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Developed classically in the context of complex ge-
ometry, Hodge theory gives certain rigid structures
on the cohomology rings of compact Kähler mani-
folds. In the past few decades, it has been discovered
that these structures exist in other contexts as well.
Finding such “Hodge theoretic” structures associated
to combinatorial objects has led to remarkable devel-
opments, including resolutions of long-standing open
problems in combinatorics. Here, we give a broad
(and necessarily incomplete) snapshot of these de-
velopments in combinatorial Hodge theory. Previous
surveys on this topic, with more extensive lists of ref-
erences, can be found at [Huh23,Eur24].
In Section 1, we define the structure colloquially

known as the “Kähler package” and discuss some
general principles for its combinatorial applications.
These general principles are illustrated in concrete
examples in Sections 2, 3, and 4. These sections each
feature a different combinatorial object, but they fol-
low a common template outlined in Section 1.3, so
the readers may pick and choose to their taste. In
Section 5, we outline some strategies common to the
proofs of the “Kähler package” for many different
combinatorial structures.

1 The Kähler package

Let us begin with a toy example.

Example 1. Let A• be the polynomial ring R[x, y, z]
modulo the ideal ⟨x2, y2, z2⟩. For each i, the degree
i graded component Ai, as a R-vector space, has a
basis (as an R-vector space) given by the square-free
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monomials:

A0 = spanR(1)

A1 = spanR(x, y, z)

A2 = spanR(xy, yz, xz)

A3 = spanR(xyz).

While the symmetry in the dimensions of the graded
components is apparent, there are more refined struc-
tures. For example, multiplication by (x + y + z)
is an isomorphism A1 → A2, and multiplication by
(x+ y + z)3 is an isomorphism A0 → A3.

One may recognize the ring in the toy example as
the cohomology ring of (CP1)3. The example gives
a glimpse of the following property, which was first
discovered in the cohomology rings of compact Kähler
manifolds.1

Definition 2. Let A• be a graded R-algebra ⊕d
i=0A

i

which is finite dimensional as a R-vector space, to-
gether with an isomorphism deg : Ad → R and a
nonempty open convex cone K ⊂ A1. We say that
(A•,deg,K) satisfies the Kähler package if:

(PD) For each 0 ≤ i ≤ d, the symmetric bilinear form
Ai × Ad−i → R given by (a, b) 7→ deg(a · b) is
nondegenerate.

(HL) For each 0 ≤ i ≤ d/2 and any ℓ1, . . . , ℓd−2i ∈ K,
the map Ai → Ad−i given by multiplication by
ℓ1 · · · ℓd−2i is an isomorphism.

1More precisely, for a projective Kähler manifold X, the
subring

⊕
p Hp,p(X) of real (p, p)-forms in its cohomology ring

satisfies the property stated as the “Kähler package” here. See
[DN06] for a proof.
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(HR) For each 0 ≤ i ≤ d/2 and any ℓ0, . . . , ℓd−2i ∈ K,
the bilinear form Ai ×Ai → R given by (a, b) 7→
(−1)i deg(a · ℓ1 · · · ℓd−2i · b) is positive definite on
the kernel of multiplication by ℓ0ℓ1 · · · ℓd−2i.

The reader may verify these properties for the ring
in the toy example, where the cone K is {ax+by+cz :
a, b, c > 0} and the isomorphism deg : A3 → R is
given by deg(xyz) = 1.

(PD), (HL), and (HR) stands for “Poincaré duality
property,” “hard Lefschetz property,” and “Hodge–
Riemann relations,” after those who discovered such
properties in topology and complex geometry. See
Figure 1 for a visualization of the Kähler package.

Figure 1: The rows represent the graded components
A0, A1, . . . , Ad, with the number of boxes equal to the
dimension. The gray boxes represent the kernel of
multiplication by ℓ0ℓ1 · · · ℓd−2i : A

i → Ad−i+1. (PD)
implies that the diagram is symmetric; (HL) implies
that the diagram monotonically widens towards the
middle; (HR) and (HL) imply that the signature of
the bilinear form Ai ×Ai → R is as illustrated.

Remark 3. One sometimes works with the follow-
ing more general setup for the Kähler package, at the
cost of losing the ring structure. That is, instead of
a graded R-algebra, let A• be a (finite-dimensional)

graded R-vector space
⊕d

i=0 A
i, together with a sym-

metric bilinear form deg : A• × Ad−• → R and an
open convex subset K of commuting linear operators
L : A• → A•+1 that satisfy deg(L(·), ·) = deg(·, L(·)).

Then (PD), (HL), and (HR) can be formulated as
before. Geometrically, this more general setup arises
when one extends beyond manifolds to study spaces
with singularities, where a “finer” invariant than sin-
gular cohomology, known as intersection cohomology,
is useful. Intersection cohomology in general does not
have a ring structure.

Suppose now that for a combinatorial object X of
“dimension” d, one can construct a graded R-algebra
A•(X) =

⊕d
i=0 A

i(X) that encodes certain combina-
torial data about X. Examples of such X and A•(X)
will be illustrated in Sections 2, 3, and 4. The valid-
ity of the Kähler package for A•(X) can then give
highly nontrivial information about X. We feature
two such ways in the next two subsections. Through-
out, suppose that A• = A•(X) satisfies the Kähler
package.

1.1 The hard Lefschetz property and
Hilbert functions

Let us consider the Hilbert function, that is, the se-
quence (a0, . . . , ad) of the dimensions ai = dimAi

of the graded pieces of A•. Firstly, Poincaré duality
(PD) implies the symmetry

ai = ad−i for each i ∈ {0, . . . , d},

but the hard Lefschetz property (HL) implies an even
more rigid restriction on the Hilbert function: for any
ℓ ∈ K and i ≤ d/2, the multiplication map ℓ : Ai →
Ai+1 must be injective for the multiplication map
ℓd−2i : Ai → Ad−i to be an isomorphism. Therefore,
(HL) implies

1 ≤ a1 ≤ · · · ≤ a⌊d/2⌋,

or more strongly, that the sequence of consecutive
differences (1, a1−1, a2−a1, . . . , a⌊d/2⌋−a⌊d/2⌋−1) is
the Hilbert function of the quotient A•/⟨ℓ⟩.
If furthermore A• is generated as an algebra in de-

gree 1, then A•/⟨ℓ⟩ is also. Macaulay classified the
Hilbert functions of graded algebras which are gener-
ated in degree 1, as follows. Given positive integers
b and i, one can uniquely write b as

b =

(
ki
i

)
+

(
ki−1

i− 1

)
+· · ·+

(
kj
j

)
for ki > · · · > kj ≥ 1.
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Defining b⟨i⟩ =
(
ki+1
i+1

)
+ · · · +

(
kj+1
j+1

)
, we say that a

sequence (1, b1, . . . , bm) is a Macaulay vector (or an

O-sequence) if 0 ≤ bi+1 ≤ b
⟨i⟩
i for all i ≥ 1. Macaulay

showed that (1, b1, . . . , bm) is the Hilbert function of a
finite dimensional graded algebra which is generated
in degree 1 if and only if it is a Macaulay vector
[HMM+13, Section 6.2]. We deduce that

(1, a1 − 1, a2 − a1, . . . , a⌊d/2⌋ − a⌊d/2⌋−1)

is a Macaulay vector.

The properties here only require the existence of
one element ℓ ∈ A1 satisfying the condition (HL).
For a treatment of commutative rings with such an
element, see [HMM+13].

1.2 Hodge–Riemann relations and
log-concavity

Another application of the Kähler package concerns
intersection numbers, i.e., numbers obtained by ap-
plying the map deg : Ad → R to certain products of
elements in A•. In particular, for any choice of α
and β in A1, one has a sequence (m0,m1, . . . ,md)
defined by mj = deg(αjβd−j). The Hodge–Riemann
relations (HR) with i = 0 and i = 1 imply the follow-
ing properties of this sequence.

Proposition 4. When α and β lie in K, the clo-
sure of K in the real vector space A1, the sequence
(m0, . . . ,md) defined above

• is non-negative, i.e., mj ≥ 0 for all 0 ≤ j ≤ d,

• is log-concave, i.e., m2
j ≥ mj−1mj+1 for all 1 ≤

j ≤ d− 1, and

• has no internal zeros, i.e., if mj ̸= 0 and mk ̸= 0
for some j < k then ml ̸= 0 for all j < l < k.

In particular, it is unimodal, i.e., m0 ≤ · · · ≤ mk ≥
mk+1 ≥ · · · ≥ md for some 0 ≤ k ≤ d.

Proof. The first two claimed properties are closed
conditions, so let us first consider the case where
α, β ∈ K. Then, (HR) with i = 0 implies that
mj = deg(1 · αjβd−j · 1) > 0 for all 0 ≤ j ≤ d.

For the log-concavity, if α and β are linearly de-
pendent, we have m2

j = mj−1mj+1 for all j, so as-
sume now that they are linearly independent. For a
fixed j, define the bilinear form Q : A1 × A1 → R by
(a, b) 7→ deg(a ·αj−1βd−j−1 ·b). Then, (HR) with i =
1 states that Q is negative definite on a codimension-
1 subspace of A1, so Q cannot restrict to be positive
definite on spanR(α, β). Since md = Q(α, α) > 0,
the restriction of Q to the 2-dimensional subspace
spanR(α, β) is not negative definite. Hence, we con-

clude that det

[
Q(α, α) Q(α, β)
Q(α, β) Q(β, β)

]
≤ 0, or, equiva-

lently, that mj−1mj+1 −m2
j ≤ 0, as desired.

Lastly, a limit of positive and log-concave se-
quences with no internal zeros is non-negative and
log-concave with no internal zeros, yielding the de-
sired result when α, β ∈ K.

In degrees higher than 1, it is difficult to de-
duce general inequalities from the Hodge–Riemann
relations in a similar way as we have done for log-
concavity here. However, the Hodge–Riemann rela-
tions in higher degrees are often useful for proving
(HL) and provide additional restrictions on the struc-
ture of A•.

1.3 A template

The next three sections will each match the following
common template, consisting of five parts.

(1) Objects (What is X?): We state the combina-
torial objects X of interest. While we assume a
passing familiarity with them, explicit examples
are provided for the uninitiated.

(2) Questions (What about X?): We discuss ques-
tions about X that were resolved by the devel-
opment of combinatorial Hodge theory for X.

(3) Algebras (What is A•(X)?): We define the al-
gebra A•(X) that satisfies the Kähler package
and explain how it was used to resolve questions
about X.

(4) Geometric origin (Where is A•(X) from?):
We explain how, for a certain subset of the ob-
jects X, the ring A•(X) has a geometric origin
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as the cohomology ring of a complex projective
manifold.

(5) “Singular” objects (How about beyond X?):
Often, there is a natural enlargement of the class
of combinatorial objects X. Or, a different ques-
tion about X leads to an algebra different from
the one featured in part (3). In both cases, a
naive candidate for A•(X) often fails the Kähler
package, but we discuss briefly how one can de-
velop a combinatorial “intersection cohomology”
module to amend this failure.2

2 Polytopes

(1) Objects.

Definition 5. A polytope P in Rd is a bounded inter-
section of finitely many closed half-spaces. A subset
of P is a face of P if it is the locus where a linear
functional on Rd achieves its minimum on P , and it
is a facet if it is a maximal proper face. We say P is
simplicial if every proper face of P is a simplex.

We assume that P is full-dimensional in Rd and
primarily consider simplicial polytopes. We point to
[Zie95] as a general reference on polytopes.

Figure 2: Two polytopes in R3. The bipyramid (two
regular tetrahedra glued along a triangle) on the left
is simplicial, but the cube on the right is not.

(2) Questions. Of enduring interest in combina-
torics is the structure of the collection of faces of a
polytope P . A basic starting point is the number of
faces of each dimension. For −1 ≤ i ≤ d− 1, let

fi = |{i-dimensional faces of P}|
2While this is often a fascinating and intricate part of the

story about the combinatorial object X, our discussion is kept
short due to the introductory nature of this survey.

with f−1 = 1 for the empty face. The sequence
(f−1, f0, . . . , fd−1) is called the f -vector. For exam-
ple, in Figure 2 the bipyramid has f -vector (1, 5, 9, 6)
and the cube has f -vector (1, 8, 12, 6).

An intriguing structure is revealed when one ap-
plies the following invertible change of coordinates
to the f -vector of a polytope. Define the h-vector
(h0, . . . , hd) of P by

hk =

k∑
i=0

(−1)k−i

(
d− i

k − i

)
fi−1.

Equivalently, the h-vector is defined by the relation

f(t− 1) = h(t)

where f(t) and h(t) are the polynomials

f(t) = f−1t
d + f0t

d−1 + · · ·+ fd−1 and

h(t) = h0t
d + h1t

d−1 + · · ·+ hd.

For example, the bipyramid has h-vector (1, 2, 2, 1)
and the cube has h-vector (1, 5,−1, 1). Let us make
two observations from these two examples:

• We have hd = 1 for both. Indeed, hd = 1 holds in
general because hd = (−1)d−1

∑d
i=0(−1)i−1fi−1

is the alternating sum of the face numbers, and
the reduced Euler characteristic of the boundary
of P (which is a (d − 1)-dimensional sphere) is
(−1)d−1.

• For the bipyramid, a simplicial polytope, the h-
vector is positive, symmetric, and unimodal.

Do these properties persist for all simplicial poly-
topes? That is, are h-vectors of simplicial polytopes
always positive, symmetric, and unimodal? Similar
questions about non-simplicial polytopes will be dis-
cussed in part (5). For now, we consider the following
conjecture of McMullen:

A sequence (h0, . . . , hd) of integers is the h-vector
of a simplicial polytope if and only if it is symmetric
and the sequence (h0, h1 − h0, . . . , h⌊d/2⌋ − h⌊d/2⌋−1),
called the g-vector of P , is a Macaulay vector.

Note that the condition about the g-vector implies
the positivity and unimodality of (h0, . . . , hd) since
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h0 = f−1 = 1. Billera and Lee [BL80] showed by
explicit construction that if a sequence (h0, . . . , hd)
satisfies the stated conditions, then there exists a sim-
plicial polytope with the sequence as its h-vector. For
the converse, i.e., that every h-vector of a simplicial
polytope satisfies these conditions, the proof uses the
Kähler package of the following algebra associated
with a simplical polytope P .

(3) Algebras. Without loss of generality, trans-
late P so that it contains the origin in its interior.

Definition 6. Let R[xv : v a vertex of P ] be the
polynomial ring whose variables are labelled by the
vertices of P . Let A•(P ) be the quotient ring

A•(P ) =
R[xv]

I + J

where I and J are ideals defined by

I = ⟨xv1 · · ·xvk : {v1, . . . , vk} not a face of P ⟩ and
J = ⟨

∑
v f(v)xv : f a linear function on Rd⟩.

Note that A•(P ) is graded. A key property of
A•(P ) is that the dimensions of the graded pieces
are given by the h-vector of P [Sta75]. For example,
placing the origin at the center of the base triangle of
the bipyramid in Figure 2, one finds that in this case

A•(P ) =
R[x1, x2, x3, x4, x5]

⟨x1x2x3, x4x5⟩+ ⟨x1 − x2, x2 − x3, x4 − x5⟩
,

where the variables x1, x2, and x3 correspond to
the vertices of the central simplex, and the vari-
ables x4 and x5 correspond to the top and bottom
vertices. We see that this ring is isomorphic to
R[x1, x4]/⟨x3

1, x
2
4⟩, whose graded components A0, A1,

A2, A3 have bases {1}, {x1, x4}, {x2
1, x1x4}, {x2

1x4},
respectively.

Let us further make two observations about A•(P )
in general:

(i) As Ad(P ) is 1-dimensional (since hd = 1), we
may choose an isomorphism deg : Ad(P )

∼→ R.
There is such a choice such that, for every max-
imal proper face F = {v1, . . . , vd} of P , we have
deg(xv1 · · ·xvd) > 0.

(ii) Let us say that a function φ is piecewise lin-
ear if, for every proper face F of P , the func-
tion φ is linear on the cone R≥0{vi : i ∈ F}.
The degree 1 component A1(P ) can be iden-
tified with the space of piecewise linear func-
tions modulo the globally linear functions on
Rd, as follows. Because P is simplicial, each
element D =

∑
v cvxv in the degree 1 part of

R[xv : v a vertex] uniquely defines a piecewise
linear function φD by the assignment φD(v) = cv
for every vertex v. Under this correspondence,
a linear function f on Rd is associated with∑

v f(v)xv, so the generators of the ideal J cor-
respond to globally linear functions.

We say that ℓ ∈ A1(P ) is ample if, for every proper
face F of P , we can choose a piecewise linear function
representing ℓ which vanishes on F and is strictly pos-
itive on all vertices not contained in F .3 The ample
elements of A1(P ) form an open cone K. This cone is
nonempty: for instance, consider the piecewise linear
function which takes value 1 on each maximal proper
face of P .

Theorem 7 ([Sta80a,McM93]). Let P be a simpli-
cial polytope. The triple (A•(P ),deg,K) satisfies the
Kähler package.

Because A•(P ) is a graded algebra generated in
degree 1, from our discussion in Section 1.1 about
applications of the hard Lefschetz property, we con-
clude that the h-vector is symmetric and the g-vector
is a Macaulay vector, i.e., McMullen’s conjecture de-
scribing the possible h-vectors of simplicial polytopes
holds.
(4) Geometric origin. Stanley proved that A•(P )
has the Kähler package by observing that it is the co-
homology ring of a projective toric variety. The con-
struction of this toric variety involves perturbing the
coordinates of the vertices of P so that they have ra-
tional coordinates; this does not change the structure
of the faces of P because P is simplicial. This toric
variety is in general singular, but the singularities are
mild enough that the real (p, p)-forms in its cohomol-
ogy ring still have the Kähler package. McMullen

3This is equivalent to ℓ being a strictly convex piecewise
linear function.
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later gave a purely combinatorial proof that avoids
perturbing the coordinates or constructing toric va-
rieties.

(5) “Singular” objects. For non-simplicial poly-
topes, the h-vector no longer has the pleasant prop-
erties of the h-vector of simplicial polytopes. For ex-
ample, we saw that the h-vector (1, 5,−1, 1) of the
cube is no longer non-negative. Instead, one should
consider the toric h-vector [Sta87], which is a combi-
natorial invariant of a polytope P which is recursively
defined in terms of the poset of faces of P . When P
is simplicial, it agrees with the h-vector. The toric
h-vector of the 3-dimensional cube is (1, 5, 5, 1).

When the polytope has vertices with rational coor-
dinates, the toric h-vector records the dimensions of
the graded pieces of the intersection cohomology of
the associated projective toric variety. The hard Lef-
schetz theorem for intersection cohomology implies
that the toric h-vector is symmetric and unimodal.

For arbitrary polytopes, it may not be possible to
perturb the vertices so that they have rational coor-
dinates without changing the structure of the poset
of faces, so there may be no associated toric variety.
Nevertheless, Karu [Kar04] showed that the toric h-
vector is symmetric and unimodal. He proved this
by verifying that a version of the Kähler package (as
formulated in Remark 3) holds for an analogue of the
intersection cohomology of a projective toric variety.

3 Bruhat posets

(1) Objects. Let V be a finite dimensional real
vector space with an inner product. For a hyperplane
H ⊂ V through the origin, the reflection across H
defines an automorphism sH of V .

Definition 8. A finite Coxeter group W (repre-
sented on V ) is the subgroup of GL(V ) generated
by the set of reflections {sH}H∈H where H is a finite
set of hyperplanes in V satisfying sH(H) = H for all
H ∈ H.

We point to [Hum90] as a general reference on Cox-
eter groups.

Example 9. With the standard inner product on
Rn, the symmetric group Sn of {1, 2, . . . , n} is a
finite Coxeter group represented on Rn with H =
{Hij}1≤i<j≤n, where Hij = {x ∈ Rn : xi = xj}.

Among the remarkably rich combinatorics of a (fi-
nite) Coxeter group is its poset structure, described
as follows. Fix any connected component K in the
complement V \ (

⋃
H∈H H) of the hyperplanes. The

connected component is an open cone whose closure
has exactly r = dimV − dim(

⋂
H) many facets. Let

S = {s1, . . . , sr} ⊂ W be the reflections by these
facet hyperplanes, called simple reflections. Any
w ∈ W is a product of simple reflections; let ℓ(w)
denote the minimum number for which one can write
w = si1 · · · siℓ(w)

, called the length of w.

Definition 10. The Bruhat poset P(W ) is a poset
on W defined as the transitive closure of the relation

w1 < w2 if and only if

ℓ(w2) = ℓ(w1) + 1 and w2 = sHw1 for some H ∈ H.

Two facts about the Bruhat poset follow:

• It has a unique minimal element 0̂ (which is
the identity Id) and a unique maximal element,
called the longest element and denoted w0. Let
d = ℓ(w0).

• It is a graded poset, graded by the length ℓ. That
is, for all w ∈ W , every maximal chain in the
interval [Id, w] has ℓ(w) + 1 elements.

Remark 11. The group W acts freely and transi-
tively on the set of connected components of the hy-
perplane arrangement complement V \ (

⋃
H). We

may thus label the components by W , with K la-
belled by the identity, and a component C by the
unique w ∈ W such that C = w ·K. Then, the length
ℓ(w) of w ∈ W is the minimum number of hyper-
planes that a path from K to the component w · K
must cross.

Example 12. Returning to the previous example
of the symmetric group Sn represented on Rn, let
K = {x ∈ Rn : x1 > x2 > · · · > xn}. The simple re-
flections {si}1≤i≤n−1 correspond to adjacent transpo-
sitions (i, i+1). Moreover, one can show, for instance
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using Remark 11, that the length of a permutation
w ∈ Sn is

ℓ(w) = |{(i, j) : 1 ≤ i < j ≤ n and w(i) > w(j)}|,

the number of inversions of w. The Bruhat poset of
S4 is illustrated in Figure 3.

1234

1243 2134 1324

2143 2314 1342 3124 1423

2341 3142 3214 1432 2413 4123

3241 3412 2431 4213 4132

3421 4231 4312

4321

Figure 3: Diagram of the Bruhat poset P(S4)

(2) Questions. Given a graded poset P with a
unique minimum 0̂, like the Bruhat poset P(W ), we
may consider its graded components. For i ≥ 0, let

Pi =

{
p ∈ P :

a maximal chain 0̂ < · · · < p
consists of i+ 1 elements

}
and let pi = |Pi|. A question of enduring interest for
a graded poset concerns the Sperner property :

Is the maximum cardinality of an antichain (i.e., a
subset consisting of pairwise incomparable elements)
in P equal to the maximum of {p0, . . . , pd}?

We may further ask whether P is strongly Sperner :

For each 0 ≤ i ≤ d/2, is there a collection of
pi-many pairwise disjoint chains of the form xi <
xi+1 < · · · < xd−i with xi ∈ Pi and xd−i ∈ Pd−i?

The reader may verify as an exercise that the stated
strongly Sperner property indeed implies the Sperner
property. Note also that the strongly Sperner prop-
erty implies that (p0, . . . , pd) is symmetric and uni-
modal. We explain how these questions can be an-
swered in the case where P = P(W ), a Bruhat poset,
by considering a graded algebra constructed from W .

(3) Algebras. Let Sym•(V ) be the graded algebra
of polynomials generated by a basis of V . The group
W acts on it via its action on V , so we may consider
the ideal IW+ generated by the positive degree W -
invariant polynomials

{f ∈ Sym>0(V ) : w · f = f for all w ∈ W}.

Definition 13. The coinvariant algebra of W is the
quotient

A•(W ) = Sym•(V )/IW+ .

One finds the following properties of the coinvari-
ant algebra from results of Bernstein, Gelfand, and
Gelfand [BGG73]:

(i) There exists a collection of polynomials {Pw ∈
Sym•(V ) : w ∈ W} that forms a vector space
basis in A•(W ) satisfying degPw = ℓ(w) for all
w ∈ W . We call this basis the Schubert basis of
A•(W ).4

(ii) Abusing notation, we write K also for the image
in A1(W ) of the connected region K ⊂ V . This
image is a nonempty open cone. For L ∈ K,
the Schubert basis {Pw} of A•(W ) satisfies the
property that L · Pw is a linear combination of
{Pu : u ≥ w}.

By property (i), we may choose an isomorphism
deg : Ad(W )

∼→ R such that deg(Pw0
) > 0.

Theorem 14 ([EW14]). The triple (A•(W ),K,deg)
satisfies the Kähler package.

Combining the property (i) with the hard Lef-
schetz property of A•(W ) implies that (p0, . . . , pd)

4When W is a Weyl group, these polynomials represents
duals to the basis for the homology of the flag variety given by
classes of Schubert varieties.
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is symmetric and unimodal. Moreover, Stanley ob-
served [Sta80b] that combining property (ii) with the
hard Lefschetz property leads to the strongly Sperner
property of P = P(W ) as follows.
Let L ∈ K. For each 0 ≤ j ≤ d, the Schubert basis

realizes multiplication by Aj(W )
·L→ Aj+1(W ) as a

pj+1 × pj matrix, denoted L(j). Denote by L
(j)
I,J the

submatrix of L(j) for a subset I of the rows and a
subset J of the columns. Then, for 0 ≤ i ≤ d, the
Cauchy–Binet formula gives

det(L(d−i−1) · · ·L(i+1)L(i))

=
∑

Ii,...,Id−i

d−i−1∏
j=i

detL
(j)
Ij+1,Ij

(†)

where the summation is over all sequences of sub-
sets such that pi = |Ii| = · · · = |Id−i|. As
Ld−2i : Ai(W ) → Ad−i(W ) is an isomorphism, the
left-hand-side in (†) is non-zero, so that a sum-
mand in the right-hand-side is non-zero for some
Ii, . . . , Id−i. In particular, each square matrix

L
(j)
Ij ,Ij+1

has a permutation pattern with all non-zero
entries, which gives a sequence of matchings between
Pj and Pj+1 for all j. That these matchings respect
the order on P follows from the property (ii).

Example 15. When W = Sn, we have Sym
•(Rn) =

R[x1, . . . , xn]. A particular set of representatives
for the Schubert basis of A•(Sn), called Schubert
polynomials, is given by the following rule: first,
one sets Pw0 = xn−1

1 xn−2
2 · · ·xn−1, and whenever

w(i) > w(i+1), one sets Pwsi = ∂iPw where ∂i is an
operator on R[x1, . . . , xn] defined by ∂if = f−si·f

xi−xi+1
.

For example, when n = 3, we have

A•(S3) =
R[x1, x2, x3]

⟨x1 + x2 + x3, x1x2 + x2x3 + x1x3, x1x2x3⟩
,

and the elements {1, x1, x1 + x2, x
2
1, x1x2, x

2
1x2} of

A•(S3) form the Schubert basis.

Remark 16. Using similar methods, the results here
for the Bruhat poset P(W ) can be extended to the
Bruhat poset P(W/WJ) on the set of cosets of a
parabolic subgroup WJ of W . For classical types

(A, B, C, and D), the strongly Sperner property of
P(W ) admits an elementary proof [Sta80b, Section
7], but this elementary method does not extend to
the parabolic case P(W/WJ).

(4) Geometric origin.
When W satisfies an integrality condition of be-

ing crystallographic, it is the Weyl group of a com-
plex semisimple Lie group G. In this case, Borel
showed that the coinvariant algebra A•(W ) is the
cohomology ring of the flag variety G/B, which is
a smooth projective variety. Thus, the Kähler pack-
age for A•(W ) follows from classical Hodge theory
in this case. The Schubert basis for A•(W ) comes
from the Bruhat decomposition of G/B; it is a strat-
ification of G/B into affine cells, whose closures in
G/B thereby defines a basis for the cohomology ring.
Bernstein–Gelfand–Gelfand showed how to interpret
this geometric basis for A•(W ) purely algebraically.

For non-crystallographic finite Coxeter groups,
where a Lie group G is no longer available, Elias and
Williamson established the Kähler package in a much
more general setting of Soergel bimodules, which we
discuss in the next part.

(5) “Singular” objects. For an element w ∈ W ,
we consider the interval [Id, w] of P(W ). Let us de-
note P = [Id, w]. We may ask similar questions
for the interval P as we did for the whole poset
P(W ). However, a graded algebra with a basis la-
belled by the elements of the interval cannot in gen-
eral satisfy the Kähler package — the cardinalities
of the graded components of [Id, w] are often not
even symmetric. For example, when W = S4, the
sequence (p0, . . . , p4) for the interval [Id, 3412] reads
(1, 3, 5, 4, 1).
Geometrically, when W is the Weyl group of a Lie

group G, this failure is reflected in the fact that the
variety under concern is the Schubert variety Xw of
w ∈ W , which is in general singular. This singular
variety admits a particular desingularization, known
as the Bott–Samelson resolution. Extracting key al-
gebraic and combinatorial features of this desingular-
ization leads to Soergel bimodules, which Elias and
Williamson showed satisfy the Kähler package as for-
mulated in Remark 3. Combining this with observa-
tions made by Björner and Ekedahl [BE09] (originally
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made only for Weyl groups), one can show that the
interval [Id, w] satisfies a weak version of the Sperner

property: for every 0 ≤ i ≤ ℓ(w)
2 , there exists an

injection m : Pi ↪→ Pℓ(w)−i such that w ≤ m(w).

4 Matroids

(1) Objects. Let E = {1, 2, . . . , n} be a finite set.

Definition 17. A matroid M on E consists of a non-
empty set I of subsets of E, called the independent
sets of M, satisfying two properties:

• if I ∈ I and J ⊆ I, then J ∈ I, and

• if I, J ∈ I with |I| < |J |, then I ∪ {j} ∈ I for
some j ∈ J \ I.

Maximal elements of I have a common cardinality,
which is called the rank r of M. To avoid trivialities,
we suppose that M is loopless, i.e., that every one-
element subset is independent. We point to [Wel71]
as a general reference on matroids.

Example 18. Let G be a finite graph with edges E,
such as the one illustrated in Figure 4. Then, the
set I = {subsets of E which do not contain cycles}
is the set of independent sets of a matroid. Such
matroids are called graphical matroids.

Example 19. Let L ⊆ k
E be a vector subspace

over a field k. Then, the set I = {I ⊆ E :
the composition L ↪→ k

E ↠ k
I is surjective} is the

set of independent sets of a matroid. Concretely, if
L is the row span of an r by E matrix, then I con-
sists of linearly independent subsets of the column
vectors {ve : e ∈ E}. Such matroids are called linear
or realizable matroids.

We caution that while graphs and linear subspaces
are two prototypical sources of matroids, almost ev-
ery matroid (in some precise sense) does not arise in
that way.

(2) Questions. We consider two sequences of nu-
merical invariants of a matroid M of rank r. First,
let (I0(M), I1(M), . . . , Ir(M)) be the sequence that

1

2

3

4

v1 v2 v3 v41 1 0 0
0 1 1 0
0 0 0 1



Figure 4: A finite graph G and a matrix represent-
ing a subspace of k4 by its row span. The matroids
associated with each are identical.

counts the number of independent sets according to
their cardinality, that is,

Ik(M) = |{I ∈ I : |I| = k}|.

For the second sequence, define the rank function rkM
by rkM(S) = max{|I| : I ⊆ S and I ∈ I} for a subset
S ⊆ E. Then, we define (w0(M), . . . , wr(M)) by

wk(M) =
∑

S⊆E such that
rkM(S)=k

(−1)|S|+k,

which counts the subsets of the same rank with signs
according to their cardinality. This sequence arises
naturally in graph theory as follows. Let M be the
matroid of a finite connected graph G with edges E
on (r+1) vertices. A proper coloring ofG is a coloring
of its vertices such that no incident vertices share the
same color. Then, its chromatic polynomial

χG(q) =
the number of proper colorings

of G with at most q colors

is related to the sequence (wk(M)) by

χG(q)

q
= w0(M)qr −w1(M)qr−1 + · · ·+ (−1)rwr(M).

Example 20. The reader may check that in
the matroid of the graph in Figure 4, we
have (I0(M), I1(M), I2(M), I3(M)) = (1, 4, 6, 3) and
(w0(M), w1(M), w2(M), w3(M)) = (1, 4, 5, 2).

Long-standing conjectures from the 70’s by vari-
ous matroid theorists, including Mason, Rota, Heron,
and Welsh, stated the following.
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Both of the sequences (I0(M), . . . , Ir(M)) and
(w0(M), . . . , wr(M)) are log-concave with no internal
zeros.

Both (and more related conjectures) were recently
resolved by establishing the Kähler package for some
algebras related to matroids, as we will now describe.

(3) Algebras. To define the algebra associated with
a matroid M, we need the following notion: a subset
F ⊆ E is said to be a flat of M if it is a maximal
subset of E of given rank, i.e., if rkM(F ∪e) > rkM(F )
for all e ∈ E \ F .

Definition 21. The Chow ring of a matroid M (with
R-coefficients) is the graded R-algebra A•(M) =⊕r−1

i=0 Ai(M) defined as the following quotient of a
standard graded polynomial ring

A•(M) =
R[xF : F a non-empty flat of M]

I + J

where I = ⟨xFxF ′ : F ̸⊆ F ′ and F ′ ̸⊆ F ⟩ and J =
⟨
∑

F∋i xF : i ∈ E⟩.

Let K be the set of elements ξ ∈ A1(M) that can
be written as

ξ =
∑

∅⊊F⊊E

c(F )xF

for some function c : 2E → R satisfying c(∅) = c(E) =
0 and c(S1) + c(S2) > c(S1 ∩ S2) + c(S1 ∪ S2) for
all S1, S2 ⊆ E. Since the sum of two such functions
retains this property, the set K is an open convex cone
in A1(M) which is nonempty (for instance, let c(S) =
|S|·|E\S|)). A recent breakthrough in matroid theory
by Adiprasito, Huh, and Katz states that the Chow
ring of a matroid satisfies the Kähler package.

Theorem 22 ([AHK18]). There is an isomorphism
degM : Ar−1(M) → R defined by the property that
deg((−xE)

r−1) = 1. The triple (A•(M),K,degM)
satisfies the Kähler package.

To use the Kähler package of A•(M) to deduce
properties about the sequence (w0(M), . . . , wr(M)),
we need the following theorem of Huh and Katz.
Let (w0(M), . . . , wr−1(M)) be the sequence defined
by the property wi(M) = wi(M) + wi−1(M) for all
i = 0, . . . , r (with w−1(M) = wr(M) = 0).

Theorem 23. Let α and β be elements of A1(M)
defined by α = −xE and β =

∑
∅⊊F⊆E xF . Then,

for i = 0, . . . , r − 1, we have that

degM(αr−1−iβi) = wi(M).

Because the elements α and β are in the closure
of K, we thus conclude that (w0(M), . . . , wr−1(M))
is log-concave with no internal zeros. The rela-
tion wi(M) = wi(M) + wi−1(M) then easily implies
that (w0(M), . . . , wr(M)) is log-concave with no inter-
nal zeros. Because the sequence (I0(M), . . . , Ir(M))
can be realized as the sequence (w0(M

′), . . . , wr(M
′))

where M′ is the free co-extension matroid of M, it is
also log-concave with no internal zeros.

(4) Geometric origin. When M is the matroid of a
linear subspace L ⊆ CE , the algebra A•(M) is the co-
homology ring of a complex smooth projective variety
known as the wonderful compactification WL of a hy-
perplane arrangement complement, introduced by De
Concini and Procesi. Thus, in this case, the Kähler
package for A•(M) follows from classical Hodge the-
ory.

Moreover, let us indicate a geometric origin for the
formula degM(αr−1−iβi) = wi(M). Considered as
elements in the cohomology ring of WL, the elements
α and β are divisor classes that define a map to a
projective space. For β, the associated map φ : WL →
P(CE) has the image known as the reciprocal linear
space, whose degree was known to be wr−1(M).

(5) “Singular” objects. Let us consider an-
other numerical invariant of M. Define the sequence
(W0(M), . . . ,Wr(M)) by

Wk(M) = the number of rank k flats of M.

Equivalently, let P(M) be the poset of flats of M or-
dered by inclusion, which is graded by rank. Let
Pk(M) be the k-th graded component of P(M), i.e.,
the set of rank k flats of M, so thatWk(M) = |Pk(M)|.

It is conjectured but unknown whether this se-
quence is log-concave. Dowling and Wilson conjec-
tured a related but different property, namely, that
the sequence is top-heavy, i.e.

Wi(M) ≤ Wr−i(M) for all i ≤ d
2 .
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More strongly, one may conjecture that there is an
injection mi : Pi(M) → Pr−i(M) for each i such that
mi(F ) ⊇ F for all F ∈ Pi(M).

The resolution of this conjecture by Braden, Huh,
Matherne, Proudfoot, and Wang [BHM+] is featured
in an upcomingWhat is...? AMS Notices survey. Let
us give a rough sketch here.

As the question is about the graded poset P(M),
taking an inspiration from the previous discussion
about the strongly Sperner property for Bruhat
posets (Section 3), one may seek an algebra whose
basis is naturally labelled by the flats of M. Among
possibly many such algebras, we consider the follow-
ing one.

Definition 24. The graded Möbius algebra of a ma-
troid M is a graded R-algebra B•(M) =

⊕r
i=0 B

i(M)
whose i-th graded component Bi(M) is the vector
space with basis {yF : F ∈ Pk(M)}, and with multi-
plication

yF ·yG =

{
yF∨G if rkM(F ∨G) = rkM(F ) + rkM(G)

0 otherwise,

where F ∨ G denotes the unique minimal flat of M
containing both F and G.

The graded Möbius algebra generally fails to have
the Kähler package — the dimensions of its graded
pieces are usually not even symmetric. Geometri-
cally, this failure reflects that when M is the matroid
of a linear subspace L ⊆ CE , the graded Möbius
algebra is the cohomology ring of a singular pro-
jective complex variety called the matroid Schubert
variety, which is the closure of L in (CP1)n. This
singular variety admits a particular desingulariza-
tion, known as the augmented wonderful compacti-
fication. By extracting key algebraic and combina-
torial features of this desingularization, one can con-
struct the intersection cohomology module IH•(M)
of M, which is a graded B•(M) module with an in-
jection B•(M) ↪→ IH•(M). Then, with significant ef-
fort, Braden, Huh, Matherne, Proudfoot, and Wang
showed that IH•(M) satisfies the Kähler package
with K consisting of linear operators ℓ : IH•(M) →

IH•+1(M) given by

ℓ =
multiplication by

∑
i∈E aiyi

where ai > 0 for all i ∈ E.

Then, since B•(M) is a submodule of IH•(M), us-
ing arguments similar to the one outlined in Sec-
tion 3, one can conclude that there is an injec-
tion mi : Pi(M) → Pr−i(M) such that, for each i,
mi(F ) ⊇ F . In particular, this proves the top-heavy
conjecture of Dowling and Wilson.

5 Proving the Kähler package

It is usually very difficult to prove that an algebra
has the Kähler package. For the cohomology ring of
a complex Kähler manifold (or a complex projective
manifold), the Kähler package is usually proved by
analytic methods. However, analytic methods seem
not suitable for the combinatorial settings described
above in Sections 2, 3, and 4. In each of the three
settings, classical Hodge theory can be used for a sub-
set of the combinatorial objects that arise geometri-
cally, but establishing the Kähler package in general
requires an intricate analysis of combinatorics spe-
cific to each setting. Nonetheless, there is a basic
inductive strategy common to all three settings, first
introduced in the case of simplicial polytopes by Mc-
Mullen [McM93]. It roughly consists of three steps:

1. One first proves (PD) by some direct argument.
For example, often it is possible to compute a
basis so that the matrix representing the pairing
is upper triangular.

2. One then proves (HL) for all choices of elements
of K by inductively assuming (HR) in “lower di-
mensions.”

3. By (HL) and continuity, one then needs to verify
(HR) for a single choice of an element in K, often
via another layer of induction.

We illustrate step 2 in the case of simplicial poly-
topes. Let P be a d-dimensional simplicial polytope
in Rd which contains the origin in its interior. For
each vertex v of P , let Pv be the polytope in Rd/(R·v)
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formed by taking the convex hull of the images of
the vertices w such that {v, w} is an edge of P . We
may assume that the Kähler package holds for A•(Pv)
by induction on the dimension. There is a restric-
tion map φv : A

•(P ) → A•(Pv) which has the prop-
erty that φv(ℓ) is ample (as defined in Section 2) if
ℓ ∈ A1(P ) is ample. When the degree map on A•(Pv)
is normalized appropriately, this map satisfies

degP (a · xv) = degPv
(φv(a)).

Since dimAi(P ) = dimAd−i(P ) by (PD), in or-
der to prove (HL) for A•(P ), it suffices to show
that for each i ≤ d/2 and ℓ1, . . . , ℓd−2i ample, the
map Ai(P ) → Ad−i(P ) given by multiplication by
ℓ1 · · · ℓd−2i is injective. Suppose a ∈ Ai(P ) is in the
kernel of this map. Because ℓ1 is ample, we can write
ℓ1 =

∑
cvxv, where cv > 0 for each vertex v. We

then have

0 = degP (a
2ℓ1 · · · ℓd−2i)

=
∑
v

cv degP (a
2xvℓ2 · · · ℓd−2i)

=
∑
v

cv degPv
(φv(a)

2φv(ℓ2) · · ·φv(ℓd−2i)).

By construction, φv(a)φv(ℓ1)φv(ℓ2) · · ·φv(ℓd−2i) =
0. Therefore, by (HR) for A•(Pv), we have
(−1)i degPv

(φv(a)
2φv(ℓ2) · · ·φv(ℓd−2i)) ≥ 0, with

equality if and only if φv(a) = 0. We therefore must
have φv(a) = 0 for all v. Then (PD) implies that
a = 0.
After a variation of this argument is used to prove

(HL) for A•, it remains to carry out step 3 and verify
(HR). As the signature of a family of nondegenerate
bilinear forms is constant, a continuity argument and
(HL) for A• shows that it suffices to verify the Hodge–
Riemann relations for a single choice of ℓi. To do this,
typically one finds a filtration

A•
0 ⊆ A•

1 ⊆ · · · ⊆ A•
k = A•,

where each A•
i is equipped with a cone Ki and an

isomorphism degi : A
d
i → R. The ring A•

0 is very
simple, and one can verify by hand that (HR) holds
for it. One attempts to prove that the Kähler pack-
age holds for A•

i by induction on i. We typically

have Ki ⊂ Ki+1 and A•
i+1

∼→ A•
i ⊕ (A•

i+1/A
•
i ) as A

•
i -

modules. Often this direct sum decomposition can
be chosen to be orthogonal with respect to the bilin-
ear form (a, b) 7→ degi+1(a · ℓd−2k · b) on Ak

i+1, for
any ℓ ∈ Ki. One understands the signature of this
bilinear form on A•

i by induction, and one attempts
to relate the module A•

i+1/A
•
i to objects of lower “di-

mension.” Using this, one attempts to show that the
restriction of this bilinear form to A•

i+1/A
•
i is non-

degenerate and has the correct signature, verifying
(HR) for ℓ.

In the case of polytopes one uses a version of the
weak factorization theorem, which states that one can
obtain any simplicial polytope from the simplex by
a series of simple combinatorial operations. One ver-
ifies that (HR) is preserved under these operations.
This reduces to verifying (HR) for the case of a sim-
plex, which can be done directly.

Lastly, in Sections 2, 3, and 4, we mentioned that
one can extend the validity of the Kähler package
to “singular cases.” An inductive strategy for doing
so in the case of complex projective varieties can be
found in [dCM05].
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