is the class of the structure sheaf

of a hyperplane H ⊂ P2n.

Proof. We prove the claim in a slighter more general setting: Let X be a variety with a short
exact sequence of vector bundles 0 → S → O⊕N

X → Q → 0. Let PX(S) = Proj Sym• S∨ be the
projective bundle with the projection π : PX(S) → X and the inclusion PX(S) ↪→ X × PN−1.
Let ρ : PX(S) → PN−1 be the composition PX(S) ↪→ X × PN−1 → PN−1. We claim that for
ϵ ∈ K(X), one has ∑

i≥0

χ
(
X, ϵ · [

∧iQ∨]
)
(u− 1)i = ρ∗π

∗ϵ,

where u is the class of the structure sheaf of a hyperplane in PN−1.
To prove the claim, since K(PN−1) ≃ Z[u]/(uN ), and since χ(PN−1, uk) is equal to 1 if 0 ≤

k ≤ N − 1 and is equal to 0 if k ≥ N , we first note that

ξ =
∑
i≥0

χ
(
PN−1, ξ · uN−1−i · (1− u)

)
ui for ξ ∈ K(PN−1).
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We consider the polynomial∑
i≥0

χ
(
PN−1, ρ∗π

∗ϵ · uN−1−i(1− u)
)
vi = χ

(
PN−1, ρ∗π

∗ϵ · vN · 1− u

v
· 1

1− uv−1

)

= vNχ

(
PN−1, ρ∗π

∗ϵ · 1

1 + (1− u)−1(v − 1)

)
.

Letting λ = (1 − u)−1 = [O(1)] ∈ K(PN−1) and substituting v with v + 1, the right-hand-side
becomes

(v + 1)Nχ

(
PN−1, ρ∗π

∗ϵ · 1

1 + λv

)
= (v + 1)Nχ

(
X, ϵ · π∗ρ∗

(
1

1 + λv

))
,

where the equality is due to the projection formula in K-theory. Thus, to finish we need show

(v + 1)Nπ∗ρ
∗
(

1

1 + λv

)
=
∑
i≥0

[
∧iQ∨]vi.

But this follows by combining the following three facts from [Har77, III.8] and [Eis95, A.2]:

• We have π∗ρ∗(λi) = [Symi S∨] for all i ≥ 0.
• We have

(∑
i≥0[

∧i S∨]vi
)(∑

i≥0[
∧i Q∨]vi

)
= (v + 1)N from the dual short exact se-

quence 0 → Q∨ → (O⊕N
X )∨ → S∨ → 0.

• We have
(∑

i≥0(−1)i[Symi S∨]vi
)(∑

i≥0[
∧i S∨]vi

)
= 1 from the exactness of the Koszul

complex
∧• S∨ ⊗ Sym• S∨ → OX → 0.

Lastly, the desired result follows from the general claim by setting X = OGr(n; 2n + 1) and
S = I, since OFl(1, n; 2n+ 1) = POGr(n;2n+1)(I). □

Before proving Theorem A, we make one more preparatory computation.

Proposition 4.2. Let D be a delta-matroid. Then

ψ

∑
p≥0

[∧pQ∨
D]v

p

 = (v + 1)n+1 · c
(
ID,

v − 1

v + 1

)
· c(ID).

Proof. We compute equivariantly. We have that∑
p≥0

[∧pQ∨
D]wv

p = (1 + v)
∏

i∈Bw(D)

(1 + Tiv),

see, e.g., [EHL23, Section 2]. Therefore, we get that

ψT

∑
p≥0

[∧pQ∨
D]


w

vp = (1 + v)
∏

i∈Bw(D)

(
1 +

1 + ti
1− ti

v

)

= (1 + v)n+1
∏

i∈Bw(D)

(
1 +

ti(v − 1)

v + 1

)
·
∏

i∈Bw(D)

1

(1− ti)

= (1 + v)n+1 · cT
(
ID,

v − 1

v + 1

)
· cT (I∨

D)
−1.

As c(I∨
D)

−1 = c(ID) by Proposition 3.7, the result follows. □



16 CHRISTOPHER EUR, MATT LARSON, HUNTER SPINK

Proof of Theorem A. By Proposition 4.1, we need to show that

Ry(D)·[O(1)](v) :=
∑
p≥0

χ(OGr(n; 2n+ 1), y(D) · [O(1)] · [∧pQ∨])vp = (v + 1) IntD(v).

The left-hand-side is valuative by Proposition 2.9, and the right-hand-side also by [ESS21, The-
orem 3.6]. Thus, by Theorem 2.8, it suffices to verify this equality when D has a realization
[L] ∈ OGr(n; 2n + 1) such that y(D) = [O

T ·[L]
]. As in the proof of Proposition 2.9, in this case

we have a toric map φL : XBn
→ T · [L] such that φL∗[OXBn

] = y(D), and by construction
φ∗
L[O(1)] = [P (D)] and φ∗

L[∧pQ∨] = [∧pQ∨
D]. Hence, by the projection formula, we have that

Ry(D)·[O(1)](v) =
∑
p≥0

χ(XBn
, [P (D)] · [∧pQ∨

D])v
p.

Applying Theorem B and Proposition 4.2, we get that

Ry(D)·[O(1)](v) =
1

2n

∫
XBn

1

1− γ
· c(I∨

D) · (v + 1)n+1 · c
(
ID,

v − 1

v + 1

)
· c(ID)

=
(v + 1)n+1

2n

∫
XBn

1

1− γ
· c
(
ID,

v − 1

v + 1

)
= (v + 1) IntD(v).

In the second line we used Proposition 3.7, and in the third line we used Proposition 3.5. □

5. STRUCTURE SHEAVES OF ORBIT CLOSURES

We noted in Remark 2.10 that, using the formula in Proposition 2.3, one may assign a K-
class [OT ·D] to a delta-matroid D, different from y(D). It has the feature that [OT ·D] = [O

T ·[L]
]

whenever D has a realization [L] ∈ OGr(n; 2n + 1). Here, we collect various examples and
questions about this K-class. The Macaulay2 code used for the computation of these examples
can be found at https://github.com/chrisweur/KThryDeltaMat. A database of small delta-
matroids can be found at https://eprints.bbk.ac.uk/id/eprint/19837/ [FMN18].

We start with the smallest example where y(D) ̸= [OT ·D].

Example 5.1. Let L ⊂ k
7 be the maximal isotropic subspace given by the row span of the matrix1 0 0 0 a b 0

0 1 0 −a 0 c 0

0 0 1 −b −c 0 0


for a, b, c generic elements of k. Then the delta-matroid D represented by L has feasible sets

{1, 2, 3}, {1, 2̄, 3̄}, {1̄, 2, 3̄}, {1̄, 2̄, 3}.

The stabilizer of [L] is {(1, 1, 1), (−1,−1,−1)} ∈ T , so the map XB3
→ T · [L] is a double cover.

This implies that y(D) ̸= [O
T ·[L]

]. Alternatively, one can verify that P (D) is not very ample with

https://github.com/chrisweur/KThryDeltaMat
https://eprints.bbk.ac.uk/id/eprint/19837/
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respect to Z3 and use Proposition 2.3. We have π1∗π∗
n([OT ·[L]

] · [O(1)]) = R[O
T ·[L]

]·[O(1)](u− 1) by
Proposition 4.1. A computer computation shows that

R[O
T ·[L]

]·[O(1)](v) = 4v2 + 8v + 4 = (v + 1) IntD(v).

In other words, here Theorem A holds with [O
T ·[L]

] in place of y(D) even though y(D) ̸= [O
T ·[L]

].

Let us say that a delta-matroid has property (∗) if Theorem A holds with [OT ·D] in place of
y(D), that is, by Proposition 4.1, if

(∗) R[OT ·D]·[O(1)](v) = (v + 1) IntD(v).

We now feature an example where (∗) fails.

Example 5.2. Let D be the delta-matroid with feasible sets

{1̄, 2̄, 3̄, 4̄}, {1, 2̄, 3̄, 4̄}, {1̄, 2, 3̄, 4̄}, {1̄, 2̄, 3, 4̄}, {1̄, 2̄, 3̄, 4}, {1̄, 2, 3, 4}, {1, 2̄, 3, 4}, {1, 2, 3̄, 4}, {1, 2, 3, 4̄}.

A computer computation shows that (v + 1) IntD(v) = 9 + 16v + 7v2, but

R[OT ·D]·[O(1)](v) = 9 + 16v + 6v2 − v3 + v4 + v5.

A computer search shows that Example 5.2 is the only delta-matroid up to n = 4 that fails (∗).
The delta-matroids in the above two examples differ in the following ways. The delta-matroid
in Example 5.1

• is realizable,
• is even in the sense that the parity of |B ∩ [n]| is constant over all feasible sets B, and
• has the polytope P (D) very ample with respect to the lattice (affinely) generated by its

vertices.

The last property, when D has a realization [L], is equivalent to stating that T · [L] is a normal
variety. All three properties fail for the delta-matroid in Example 5.2. We thus ask:

Question 5.3. When does Theorem A hold with [OT ·D] in place of y(D)? More specifically, is (∗)
satisfied when

• D is realizable?
• D is an even delta-matroid?
• the polytope P (D) is very ample with respect to the lattice (affinely) generated by its

vertices?

We expect (∗) to fail for some realizable delta-matroid, but we do not know any examples.
We conclude with the following realizable even delta-matroid example.

Example 5.4. Let G be the graph with vertex set [7] and edges {12, 13, 23, 34, 45, 56, 57, 67}. Let
A(G) be its adjacency matrix, considered over F2 so that it is skew-symmetric with diagonal
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entries equal to zero. Let D be the delta-matroid realized by the row span of the 7× (7 + 7 + 1)

matrix [ A | I7 | 0 ]. That is, its feasible sets are{
maximal admissible subsets B ⊂ [7, 7̄] such that the principal minor

of A(G) corresponding to the subset B ∩ [7] is nonzero

}
.

The polytope P (D) is not very ample with respect to the lattice (affinely) generated by its ver-
tices, demonstrated as follows. One verifies that P (D) contains the origin, and the semigroup
Z≥0{P (D) ∩ Z7} is generated by

{e12, e13, e23, e34, e45, e56, e57, e67}.

In the intersection of the cone R≥0{P (D)} and the lattice Z{P (D) ∩ Z7}, we have the point

(1, 1, 1, 0, 1, 1, 1) =
1

2
(e12 + e13 + e23) +

1

2
(e56 + e57 + e67) = e13 + e23 − e34 + e45 + e67,

but this point is not in the semigroup Z≥0{P (D) ∩ Z7}. In particular, the torus-orbit-closure is
not normal. Nonetheless, this even delta-matroid satisfies (∗): a computer computation shows
that

R[OT ·D]·[O(1)](v) = 32 + 92v + 92v2 + 36v3 + 4v4 = (v + 1) IntD(v).
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