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ABSTRACT. We use the geometry of the stellahedral toric variety to study matroids. We iden-
tify the valuative group of matroids with the cohomology ring of the stellahedral toric variety,
and show that valuative, homological, and numerical equivalence relations for matroids coincide.
We establish a new log-concavity result for the Tutte polynomial of a matroid, answering a ques-
tion of Wagner and Shapiro–Smirnov–Vaintrob on Postnikov–Shapiro algebras, and calculate the
Chern–Schwartz–MacPherson classes of matroid Schubert cells. The central construction is the
“augmented tautological classes of matroids,” modeled after certain toric vector bundles on the
stellahedral toric variety.
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1. INTRODUCTION

Let E “ t1, . . . , nu. For S Ď E, we write eS for the sum of the standard basis vectors
ř

iPS ei

in the vector space RE . A matroid M on E is a collection B of subsets of E, called the bases of M,
such that every edge of the convex hull

P pMq – convteB |B P Bu Ď RE

is parallel to ei ´ ej for some i and j in E. By definition, the coordinate sum of any point in
the base polytope P pMq is a constant integer rkpMq, called the rank of M, which is equal to |B| for
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any B P B. The condition on the edges of the base polytope is equivalent to the basis exchange
property appearing in the work of Whitney [Whi35] that introduced matroids:

For anyB1, B2 P B and any i P B1zB2, there is j P B2zB1 such that pB1ziqYj P B.

The above definition of matroids via base polytopes arose from the study of moment map im-
ages of torus orbit closures in Grassmannians by Gelfand, Goresky, MacPherson, and Serganova
in [GGMS87]. See [Kun86, Chapter 1] for an excellent historical overview of early contributions,
and [Ard22] and [Eur] for snapshots of recent advances in the theory of matroids. For a general
introduction to matroids, and for any undefined matroid terms, we refer to [Oxl11].

For a nonnegative integer r ď n, we consider the free abelian group generated by the set of
matroids of rank r on E:

MatrpEq –

!

ÿ

i

ciMi

ˇ

ˇ

ˇ
ci is an integer and Mi is a rank r matroid on E

)

.

We study three equivalence relations on MatrpEq—valuative, homological, and numerical.

Definition 1.1. Let 1P pMq be the indicator function of the base polytope of M, which is the
function RE Ñ Z defined by 1P pMqpxq “ 1 if x P P pMq and 1P pMqpxq “ 0 otherwise. An element
ř

i ciMi is said to be valuatively equivalent to zero if the function
ř

i ci1P pMiq is zero.

Figure 1 illustrates an element of Mat2 pr4sq that is valuatively equivalent to zero. The val-
uative group of rank r matroids on E, denoted ValrpEq, is the group MatrpEq modulo the
subgroup of elements valuatively equivalent to zero. A homomorphism of abelian groups
MatrpEq Ñ G is said to be valuative if it factors through the valuative group. Many matroid
invariants, including the Tutte polynomial, the Kazhdan–Lusztig polynomial, the motivic zeta
function, the Chern–Schwartz–MacPherson cycle, and the volume polynomial of the Chow ring,
turn out to be valuative. See [AFR10, AS23, Ard22] for extensive lists and history of the study
of valuative matroid invariants.

´ ´ `

FIGURE 1. An element of Mat2 pr4sq that is valuatively equivalent to zero

For the homological equivalence relation, we use the augmented Bergman fan ΣM of M, which is
an r-dimensional simplicial fan in RE obtained by gluing together the order complex of the lat-
tice of flats and the independence complex of M. For an explicit description, see Definition 5.10.
The augmented Bergman fan, introduced in [BHM`22], is a central object in the proof of the
Dowling–Wilson top-heavy conjecture and the nonnegativity of the matroid Kazhdan–Lusztig
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polynomial [BHM`]. The constant weight 1 is balanced on the augmented Bergman fan, defin-
ing a Minkowski weight rΣMs in the sense of [FS97]. We review the definition of Minkowski
weights and their identification with homology classes on toric varieties in Section 5.2.

Definition 1.2. An element
ř

i ciMi is said to be homologically equivalent to zero if the Minkowski
weight

ř

i cirΣMis is zero.

For the numerical equivalence, we use the bilinear intersection pairing

MatrpEq ˆ Matn´rpEq ÝÑ Z, pM,M1q ÞÝÑ degpM ^ M1q,

where the integer degpM ^ M1q, for a rank r matroid M and a rank n´ r matroid M1 on E, is

degpM ^ M1q “

$

&

%

1 if there are bases B of M and B1 of M1 such that B XB1 “ H,

0 if otherwise.

We will identify this intersection pairing with an instance of the intersection product on the
homology of a certain n-dimensional smooth projective variety; see Theorem 1.6 and Section 7.

Definition 1.3. An element
ř

i ciMi is said to be numerically equivalent to zero if it is in the kernel
of the intersection pairing.

Our first main result states that these three equivalence relations coincide.

Theorem 1.4. The following conditions are equivalent for any η P MatrpEq.

(1) η is valuatively equivalent to zero.

(2) η is homologically equivalent to zero.

(3) η is numerically equivalent to zero.

We establish this equivalence via the combinatorics and algebraic geometry of the stellahe-
dron ΠE of E, which is an n-dimensional simple polytope in RE with the following equivalent
descriptions.

‚ The permutohedron of E is the convex hull of the permutations

ΠE – convtw ¨ p1, 2, . . . , nq | w is a permutation of Eu Ď RE .

Writing RE
ě0 for the nonnegative orthant, the stellahedron of E is

ΠE “
␣

u P RE
ě0

ˇ

ˇ there exists v P ΠE such that v ´ u P RE
ě0

(

.

This description shows that the permutohedron ΠE is the facet of ΠE on which the
standard inner product with eE is maximized.

‚ The independence polytope of a matroid M is the convex hull

IpMq “ convteI | I Ď B for some basis B of Mu Ď RE .
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Writing Ur,E for the uniform matroid of rank r on E, whose bases are all size r subsets
of E, the stellahedron of E is the Minkowski sum

ΠE “

n
ÿ

r“0

IpUr,Eq.

This description shows that the standard n-dimensional simplex IpU1,Eq and the stan-
dard n-dimensional cube IpUn,Eq are Minkowski summands of the n-dimensional stel-
lahedron ΠE . Figure 2 illustrates the case E “ r3s.

We remark that the stellahedron ΠE is a realization of the graph associahedron of the star graph
with the set of endpoints E; see for example [PRW08, §10.4]. We refer to [CD06] and [Dev09] for
discussions of graph associahedra and their realizations.1

“ ` `

FIGURE 2. The stellahedron of r3s as the sum of three independence polytopes

The stellahedral fan ΣE is the normal fan of the stellahedron ΠE . It is a simplicial fan that is
unimodular with respect to the lattice ZE Ď RE . The stellahedral variety of E is the associated
smooth projective toric variety XE . In this introduction, all varieties will be over the complex
numbers. We follow the conventions of [Ful93] and [CLS11] for toric varieties. The compact
complex manifold XE is the central geometric object behind Theorem 1.4.

Let T be the open torus pC˚qE of the stellahedral variety XE . The two descriptions of the
stellahedron have the following geometric consequences:

‚ The permutohedral variety XE , the toric variety of the permutohedron ΠE , admits a T -
equivariant embedding

ιE : XE ÝÑ XE ,

corresponding to the permutohedral facet ΠE of ΠE .

‚ There is a birational toric morphism to the n-dimensional projective space

πE : XE ÝÑ PE ,

corresponding to the Minkowski summand IpU1,Eq of ΠE .

1In [FS05, PRW08, Pos09], an n-dimensional graph associahedron is realized as a generalized permutohedron in
Rn`1. For the star graph with the set of endpoints E, the stellahedron ΠE and the projection of that graph associahe-
dron to RE have the same normal fan.
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‚ There is a birational toric morphism to the n-dimensional product of projective lines

π1E : XE ÝÑ pP1qE ,

corresponding to the Minkowski summand IpUn,Eq of ΠE .

Summarizing, we have T -equivariant maps

XE XE

PE pP1qE .

ιE

π1EπE

The image of XE in PE is the hyperplane at infinity PpCEq, and the image of XE in pP1qE is the
point 8E . Note that PE and pP1qE are equivariant compactifications of the additive group CE .
In Section 3, we observe that the stellahedral variety XE is also a CE-equivariant compactifica-
tion of CE , and that both maps to PE and pP1qE are equivariant with respect to CE .

Theorem 1.5. For every integer r, the assignment M ÞÑ rΣMs defines an isomorphism

ValrpEq
„
Ñ H2rpXE ,Zq

from the valuative group of matroids on E to the homology of the stellahedral variety of E.

Theorem 1.5 explains the coincidence of the valuative and the homological equivalence rela-
tions in Theorem 1.4. In Corollary 7.9, we use Theorem 1.5 to give a geometric interpretation
of a result of Derksen and Fink on a combinatorial basis of the valuative group [DF10]. The
restriction of rΣMs to the permutohedral variety XE is given by the Minkowski weight rΣMs,
which is the constant balanced weight 1 on the Bergman fan ΣM if the matroid is loopless and
the constant balanced weight 0 if otherwise. Thus, Theorem 1.5 also recovers a result of Hampe
that identifies the homology of XE with the valuative group of loopless matroids [Ham17].

Poincaré duality for XE endows the homology of XE with the intersection product that is
dual to the cup product on the cohomology of XE . We identify this intersection product with
matroid intersection. Recall that the matroid intersection of matroids M and M1 on E is a matroid
M ^ M1 on E whose bases are the minimal members of the family

tB XB1 |B is a basis of M and B1 is a basis of M1u.

In particular, M^M1 has rank zero if and only if M and M1 have basesB andB1 that are disjoint.
Let us denote by crkpMq “ n´ r the corank of a rank r matroid M on E.

Theorem 1.6. The intersection product on XE satisfies

rΣMs ¨ rΣM1 s “

$

&

%

rΣM^M1 s if crkpMq ` crkpM1q “ crkpM ^ M1q,

0 if otherwise.
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Theorem 1.6, together with Poincaré duality forXE , explains the coincidence of the homolog-
ical and the numerical equivalence relations in Theorem 1.4. By restricting to the permutohedral
variety XE , we recover the following description of the intersection product on the homology
of XE , previously established by Speyer in [Spe08, Proposition 4.4].

Corollary 1.7. The intersection product on XE satisfies

rΣMs ¨ rΣM1 s “

$

&

%

rΣM^M1 s if M ^ M1 is loopless,

0 if otherwise.

Recall that a realization of M over C is an r-dimensional linear subspace L Ď CE such that

B “
␣

B Ď E
ˇ

ˇ the projection CE ↠ CB restricts to an isomorphism L
„
Ñ CB

(

.

The augmented wonderful variety WL is the closure of L inXE . We show in Corollary 5.11 that the
homology class of the augmented wonderful variety in the stellahedral variety is given by

rWLs “ rΣMs P H2rpXE ,Zq.

The intersection of WL and XE is the wonderful variety WL of de Concini and Procesi [DCP95],
which is the closure of the projective hyperplane arrangement complement PpLq X pC˚qE{C˚ in
XE . The main geometric objects behind the displayed identity and the proofs of Theorems 1.5
and 1.6 are certain T -equivariant vector bundles on XE which we call “augmented tautological
bundles.” For a linear subspace L Ď CE , these are T -equivariant vector bundles QL and SL on
XE that have the following properties:

‚ The augmented wonderful variety WL is the vanishing locus of a distinguished global
section of QL (Theorem 5.2). Consequently, the normal bundle NWL{XE

is isomorphic
to the restriction of QL to WL (Corollary 5.4).

‚ The logarithmic tangent bundle TWL
p´ log BWLq of WL, viewed as a compactification of

L “ WLzBWL, is isomorphic to the restriction of SL to WL (Theorem 9.2).

See Definition 4.2 for the construction of the augmented tautological bundles. By restricting
these bundles QL and SL to the permutohedral variety XE , one recovers the “tautological bun-
dles” QL and SL (Definition 4.5) introduced in [BEST23].

In general, for an arbitrary matroid M with possibly no realization over C, instead of vector
bundles on XE we have T -equivariant K-classes rQMs and rSMs on XE . These classes, which
we call “augmented tautological classes,” satisfy the following properties:

‚ If L Ď CE is a realization of M, then rQMs “ rQLs and rSMs “ rSLs as T -equivariant
K-classes (Proposition 4.4).

‚ The assignments M ÞÑ rQMs and M ÞÑ rSMs are both valuative maps from MatrpEq to
the Grothendieck ring of T -equivariant vector bundles on XE (Proposition 4.7).
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‚ By restricting rQMs and rSMs to the permutohedral variety XE , one recovers the “tauto-
logical classes of matroids” rQMs and rSMs introduced in [BEST23].

The Chern classes of augmented tautological classes relate well to independence polytopes and
augmented Bergman classes of matroids:

‚ Under the correspondence between base-point-free divisor classes on toric varieties and
polytopes [CLS11, Section 6.2], the first Chern class c1pQMq of rQMs corresponds to the
independence polytope IpMKq of the dual MK of M.

‚ The top Chern class cn´rpQMq X rXEs of rQMs is the augmented Bergman class rΣMs.

The augmented tautological classes behave particularly well with respect to the following ex-
ceptional isomorphisms between the Grothendieck ring of vector bundles KpXEq and the coho-
mology ring H‚pXE ,Zq. For any K-class rEs, we write cpEq for its total Chern class and rdet Es

for the K-class of its determinant line bundle.

Theorem 1.8.

(1) There is a unique ring isomorphism

ϕ : KpXEq
„
Ñ H‚pXE ,Zq

that satisfies ϕprdetQLsq “ cpQLq for any linear subspace L Ď CE .

(2) There is a unique ring isomorphism

ζ : KpXEq
„
Ñ H‚pXE ,Zq

that satisfies ζprOWL
sq “ rWLs for any linear subspace L Ď CE .

Recall that the classical Hirzebruch–Riemann–Roch formula requires the use of rational co-
efficients. We show that the isomorphisms ϕ and ζ satisfy the following Hirzebruch–Riemann–
Roch-type formula with integer coefficients. We write the sheaf Euler characteristic map and
the degree map by

χ : KpXEq Ñ Z and
ż

XE

: H‚pXE ,Zq Ñ Z.

For each i in E, let πi : XE Ñ P1 be the i-th factor of the map π1E : XE Ñ pP1qE .

Theorem 1.9. For any ξ P KpXEq, the exceptional isomorphisms ϕ and ζ satisfy

χ
`

ξ
˘

“

ż

XE

ϕ
`

ξ
˘

¨ c
`
à

iPE

π˚
i OP1p1q

˘

“

ż

ζ
`

ξ
˘

¨ c
`

π˚
EOPE p´1q

˘´1
.

Despite apparent similarities, these identities are not consequences of the classical Hirzebruch–
Riemann–Roch theorem, since ϕ and ζ differ from the Chern character map. The integral classes
c
`
À

iPE π
˚
i OP1p1q

˘

and c
`

π˚
EOPE p´1q

˘´1 play the role of the Todd class for ϕ and ζ. The iso-
morphisms ϕ and ζ are closely related to the isomorphism KpXEq

„
Ñ H‚pXE ,Zq in [BEST23,

Theorem D] in two different ways; see Remark 6.7.
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We prove the existence of the isomorphisms in Theorem 1.8 in Section 6, and use it to prove
Theorems 1.5 and 1.6 in Section 7.1. The uniqueness of the isomorphisms in Theorem 1.8 is then
derived from Theorem 1.5 in Section 7.1. We prove Theorem 1.9 in Section 8.1.

Theorem 1.9 reveals remarkable numerical properties of the augmented tautological classes.
Recall that the Tutte polynomial of a matroid M on E, introduced by Tutte [Tut67] for graphs and
by Crapo [Cra69] for matroids, is the bivariate polynomial

TMpx, yq “
ÿ

SĎE

px´ 1qrkMpEq´rkMpSqpy ´ 1q|S|´rkMpSq,

where rkM : 2E Ñ Z here denotes the rank function of M. We give the following geometric
interpretations of the Tutte polynomial as intersection numbers of the Chern and Segre classes
of augmented tautological classes. For a K-class rEs and a formal variable u, we set

cpE , uq “
ÿ

i

cipEqui and spE , uq “
ÿ

i

sipEqui,

where cipEq is the i-th Chern class of rEs and sipEq is the i-th Segre class of rEs.

Theorem 1.10. For any rank r matroid M on E, we have

TMpu` 1, v ` 1q “

ż

XE

cpSM, uq ¨ vn´r ¨ cpQM, v
´1q ¨ c

`
à

iPE

π˚
i OP1p1q

˘

.

Eliminating S using Q_, we get the following identity for the homogeneous polynomial

tMpx, y, z, wq – py ` zqrpx` wqn´rTM

ˆ

x` y

y ` z
,
x` y ` z ` w

x` w

˙

.

Theorem 1.11. For any rank r matroid M on E, we have

tMpx, y, z, wq “

ż

XE

s
`

π˚
EOPE p´1q, x

˘

¨ c
`
à

iPE

π˚
i OP1p1q, y

˘

¨ spQ_
M, zq ¨ cpQM, wq.

The second formula implies the following analytic property of the Tutte polynomial.

Theorem 1.12. For any rank r matroid M on E, the polynomial tMpx, y, z, wq is a denormalized
Lorentzian polynomial in the sense of [BH20, BLP23].

See Section 8.3 for a short review of Lorentzian polynomials, and see Remark 8.9 for a strength-
ening of Theorem 1.12. If M has a realization L Ď CE , Theorem 1.12 follows from Theorem 1.11
and the fact that the vector bundle QL is globally generated. For an arbitrary, not necessarily
realizable, matroid M, we establish Theorem 1.12 by constructing tropical models of augmented
tautological classes, and then by applying tools from tropical Hodge theory as developed in
[ADH23, Section 5].

Remark 1.13. Consider the homogeneous polynomial

tMpx, y, z, wq – px` yq´1py ` zqrpx` wqn´rTM

ˆ

x` y

y ` z
,
x` y

x` w

˙

.
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In [BEST23, Theorems A and B], the authors show the identity

tMpx, y, z, wq “

ż

XE

s
`

π˚
EOPpCEqp´1q, x

˘

¨ cpQU1,E
, yq ¨ spQ_

M, zq ¨ cpQM, wq

and show that this polynomial is a denormalized Lorentzian polynomial. The authors do not
know whether this result can be deduced directly from Theorem 1.11 and 1.12, or vice versa.

Specializing Theorem 1.12 by setting x “ 1, y “ 0, z “ q, w “ 0, we obtain the following
corollary, which appeared in [Wag98, Problem 6.10] and [SSV22, Conjecture 2] in the context of
Postnikov–Shapiro algebras of graphs [PS04].

Corollary 1.14. For any rank r matroid M, the coefficients of the polynomial qr TMpq´1, 1 ` qq

form a log-concave sequence with no internal zeroes.

We conclude with the study of the geometry of matroid Schubert varieties via augmented
tautological bundles. For a realization L Ď CE of a matroid M, its matroid Schubert variety
YL is the closure of L in pP1qE . Matroid Schubert varieties play a central role in the proof of
the Dowling–Wilson top-heavy conjecture in the realizable case [HW17], and their intersection
cohomologies are the main objects of study in the proof of the general case [BHM`]. Matroid
Schubert varieties satisfy several features analogous to those of classical Schubert varieties in
flag varieties; see [BHM`]. Two such features are as follows:

‚ The map π1E : XE Ñ pP1qE restricts to a resolution of singularities WL Ñ YL for any
L Ď CE . The boundary BWL “ WLzL is a simple normal crossings divisor on WL.

‚ The standard affine paving of pP1qE restricts to an affine paving of a matroid Schubert
variety YL, whose k-dimensional cells are

UF “ tp P Y | pi “ 8 if and only if i R F u,

one for each rank k flat F of M. Writing yF for the homology class of the closure of UF ,
which is another matroid Schubert variety, we have

H‚pYL,Zq »
à

FPLpMq

Z yF ,

where LpMq is the lattice of flats of M.

As mentioned before, the restriction of SL to the augmented wonderful variety WL is isomor-
phic to the log-tangent bundle TWL

p´ log BWLq. This allows us to deduce the following remark-
ably simple formula for the Chern–Schwartz–MacPherson (CSM) classes of matroid Schubert
cells in their varieties. See Section 9.2 for a brief review of CSM classes.

Theorem 1.15. The Chern–Schwartz–MacPherson class of 1L in YL is the sum over all flats

cSM p1Lq “
ÿ

FPLpMq

yF P H‚pYL,Zq.
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In particular, the CSM class of L in YL is effective. The analogous effectivity of CSM classes
of classical Schubert cells in their varieties was established in [AMSS].

We include an appendix that discusses notions of valuativity and polytope algebras. We
mostly collect statements from the literature, but we also give an isomorphism between a certain
polytope algebra and the K-ring of a smooth projective toric variety.

Notation. Let k be an algebraically closed field of arbitrary characteristic. A variety is an ir-
reducible and reduced scheme of finite type separated over k. When k “ C, the singular ho-
mology groups in even degrees and the Chow homology groups coincide for smooth projective
toric varieties and augmented wonderful varieties, so we will use the two groups interchange-
ably in such cases, and similarly for the singular cohomology ring and the Chow cohomology
ring. We denote by x¨, ¨y the standard pairing on kE or ZE .

Acknowledgements. We thank Alex Fink and Ravi Vakil for helpful conversations, Mario Sanchez
for a helpful discussion on the proof of Lemma A.12, and the referees for their careful reading
and suggestions.

2. TORUS-EQUIVARIANT GEOMETRY PRELIMINARIES

We collect some facts about the torus-equivariantK-ring and torus-equivariant Chow ring of
a smooth projective toric variety. The reader may skip this section and refer back as needed.

Let XΣ be the smooth projective toric variety with fan Σ, and let T “ GE
m be the torus with

character lattice CharpT q “ ZE . Suppose that T acts on XΣ via a surjective map of tori with
connected kernel to the dense open torus of XΣ, so that the corresponding map of cocharacter
lattices is ZE Ñ ZE{plinXZEq for some linear subspace lin Ă ZE b R. This data is encoded by
the n-dimensional complete fan Σ in RE with lineality space lin such that Σ{ lin “ Σ.

2.1. Localization theorems. Let KT pXΣq be the T -equivariant K-ring of XΣ, the Grothendieck
ring of T -equivariant vector bundles on XΣ. Let KpXΣq denote the K-ring of XΣ. By forget-
ting the equivariant structure, one has a surjective map KT pXΣq Ñ KpXΣq. By taking the T -
equivariant sheaf Euler characteristic, one has aKT pptq-module homomorphism χT : KT pXΣq Ñ

KT pptq. We identify KT pptq “ ZrCharpT qs with the Laurent polynomial ring ZrT˘1
1 , . . . , T˘1

n s

where Ti is the standard character of i P E under the identification CharpT q “ ZE .

Let A‚
T pXΣq denote the equivariant Chow ring of XΣ, as defined in [EG98], and let A‚pXΣq

denote the Chow ring of XΣ. Similar to the K-rings, one has a surjective map A‚
T pXΣq Ñ

A‚pXΣq and aA‚
T pptq-module homomorphism

şT
: A‚

T pXΣq Ñ A‚
T pptq. We identifyA‚

T pptq with
the polynomial ring Zrt1, . . . , tns. Let

ş

: A‚pXΣq Ñ Z be the (non-equivariant) degree map.

Let Σpkq denote the set of cones of dimension k of Σ. For each maximal cone σ of Σ, we
have a map KT pXΣq Ñ KT pptσq “ ZrT˘1

1 , . . . , T˘1
n s given by pulling back to or localizing at the

corresponding fixed point ptσ . Similarly, we have a map A‚
T pXΣq Ñ A‚

T pptσq “ Zrt1, . . . , tns.
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These maps can be combined into mapsKT pXΣq Ñ KT pXT
Σ q “

ś

σPΣpnq KT pptq andA‚
T pXΣq Ñ

A‚
T pXT

Σ q “
ś

σPΣpnq A
‚
T pptq, where XT

Σ denotes the set of T -fixed points of XΣ. For a character
v “ pv1, . . . , vnq P ZE , we denote T v “ T v1

1 ¨ ¨ ¨T vn
n and tv “ v1t1 ` ¨ ¨ ¨ ` vntn. Then we have the

following localization theorem.

Theorem 2.1. Let XΣ as above. Then

(1) [VV03, Corollary 5.11] The restriction map KT pXΣq Ñ KT pXT
Σ q is injective, and its im-

age is the subring of
ś

σPΣpnq KT pptq given by
$

&

%

f P
ź

σPΣpnq

KT pptq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fσ ´ fσ1 ” 0 mod 1 ´ T v

whenever dimσ X σ1 “ d´ 1 with Rpσ X σ1q “ ker v

,

.

-

.

Moreover, the map KT pXΣq Ñ KpXΣq forgetting the equivariant structure is surjective,
with kernel IK equal to the ideal generated by f´fp1, . . . , 1q where f is a global Laurent
polynomial, i.e., fσ for all σ P Σpnq equals a common Laurent polynomial.

(2) [Pay06] The restriction mapA‚
T pXΣq Ñ A‚

T pXT
Σ q is injective, and its image is the subring

of
ś

σPΣpnq A
‚
T pptq given by

$

&

%

f P
ź

σPΣpnq

A‚
T pptq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fσ ´ fσ1 ” 0 mod tv

whenever dimσ X σ1 “ d´ 1 with Rpσ X σ1q “ ker v

,

.

-

.

Moreover, the map A‚
T pXΣq Ñ A‚pXΣq forgetting the equivariant structure is surjec-

tive, with kernel IA equal to the ideal generated by f ´ fp0, . . . , 0q where f is a global
polynomial, i.e., fσ for all σ P Σpnq equals a common polynomial.

2.2. Duality, rank, symmetric powers, exterior powers, Chern classes, and Segre classes. We
now recall the description of several operations on the equivariant K-ring of a toric variety in
terms of localization at fixed points. Let rEs P KT pXΣq be an equivariant K-class, localizing to
rEsσ “

řkσ

i“1 aσ,iT
mσ,i at a torus-fixed point corresponding to a maximal cone σ P Σpnq.

There is a ring involution DK on KT pXΣq defined by sending the class of an equivariant
vector bundle to the class of the dual vector bundle. The dual class DKprEsq :“ rEs_ has

DKprEsqσ “

kσ
ÿ

i“1

aσ,iT
´mσ,i .

There is a corresponding ring involution, denoted DA, on A‚
T pXΣq, defined by DAptiq ÞÑ ´ti

at each torus-fixed point. This multiplies by p´1qk on Ak
T pXΣq. These involutions descend to

KpXΣq and A‚pXΣq.

As toric varieties are integral, every coherent sheaf on a toric variety has a rank. As the rank
is additive in short exact sequences, this defines a ring homomorphism rk : KT pXΣq Ñ Z, which
descends to KpXΣq Ñ Z. The rank of rEs is

řkσ

i“1 aσ,i, which is independent of the choice of σ.
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The operation that assigns to each equivariant vector bundle its j-th symmetric or exterior
power extends naturally to KpXΣq and KT pXΣq. Explicitly, with u a formal variable, we have
that

8
ÿ

j“0

Źj
rEsσu

j “

kσ
ź

i“1

p1 ` Tmσ,iuqaσ,i , and
8
ÿ

j“0

Symj
rEsσu

j “

kσ
ź

i“1

ˆ

1

1 ´ Tmσ,iu

˙aσ,i

.

The function that sends a vector bundle to its equivariant total Chern class extends to a func-
tion cT : KT pXΣq Ñ A‚

T pXΣq, which is multiplicative in the sense that cT pE`Fq “ cT pEq¨cT pFq.
The equivariant Chern polynomial cT pE , uq is the polynomial cT0 pEq ` cT1 pEqu ` cT2 pEqu2 ` ¨ ¨ ¨ ,
where u is a formal variable. Define similarly the Chern polynomial cpE , uq P A‚pXΣqrus. The
equivariant total Chern class localizes to

cT pE , uqσ “

8
ÿ

j“0

cTj pEqσu
j “

kσ
ź

i“1

p1 ` utmσ,i
qaσ,i ,

where u is a formal variable.

If E is a vector bundle on XΣ, then E has a Segre class in A‚pXΣq, characterized by the
property that cpEqspEq “ 1. We define the equivariant Segre class to be the inverse of cT pEq in
A‚

T pXΣqrcT pEq´1s. Because cpEq is a unit in A‚pXΣq, there is a natural map A‚
T pXΣqrcT pEq´1s Ñ

A‚pXΣq, and the image of sT pEq is spEq. Define the (equivariant) Segre polynomial in the same
way as the (equivariant) Chern polynomial.

3. STELLAHEDRAL VARIETIES

We describe the stellahedral fan ΣE and its variety XE in several different ways, and we
record several useful properties of XE we will need. The closely related permutohedral fan ΣE

and its variety XE will often appear and aid the discussion.

3.1. The stellahedral fan via compatible pairs. We describe the stellahedral fan in terms of its
cones. We start by describing the closely related permutohedral fan, which both serves as a
motivation for and appears as a substructure in the stellahedral fan.

Definition 3.1. The permutohedral fan ΣE is a fan in RE{ReE that consists of cones σF for each
chain F : F1 Ĺ ¨ ¨ ¨ Ĺ Fk of nonempty proper subsets of E where

σF “ coneteF1
, . . . , eFk

u.

Here we denoted u for the image of u P RE in RE{ReE .

That this definition of ΣE is equivalent to its description as the normal fan of the permuto-
hedron ΠE “ convtw ¨ p1, 2, . . . , nq | w is a permutation of Eu Ď RE is a standard fact about
Coxeter reflection groups; see for instance [BB05]. We now give a similar description of the
stellahedral fan ΣE in terms of “compatible pairs” as given in [BHM`22, §2].
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Definition 3.2. A pair pI,Fq consisting of a subset I Ď E and a chain F : F1 Ĺ F2 Ĺ ¨ ¨ ¨ Ĺ Fk of
proper subsets of E is said to be compatible if I is a subset of every element of F. We write I ď F

in this case.

Both the subset I and the chain F are allowed to be empty. In contrast to the permutohedral
case, the empty set is allowed to be an element in the chain F. Make the following a definition.

Proposition 3.3. [BHM`22, Proposition 2.6] The stellahedral fan ΣE is a simplicial fan that
consists of cones σIďF for each compatible pair I ď F where

σIďF “ conetei | i P Iu ` conet´eEzF | F P Fu.

We denote the rays of the fan ΣE by

ρi “ σtiuďH “ conepeiq for each i P E and ρS “ σHďtSu “ conep´eEzSq for each S Ĺ E.

The proposition gives the following corollary concerning the stars of the stellahedral fan.
Recall that for a fan Σ in RE , the star of a cone σ P Σ is a fan, denoted starσ Σ, in RE{Rσ whose
cones are the images of the cones in Σ containing σ.

Corollary 3.4. [BHM`22, Proposition 2.7] Let I “ ti1, . . . , iju ď F : F1 Ĺ ¨ ¨ ¨ Ĺ Fk be a com-
patible pair, and by convention set Fk`1 “ E (so F1 “ E if F is an empty chain). Then, the
isomorphism

RE{RσIďF “ RE{Rtei1 , . . . , eij ,´eEzF1
, . . . ,´eEzFk

u » RF1zI ˆ

k
ź

i“1

RFi`1zFi{ReFi`1zFi

induces an isomorphism of fans

starσIďF
ΣE » ΣF1zI ˆ

k
ź

i“1

ΣFi`1zFi
.

Example 3.5. When pI,Fq “ pH, tHuq corresponding to the ray ρH “ conep´eEq, we have that
starρH

ΣE » ΣE . In particular, we recover that the permutohedral variety XE arise as the T -
invariant divisor of XE corresponding to the ray ρH, as noted in the introduction. From the
map ZE Ñ ZE{ZρH “ ZE{ZeE , we have that the open dense torus of XE is the projectivization
PT “ pk˚qE{k˚ of T .

We will often use Example 3.5 to recover or relate the “augmented” structures on stellahedral
varieties to the “non-augmented” versions on permutohedral varieties. We will use the more
general star structures of the stellahedral fan in §4.2, where we study the restriction of aug-
mented tautological bundles to various torus-invariant subvarieties of the stellahedral variety.
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3.2. Refinements and coarsenings. We record how the stellahedral fan ΣE arises as either a
refinement or a coarsening of certain fans. First, we note that ΣE is an iterated stellar subdivision
of coarser fans in two distinguished ways. Both statements can be verified via Proposition 3.3.

Proposition 3.6. Let ΣE be the stellahedral fan of E. The following hold.

(a) Let Σn be the fan in RE whose maximal cones are the cones generated by the cardinality-
n subsets of te1, e2, . . . , en,´eEu. Then ΣE is obtained from Σn by performing the stellar
subdivision of all maximal cones of Σn that contain the vector ´eE , then performing the
stellar subdivision of the inverse images of codimension 1 cones that contain ´eE , and
so on.

(b) Let pΣ1qE be the fan in RE whose maximal cones are the 2n orthants of RE . Then ΣE is
obtained from pΣ1qE by performing the stellar subdivision of the negative orthant, then
performing the stellar subdivision of the codimension-1 faces of the negative orthant,
and so on.

Since the toric varieties of ΣE and pΣ1qE are PE and pP1qE , respectively, the above two de-
scriptions of ΣE can be rephrased to say that the stellahedral variety XE is an iterated blow-up
along smooth centers from PE and from pP1qE . The two maps πE : XE Ñ PE and π1E : XE Ñ

pP1qE are the blow-down maps. For i P E, let πi : XE Ñ P1 be the composition of π1E with the
projection to the i-th P1. These maps from XE to projective spaces give the following distin-
guished divisor classes on XE .

Definition 3.7. With notations as above, we denote

α “ π˚
Ephyperplane class of PEq and yi “ π˚

i phyperplane class of P1q.

We now describe the stellahedral fan ΣE as a coarsening of a permutohedral fan. This de-
scription of ΣE will be useful for our discussion of the tropical geometry of augmented won-
derful varieties in §5.3 and for producing a basis for ΣE in §7.2.

Denote by rE “ E \ t0u. Let p be the isomorphism of lattices

p : Z rE{Ze
rE Ñ ZE given by pa0, a1, . . . , anq ÞÑ pa1 ´ a0, . . . , an ´ a0q.

That is, for S Ď rE we have eS ÞÑ eS if 0 R S and eS ÞÑ ´eEzS if 0 P S. To show that the
stellahedral fan ΣE of E is the image under p of a coarsening of the permutohedral fan Σ

rE

of rE, we use the following notions from [DCP95, FY04] in an equivalent formulation given in
[Pos09, §7]. A building set is a collection G of subsets of rE such that tiu P G for any i P rE, and
if S and S1 are in G with S X S1 ‰ H then so is S Y S1. The nested complex N of a building
set G is a simplicial complex on vertices G whose faces are collections tX1, . . . , Xku Ď G such
that for every subcollection tXi1 , . . . , Xiℓu with ℓ ě 2 consisting only of pairwise incomparable
elements, one has

Ťℓ
j“1Xij R G. When rE P G, the set of cones

␣

coneteX1
, . . . , eXk

u Ď R rE{Re
rE | tX1, . . . , Xku Ď GztH, rEu a face of N

(
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is a smooth fan in R rE{Re
rE that coarsens the permutohedral fan Σ

rE .

Proposition 3.8. The collection G “ tS Y 0 | S Ď Eu Y E is a building set whose fan projects
isomorphically onto the stellahedral fan ΣE under p.

Proof. Both the facts that G is a building set and that the faces of N are tS1 Y 0, . . . , Sk Y 0u Y I ,
where H Ď S1 Ĺ ¨ ¨ ¨ Ĺ Sk Ď E and H Ď I Ď S1, are straightforward to check. The rest of the
proposition follows from Proposition 3.3. □

3.3. Polymatroids. A standard correspondence between polyhedra and divisors on toric vari-
eties [CLS11, §6.2] (see also [ACEP20, §2.4]) states the following: For a lattice polytope Q and
the toric variety XQ defined by its normal fan ΣQ, the base-point-free torus-invariant divisors
on XQ are in bijection with deformations of Q, which are lattice polytopes whose normal fans
coarsen ΣQ. We show that specializing this to the stellahedral variety XE gives a correspon-
dence between the set of base-point-free divisor classes on XE and a family of polytopes called
“polymatroids” introduced in [Edm70].

Definition 3.9. For vectors u, v P RE , let us denote u ě v if u´ v P RE
ě0. A polymatroid on E is a

nonempty polytope P in the nonnegative orthant RE
ě0 satisfying the following two properties:

(1) If v P RE
ě0 such that u ě v for some u P P , then v P P .

(2) For any v P RE
ě0, every maximal u P P such that u ď v has the same coordinate sum

xu, eEy.

An integral polymatroid is a polymatroid whose vertices lie in ZE .

We will use the following “strong normality” of integral polymatroids in the proof of Propo-
sition 3.16.

Proposition 3.10. [Wel76, Chapter 18.6, Theorem 3] Let P1, . . . , Pk be integral polymatroids on
E. Then any lattice point q P ZE in the Minkowski sum P1 ` ¨ ¨ ¨ ` Pk is a sum p1 ` ¨ ¨ ¨ ` pk of
lattice points pi P Pi X ZE . In particular, an integral polymatroid P is a normal polytope.

This property of polymatroids implies that the closure of the image of the map

T Ñ P|P1XZE
|´1 ˆ ¨ ¨ ¨ ˆ P|PkXZE

|´1 defined by t ÞÑ prtmsmPP1XZE , . . . , rtmsmPPkXZE q

is isomorphic to the toric variety of the normal fan of P1 ` ¨ ¨ ¨ ` Pk. For a general discussion of
normal polytopes in toric geometry, see [CLS11, Chapter 2].

To relate polymatroids to base-point-free divisor classes on XE , we will need the following
equivalent description of (integral) polymatroids. A function f : 2E Ñ R with fpHq “ 0 is said
to be non-decreasing and submodular if

(non-decreasing) fpSq ď fpS1q whenever S Ď S1 Ď E, and

(submodular) fpS Y S1q ` fpS X S1q ď fpSq ` fpS1q for all S, S1 Ď E.
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Theorem 3.11. [Edm70, (8)] Polymatroids on E are in bijection with non-decreasing and sub-
modular functions f : 2E Ñ R with fpHq “ 0. The bijection is given by

a polytope P ÞÑ f : 2E Ñ R where fP pSq “ maxtxu, eSy | u P P u for S Ď E

a function f : 2E Ñ R ÞÑ P “ tu P RE
ě0 | xeS , uy ď fpSq for all S Ď Eu.

A polymatroid P is integral if and only if the function f is Z-valued.2

Example 3.12. The independence polytope IpMq of a matroid M is an integral polymatroid where
the function f is the rank function rkM. It follows that rkM is a non-decreasing and submodular
function. Conversely, the rank function characterization of matroids implies that an integral
polymatroid contained in the Boolean cube r0, 1sE is the independence polytope of a matroid.
See [Edm70] for details.

The following proposition implies that, up to translation, polymatroids are exactly the defor-
mations of the stellahedron.

Proposition 3.13. For a proper subset H Ď S Ĺ E, let DS be the torus-invariant divisor on XE

corresponding to the ray σHďtSu “ conep´eEzSq of ΣE . Let rDSs be its divisor class in A1pXEq.
Then the map defined by

pintegral polymatroid P defined by f : 2E Ñ Zq ÞÑ
ÿ

HĎSĹE

fpEzSqrDSs P A1pXEq

is a bijection between the set of integral polymatroids onE and the set of base-point-free divisor
classes on XE .

For the proof we will need the following consequence of Proposition 3.3, which follows from
[CLS11, Theorem 6.1.7].

Corollary 3.14. (cf. [BHM`22, Proposition 2.10]) A collection of rays in ΣE is a minimal collec-
tion of rays that do not form a cone in ΣE if and only if the collection is either

tρi, ρSu for i R S Ĺ E or tρS , ρS1 u for incomparable S, S1 Ĺ E.

Proof of Proposition 3.13. We begin by noting that the primitive vectors in the rays of ΣE are
tei | i P Eu Y t´eEzS | S Ĺ Eu. Because the cone spanned by tei | i P Eu is a maximal cone in
ΣE , the presentation of the class group A1pXEq in terms of torus-invariant divisors, as given in
[CLS11, Theorem 4.1.3], implies that any divisor class rDs P A1pXEq can be written uniquely as
rDs “

ř

SĹE cSrDSs with cS P Z. Let us set cE “ 0 by convention, and let D “
ř

SĹE cSDS be a
divisor. We now need check that the line bundle OXE

pDq of the divisor D on XE is base-point-
free if and only if the function f : 2E Ñ Z given by S ÞÑ cEzS defines a polymatroid on E.

2In some previous works [DF10, CDMeS22], the terminology “polymatroid” refers to associating the polytope P “

tu P RE
ě0 | xeS , uy ď fpSq for all proper S Ĺ E and xeE , uy “ fpEqu to a non-decreasing and submodular function f

with fpHq “ 0. Our polytope P is equal to tu P RE
ě0 | there exists v P P such that v ´ u P RE

ě0u, and hence contains

P as a face.
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For this end, we will use a criterion for base-point-freeness on toric varieties in terms of
piecewise linear functions. Following the conventions of [CLS11], the divisor D “

ř

SĹE cSDS

corresponds to the piecewise linear function φD on RE defined by assigning the value 0 to ei

for i P E and the value ´cS to ´eEzS for S Ĺ E. Applying a criterion for base-point-freeness
[CLS11, Theorem 6.4.9] to the stellahedral fan along with Corollary 3.14, one has that OXE

pDq

is base-point-free if and only if the following two conditions are satisfied:

(1) For i P E and a subset S Ĺ E not containing i, one has

φDpei ´ eEzSq ě φDpeiq ` φDp´eEzSq.

Equivalently, since i R S implies that ei ´ eEzS “ ´eEzpSYiq, noting that φDpeiq “ 0 and
´φDp´eEzSq “ cS gives

cSYi ď cS .

(2) For incomparable proper subsets S and S1 of E, one has

φDp´eEzS ´ eEzS1 q ě φDp´eEzSq ` φDp´eEzS1 q.

Equivalently, since ´eEzS ´eEzS1 “ ´eEzpSXS1q ´eEzpSYS1q, and because φD is linear on
conet´eEzpSXS1q,´eEzpSYS1qu, noting that ´φDp´eEzSq “ cS gives

cSXS1 ` cSYS1 ď cS ` cS1 .

Here, note that when S Y S1 “ E, our convention that cE “ 0 is consistent because
φDp´eEzEq “ φDp0q “ 0.

In terms of the function f : S ÞÑ cEzS , the first condition is equivalent to fpSq ď fpS Y iq, and
the second condition is equivalent to fpS Y S1q ` fpS X S1q ď fpSq ` fpS1q. □

For an integral polymatroid P , let DP “
ř

SĹE fpEzSqDS be the corresponding divisor on
XE . Let XP be the toric variety of the normal fan of P , considered as a fan in RE so that XP is
considered as a T -variety. Note that XP may have dimension less than n, so the action of T on
XP may have a nontrivial kernel.

Example 3.15. For any matroid M, we have that the divisor DIpMq induces a toric morphism
XE Ñ XIpMq. In particular, we recover the two distinguished maps fromXE in the introduction:
When P is the simplex IpU1,Eq, whose normal fan is Σn, we obtain the map πE : XE Ñ PE .
When P is the boolean cube IpUn,Eq, whose normal fan is pΣ1qE , we obtain the map π1E : XE Ñ

pP1qE .

3.4. Orbit-closure in a flag variety and additive-equivariance. We have so far described the
structure of XE as a toric variety, i.e., in terms of the T -action. Here we show that XE ad-
mits an action by a larger group that contains the additive group GE

a . Let us begin with the
1-dimensional case.
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The multiplicative group Gm acts on the additive group Ga via t ¨ b “ tb for t P Gm and
b P Ga. Let G “ Gm ˙ Ga be semi-direct product. Concretely, the groups Gm, Ga, and G embed
into GL2 as follows.

Gm,Ga,G ãÑ GL2 via t ÞÑ

˜

t 0

0 1

¸

, b ÞÑ

˜

1 b

0 1

¸

, pt, bq ÞÑ

˜

t b

0 1

¸

.

We denote by V “ k
2 the resulting G-representation. The group G thus acts on PpV q “ P1 by

pt, bq ¨ rx : ys “ rtx` by : ys

with two orbits trx : 1s | b P ku » A1 and tr1 : 0su, denoted t8u. When we treat P1 as the toric
variety of the fan in R1 consisting of the three cones tRě0,Rď0, t0uu, the orbit A1

o is identified
with the toric affine chart of P1 corresponding to Rě0. In particular, letting Dr0,1s be the toric
divisor on P1 corresponding to the interval r0, 1s Ă R1, we may identify V “ H0pP1,OP1p1qq_

by giving T -linearization of OP1p1q as OP1p8q “ OP1pDr0,1sq.

Let us now show that the stellahedral varietyXE admits a GE-action. We do this by realizing
XE as a GE-orbit closure in a flag variety. While there are several alternate ways to exhibit
the GE-action on XE , as listed in Remark 3.18, the orbit closure description will be useful for
defining the augmented tautological bundles in the next section.

From the G-action on V “ k
2, we endow V E » k

E ‘ k
E with the GE-action given by

pt,bq ÞÑ

˜

diagptq diagpbq

0 I

¸

. Let ∆: kE Ñ V E be the diagonal embedding.

Proposition 3.16. Let L “ tL1 Ď ¨ ¨ ¨ Ď Lℓu be a flag of linear subspaces of kE realizing matroids
M1, . . . ,Mℓ, and let P be the polymatroid IpM1q ` ¨ ¨ ¨ ` IpMℓq. Then the GE-orbit closure of
r∆pLqs in FlpdimpL1q, . . . ,dimpLℓq;V

Eq is identified with XP .

Proof. We first consider the case when ℓ “ 1, so we are taking the GE-orbit closure of r∆pL1qs

in GrpdimpL1q;V Eq. Let A be a matrix whose rows form a basis for L1, so the rows of
´

A A
¯

form a basis for ∆pL1q. Then the GE-action on GrpdimpL1q;V Eq is given by

pt,bq ¨

”´

A A
¯ı

“

»

–

´

A A
¯

˜

diagptq diagpbq

0 I

¸t
fi

fl “

”´

pt ` bqA A
¯ı

.

This implies that the T -orbit closure coincides with the GE-orbit closure.

The normalization of T ¨ r∆pL1qs is a toric variety, so it is defined over SpecZ. We may there-
fore consider the moment polytope of its complexification, which is given a polarization via the
Plücker embedding of the Grassmannian. The vertices of the moment polytope are given by
the T -weights of the non-zero maximal minors of

´

A A
¯

, where T acts by scaling the first n

columns. Every non-zero maximal minor of
´

A A
¯

is given by a subset S1 of the first n rows
and a subset S2 of the second n rows such that S1 \ S2 is a basis for M1. The T -weight of this
minor is eS1

, so the moment polytope is IpM1q.
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Let S be the set of non-loops of M1. The vertices of IpM1q generate the lattice ZS , which
implies that the character lattice of the embedded torus in the normalization of T ¨ r∆pL1qs is
ZS . Every lattice point in IpM1q is a vertex, so the restriction mapH0pGrpdimpL1q;V Eq;Op1qq Ñ

H0pT ¨ r∆pL1qs,Op1qq is surjective. By Proposition 3.10, T ¨ r∆pL1qs is projectively normal and
therefore normal, so T ¨ r∆pL1qs is isomorphic to XIpM1q.

We now treat the general case. There is an embedding FlpdimpL1q, . . . ,dimpLℓq;V
Eq ãÑ

śℓ
i“1GrpdimpLiq;V

Eq, and the computation above implies that the T -orbit closure of r∆pLqs is
also the GE-orbit closure. By Proposition 3.10, the Segre embedding of T ¨ r∆pLqs corresponds
to the Minkowski sum of polytopes (with the complete linear series), which implies that the
moment polytope of T ¨ r∆pLqs is P . Using that P is a normal polytope, we get that T ¨ r∆pLqs

is isomorphic to XP . □

The flag of matroids realized by a general full flag L “ tL1 Ĺ L2 Ĺ ¨ ¨ ¨ Ĺ Ln “ k
Eu over an

infinite field k are exactly the uniform matroids U1,E , . . . ,Un,E . Since the stellahedron ΠE is the
Minkowski sum IpU1,Eq ` ¨ ¨ ¨ ` IpUn,Eq, we have the following corollary.

Corollary 3.17. The GE-orbit closure of a general full flag of linear subspaces L, viewed as a
point in Flp1, . . . , n;V Eq via ∆, is identified with XE . In particular, XE has the structure of a
GE-variety.

Remark 3.18. With P1 as a G-variety described above, GE acts on pP1qE with 2n orbits. In §3.2,
we describedXE as the iterated blow-up of the strict transforms of the proper GE-orbit closures
in increasing order of dimension. The functoriality of the blow-up then gives XE a GE-action,
and the blow-down map XE Ñ pP1qE is GE-equivariant.

Alternatively, one notes that PE , viewed as the projective completion PpkE ‘ kq of kE , is
a GE-equivariant compactification of kE with the obvious action of GE . The proper GE-orbit
closures in PE are then exactly the coordinate subspaces of PE contained in the hyperplane at
infinity PpkEq Ď PE . In §3.2, we described XE as the iterated blow-up of the strict transforms
of these proper GE-orbit closures in the increasing order of dimension. Again, the functoriality
of the blow-up gives XE a GE-action with an equivariant blow-down map XE Ñ PE .

Lastly, one may also appeal to [AR17, Theorem 3.4 & 4.1] to show that any toric variety XP

of the normal fan ΣP of a polymatroid P on E admits a GE
a -action that is compatible with the

torus-action: One verifies that t´ei | i P Eu form a “complete collection of Demazure roots” of
ΣP as defined in (loc. cit.).

4. AUGMENTED TAUTOLOGICAL BUNDLES AND CLASSES

4.1. Well-definedness. We now construct the augmented tautological bundles and augmented
tautological classes. Recall the notation V E “ k

E ‘k
E . Recall that for any polymatroid P (such

as an independence polytope), one has a T -equivariant map XE Ñ XP because the normal fan
ΣP coarsens ΣE . Let us prepare with the following trivial case.
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Lemma 4.1. Consider the mapXE Ñ Grpn;V Eq obtained as the composition ofXE Ñ XIpUn,Eq

with the mapXIpUn,Eq Ñ Grpn;V Eq given by setting ℓ “ 1 andL1 “ k
E in Proposition 3.16. The

pullback toXE of the tautological subbundle S onGrpn;V Eq is isomorphic to
À

iPE π
˚
i OP1p´1q,

equipped with the unique T -linearization that is trivial on the GE-orbit AE Ď XE .

Proof. By construction, the pullback of S to XE is a subbundle of O‘2n
XE

, and
À

iPE π
˚
i OP1p´1q

(with the unique T -linearization that is trivial on AE) is a subbundle of O‘2n
XE

whose fiber over
any point in AE is the diagonal ∆pkEq. It follows from the construction of the map XE Ñ

Grpn;V Eq that the pullback of S has the fiber over any point of AE equal to ∆pkEq; the result
follows because we may check whether two subbundles of O‘2n

XE
are equal on a dense open

subset.
Alternatively, we had given OP1p1q the T -linearization as the line bundle OP1pDr0,1sq, which

is trivial on the G-orbit A1 of PpV q. This resulted in the identification of V withH0pP1,OP1p1qq_.
Since IpUn,Eq “ r0, 1sE , we find that pP1qE » XIpUn,Eq Ñ Grpn;V Eq is the map induced by the
E-fold product of the injection of vector bundles OP1p´1q Ñ OP1 b V . □

Given a linear subspace L Ď k
E , we now construct vector bundles fitting into a short exact

sequence that is modeled after 0 Ñ L Ñ k
E Ñ k

E{L Ñ 0. Because we would like at least one
of the vector bundles to be globally generated, the vector bundles SL and QL will be defined
so that they fit into the short exact sequence 0 Ñ SL Ñ

À

iPE π
˚
i OP1p1q Ñ QL Ñ 0 with

À

iPE π
˚
i OP1p1q in the middle instead of

À

iPE π
˚
i OP1p´1q. As a result, when we define the dual

bundle Q_
L , we are led to consider the orthogonal dual LK “ pkE{Lq_ Ď k

E of the realization
L Ď k

E of a matroid M, which realizes the dual matroid MK.

Definition 4.2. Let L Ď k
E be a realization of a rank r matroid M on E. Setting ℓ “ 2 and

L1 “ LK Ď L2 “ k
E in Proposition 3.16 supplies us with a map

XE Ñ XIpMKq`IpUn,Eq Ñ Flpn´ r, n;V Eq.

Define the augmented tautological bundles SL and QL by

QL “ the dual of the pullback to XE of the tautological rank n´ r subbundle of Flpn´ r, n;V Eq

SL “ the dual of the quotient bundle
à

iPE

π˚
i Op´1q{Q_

L .

That Q_
L is a subbundle of

À

iPE π
˚
i Op´1q follows from Lemma 4.1 and the fact that Proposi-

tion 3.16 supplies us with a commuting diagram

XIpUn,Eq Grpn;V Eq

XE XIpUn,Eq`IpMKq Flpn´ r, n;V Eq

XIpMKq Grpn´ r;V Eq.
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Remark 4.3. By construction, we have a short exact sequence of GE-equivariant vector bundles

0 Ñ SL Ñ
à

iPE

π˚
i OP1p1q Ñ QL Ñ 0,

which, when restricted to the GE-orbit AE , is canonically identified with

0 Ñ OAE b L Ñ OAE b k
E Ñ OAE b k

E{L Ñ 0.

For arbitrary matroids M, we construct (T -equivariant) K-classes rSMs and rQMs on XE . By
Theorem 2.1.(1), the T -equivariant K-ring of XE is identified with a subring of the product ring
ś

ΣEpnq ZrT˘1
1 , . . . , T˘1

n s. So we will specify these classes by specifying their localization values
at each torus-fixed point indexed by a maximal cone of ΣE .

By Proposition 3.3, the maximal cones of ΣE are in bijection with compatible pairs I ď F

where H Ď I Ď E and F is a (possibly empty) maximal chain of proper subsets of E containing
I . For a chain F containing I , write F{I for the new chain of subsets of EzI obtained by remov-
ing I from each subset in the original chain. A maximal chain F : H Ĺ F1 Ĺ ¨ ¨ ¨ Ĺ Fn´1 orders
the ground set by F1 ă F2zF1 ă ¨ ¨ ¨ ă EzFn´1, and for each matroid M on E we denote:

‚ BFpMq the minimal basis of M under the lexicographic ordering, and

‚ Bc
FpMq the complement of BFpMq in the ground set of M.

Proposition 4.4. For a matroid M on E, the augmented tautological classes defined as

rSMsIďF “ rkMpIq `
ÿ

iPBF{IpM{Iq

T´1
i and

rQMsIďF “ |I| ´ rkMpIq `
ÿ

iPBc
F{I

pM{Iq

T´1
i

are well-defined T -equivariant K-classes on XE . Moreover, if L is a realization of M, then
rSLs “ rSMs and rQLs “ rQM].

Proof. First we check that rQLs “ rQMs. Then taking the case L “ t0u gives that

r
à

iPE

π˚
i OP1p1qsIďF “ |I| `

ÿ

iPEzI

T´1
i .

As rSLs ` rQLs “ r
À

iPE π
˚
i OP1p1qs, this implies that rSLs “ rSMs.

Let L Ď k
E be a subspace of dimension r. Note that the rank n ´ r tautological subbundle

S on Flpn ´ r, n;V Eq is pulled back from the forgetful map Flpn ´ r, n;V Eq Ñ Grpn ´ r;V Eq.
The image of the T -fixed point on XE corresponding to a maximal compatible pair I ď F is
a T -fixed point p of Grpn ´ r;V Eq such that every non-zero Plücker has weight equal to the
vertex of IpMKq on which any functional in the interior of σIďF attains its minimum, which is
eBc

F{I
pM{Iq. Then

rSsp “ |I| ´ rkMpIq `
ÿ

iPBc
F{I

pM{Iq

Ti P KT ppq.
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As pullbacks commute with each other, this implies that rQ_
L sIďF “ rSsp “ |I| ´ rkMpIq `

ř

iPBc
F{I

pMq Ti, so applying DK gives that rQLs “ rQMs. In particular, it gives the claimed for-

mula for r
À

iPE π
˚
i OP1p1qs “ rQt0us.

Now we check well-definedness. As rSMs ` rQMs “ r
À

iPE π
˚
i OP1p1qs, it suffices to check that

rSMs is well-defined. There are two types of codimension 1 cones in ΣE . The first type is given
by a compatible pair I ď F where I “ F1 and there is some ℓ such that Fℓ`1zFℓ “ ti, ju. This
cone is contained in the kernel of the functional ei´ej . Let σIďF1 and σIďF2 be the two maximal
cones containing σIďF; they are obtained by inserting either Fℓ Y i or Fℓ Y j into F. Because the
normal fan of IpMKq coarsens ΣE , the vertices of IpMKq that functionals in the interiors of σIďF1

and σIďF2
attain their minimum on are either identical or differ by an edge. Because σIďF1

and
σIďF2

have the same “I ,” this edge must be parallel to ei ´ ej , and so the symmetric difference
of BF1{IpM{Iq and BF2{IpM{Iq is either ti, ju or H. This implies that, along σIďF, rSMs satisfies
the condition of Theorem 2.1.

The second type of codimension 1 cone is given by a compatible pair I ď F when I Y j “ F1,
which is contained in the kernel of ej . Then the maximal cones containing σIďF are σIYjďF and
σIďF̃, where F̃ is obtained by adding I to F. Then a similar argument to the first case shows that
BF{IYjpM{I Y jq and BF̃{IpM{Iq either coincide or differ by tju. □

These augmented tautological bundles and classes are related to the non-augmented tauto-
logical bundles and classes introduced in [BEST23] as follows. Endow O‘E

XE
with the inverse

T -equivariant structure, i.e., pt1, . . . , tnq ¨ px1, . . . , xnq “ pt´1
1 x1, . . . , t

´1
n xnq.

Definition 4.5. Let L Ď k
E be a realization of a matroid M. Then the (non-augmented) tautolog-

ical bundles SL and QL are the unique T -equivariant vector bundles on XE that fit into a short
exact sequence

0 Ñ SL Ñ O‘E
XE

Ñ QL Ñ 0

where the fiber over the identity is identified with

0 Ñ L Ñ k
E Ñ k

E{L Ñ 0.

One can show that the short exact sequence in the above definition is the restriction to XE of
the short exact sequence 0 Ñ SL Ñ

À

iPE π
˚
i OP1p1q Ñ QL Ñ 0.

For each matroid M, the authors of [BEST23] define classes rSMs and rQMs in KT pXEq. The
T -fixed points on XE are in bijection with complete flags F of subsets of E. The tautological
classes are described by

rSMsF “
ÿ

iPBFpMq

T´1
i and rQMsF “

ÿ

iPBc
F

pMq

T´1
i .

In particular, these are restrictions to XE of the augmented tautological classes rSMs and rQMs.
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4.2. Basic properties. We now develop some basic properties of augmented tautological classes.
These properties and their proofs are similar to those considered in [BEST23, Section 5].

Proposition 4.6. For a matroid M, we have that rdetQMs equals the K-class of the line bundle
corresponding under Proposition 3.13 to the polymatroid IpMKq.

Proof. As a T -equivariant K-class, we have from Proposition 4.4 that

rdetQMsIďF “
ź

iPBc
F{I

pM{Iq

T´1
i

for a maximal cone σIďF of ΣE . Since the vertex of IpMKq that minimizes the pairing with a
vector in the interior of σIďF is eBc

F{I
pM{Iq, the result follows.

Alternatively, by appealing to Proposition 4.7 one can reduce to the case where M admits a
realization L, in which case the diagram above Remark 4.3 implies that detQL defines the map
XE Ñ XIpMKq given by the line bundle OXE

pDIpMKqq. □

Proposition 4.7. Any function that maps a matroid M to a fixed polynomial expression involv-
ing symmetric powers, exterior powers, tensor products, and direct sums of rSMs, rQMs, rSMs_,

and rQMs_ is valuative, and similarly for a fixed polynomial expression in the Chern classes of
the augmented tautological classes.

For instance, the proposition implies that the assignments M ÞÑ cpQMq and M ÞÑ spQ_
Mq are

valuative.

Proof. Let Z2E be the free abelian group with the standard basis indexed by the subsets of E.
Consider the function

MatpEq Ñ
à

ΣEpnq

Z2E given by M ÞÑ
ÿ

σIďFPΣEpnq

eBF{IpM{Iq.

By Proposition A.4, this function is valuative; see also [AFR10, Theorem 5.4]. Any fixed poly-
nomial expression in the augmented tautological classes or their Chern classes factors through
this map and is therefore valuative. □

We now consider how augmented tautological classes restrict to T -invariant subvarieties of
XE . By Corollary 3.4, for a (not necessarily maximal) compatible pair I ď F : F1 Ĺ ¨ ¨ ¨ Ĺ Fk, the
corresponding T -invariant subvariety ZIďF Ď XE corresponding to the cone σIďF is naturally
identified with

ZIďF » XF1zI ˆ

k
ź

i“1

XFi`1zFi
.

This identification then induces isomorphisms

KT pZIďFq
„
Ñ KT pXF1zIq b

k
â

i“1

KT pXFi`1zFi
q and A‚

T pZIďFq
„
Ñ A‚

T pXF1zIq b

k
â

i“1

A‚
T pXFi`1zFi

q.
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Proposition 4.8. Under the above identification, we have that

rSMs|ZIďF
“ rkMpIqrOZIďF

s ` rSM|F1{I s b 1bk `

k
ÿ

i“1

1bpi´1q b rSM|Fi`1{Fi
s b 1bpk´iq, and

rQMs|ZIďF
“ p|I| ´ rkMpIqqrOZIďF

s ` rQM|F1{I s b 1bk `

k
ÿ

i“1

1bpi´1q b rQM|Fi`1{Fi
s b 1bpk´iq.

In particular, when F “ H, we have that cpSMq|ZI
» cpSM{Iq as a class in A‚pZIq » A‚pXEzIq,

and similarly for QM.

Proof. The fan of ZIďF is the star of σIďF, and the localization of an augmented tautological
class to a T -fixed point of ZIďF is the same as the localization to the T -fixed point of XE at the
corresponding maximal cone of ΣE .

The face of IpMKq on which functionals in the (relative) interior of σIďF attain their mini-
mum is naturally identified with IppM|F1{IqKq ˆ

śk
i“1 P ppM|Fi`1{Fiq

Kq, and this identification
is compatible with the corresponding identification for ΠE . As the localizations of augmented
tautological classes to a fixed point corresponding to a maximal cone of ΣE depend only on ver-
tex of IpMKq on which any functional in the interior of that maximal cone attains its minimum,
this product decomposition gives the result. □

5. AUGMENTED WONDERFUL VARIETIES AND BERGMAN CLASSES

5.1. Augmented wonderful varieties.

Definition 5.1. Let L Ď k
E be a linear subspace. With k

E identified with the toric affine chart
of XE corresponding to the cone σEďH “ RE

ě0 of ΣE , the augmented wonderful variety WL of L is
defined as the closure of L in XE .

We note an equivalent description of the augmented wonderful variety, which can be de-
duced from Proposition 3.6. For a flat F Ď E of M, let LF “ L X pkEzF ‘ 0F q. The projective
completion PpL‘kq ofL contains a copy of PpLq as the hyperplane at infinity, and so it contains a
subspace identified with PpLF q for every flat F of M. Under the iterated blow-up πE : XE Ñ PE ,
the augmented wonderful variety WL is the strict transform of PpL ‘ kq Ď PpkE ‘ kq “ PE ,
fitting into the diagram

WL XE

PpL‘ kq PE .

This makes WL equal to the variety obtained by blowing up PpL‘ kq at the linear spaces PpLF q

corresponding to corank 1 flats of M, then blowing up at the strict transforms of linear spaces
corresponding to corank 2 flats of M, and so on.

We relate augmented wonderful varieties to augmented tautological bundles as follows.
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Theorem 5.2. For a linear subspace L Ď k
E , the augmented wonderful variety WL is the van-

ishing locus of a distinguished global section of QL.

We prepare to prove Theorem 5.2 with the following lemma.

Lemma 5.3. Let Q be a vector bundle of rank k on a smooth variety X , and let L Ď H0pX,Qq

be a subspace which generates Q. Suppose there exists a nonempty open U Ď X such that for a
general s P L, the vanishing locus V psq is nonempty and the intersection V psq X U is integral of
codimension k. Then V psq is integral for a general s P L.

Proof. Once we show that V psq is irreducible, the unmixedness theorem [Eis95, Corollary 18.14]
implies that V psq, which is of codimension k, has no embedded points, and hence is integral. To
show that V psq is irreducible, let S be the kernel of OXbL↠ Q, and let ApSq be the total space of
S, which is irreducible. We consider the map π : ApSq Ñ X ˆL Ñ L. For s P L, the fiber π´1psq

is isomorphic to the vanishing locus V psq. Since V psq is nonempty for a general s, the map π is a
dominant map between varieties, and hence a general fiber of π is pure-dimensional. Now, let Z
be the total space of the restriction of S to the closed subvariety XzU . Since dimZ ă dimApSq,
we see that Z cannot contain a component of a general fiber of π. Hence, a general fiber of π is
irreducible, as desired. □

Proof of Theorem 5.2. Take the vector v “ p1, . . . , 1, 0, . . . , 0q P kE ‘k
E . Let us identify kE ‘k

E “

H0pXE ,
À

iPE π
˚
i Op1qq “ pV Eq_. The vector v then defines a global section of

À

iPE π
˚
i Op1q, and

hence a global section of QL via the surjection
À

iPE π
˚
i Op1q ↠ QL. On the GE-orbit AE of XE ,

Remark 4.3 identifies the restriction of v with the section

px1, . . . , xnq P
`

krx1, . . . , xns
˘E

“ H0pAE ,OAE b k
Eq.

So the image of v in H0pAE ,OAE b k
E{Lq vanishes exactly on L. The GE-orbit of v is dense in

k
E ‘ k

E . Hence, by GE-equivariance, the GE-orbit of the image of v in H0pXE ,QLq is dense
in a subspace of H0pXE ,QLq that globally generates QL. In other words, the section v is a suf-
ficiently general section satisfying the conclusion of the above lemma, from which the theorem
now follows. □

Corollary 5.4. Let L Ď k
E be a linear subspace of dimension r.

(1) The normal bundle NWL{XE
is identified with the restriction QL|WL

.

(2) The K-class of the structure sheaf rOWL
s P KpXEq equals

řn´r
i“0 p´1qir

ŹiQ_
L s.

Proof. As WL is a smooth subvariety of XE of dimension r, that WL is the vanishing locus of a
global section of QL implies that the Koszul complex

0 Ñ
Źn´r Q_

L Ñ ¨ ¨ ¨ Ñ
Ź2 Q_

L Ñ Q_
L Ñ OXE

is a resolution of OWL
. Both statements now follow. □
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5.2. Augmented Bergman classes. We describe the Chern classes of augmented tautological
classes and recover the augmented Bergman class as the top Chern class. We use the language
of Minkowski weights, defined as follows.

Definition 5.5. A d-dimensional Minkowski weight on a unimodular fan Σ is a functionw : Σpdq Ñ

Z such that the following balancing condition is satisfied: for every cone τ 1 P Σpd´ 1q

ÿ

τąτ 1

wpτquτ 1zτ P spanpτ 1q

where the summation is over all cones τ P Σpdq containing τ 1, and uτ 1zτ denotes the primitive
generator of the unique ray of τ that is not in τ 1. Write MWdpΣq for the set of d-dimensional
Minkowski weights on Σ.

Minkowski weights play the role of homology classes on smooth complete toric varieties in
the following sense.

Theorem 5.6. [FS97, Theorem 3.1] Let Σ be a complete unimodular fan of dimension m, and let
XΣ be its toric variety. Then, for every 0 ď d ď m, one has an isomorphism

Am´dpXΣq
„
Ñ MWdpΣq defined by ξ ÞÑ

ˆ

τ ÞÑ

ż

X

ξ ¨ rZτ s

˙

.

For a smooth complete toric varietyXΣ, when a Chow class ξ P A‚pXΣq maps to a Minkowski
weight w P MW‚pΣq by the isomorphism in Theorem 5.6, we say that w and ξ are Poincaré duals
of each other, which is notated by writing

ξ X rXΣs “ w.

We compute the Chern classes of the augmented tautological classes in terms of Minkowski
weights on ΣE . By Theorem 5.6, this amounts to computing how they intersect with the vari-
ous torus-invariant strata of XE , for which we use Proposition 4.8 to reduce to understanding
the Chern classes in the top degrees. We hence begin by computing what happens in the top
degrees.

Lemma 5.7. We have that
ż

XE

cpQMq “

$

&

%

1 M “ U0,E

0 otherwise,
and

ż

XE

cpSMq “

$

&

%

1 M “ Un,E

0 otherwise.

Proof. We do the case of SM. The case of QM is similar. If M ‰ Un,E , then SM has rank less than
n, so cnpSMq “ 0. If M “ Un,E , then SM “

À

iPE π
˚
i OP1p1q, so we have that deg cnpSMq “ 1. □

We will also need the analogous statement for tautological bundles.
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Lemma 5.8. [BEST23, Lemma 7.3] We have that

ż

XE

cpQMq “

$

&

%

1 M “ U1,E or M “ U0,1

0 otherwise,
and

ż

XE

cpSMq “

$

&

%

p´1qn´1 M “ Un´1,E or M “ U1,1

0 otherwise.

We now compute the intersection numbers of the Chern classes of rSMs and rQMs with the
boundary stata. When the minimal element of F is the empty set, we recover [BEST23, Proposi-
tion 7.4].

Proposition 5.9. Let I ď F : F1 Ĺ F2 Ĺ . . . Ĺ Fk be a compatible pair, and set ℓ “ codimZIďF.
As before, we set Fk`1 “ E, and when F is empty we interpret F1 as E. Let rZIďF s P A‚pXΣq

be the Chow class of the T -invariant subvariety ZIďF . Then

ż

XE

cn´ℓpQMq¨rZIďFs “

$

’

’

’

’

&

’

’

’

’

%

1
F1 Ď clMpIq, and for i “ 1, . . . , k, exactly k ` rkMpIq ´ rkMpMq of

the minors M|Fi`1{Fi are loops, and the rest are U1,Fi`1zFi
,

0 otherwise, and

ż

XE

cn´ℓpSMq¨rZIďFs “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

p´1qϵ

rkMpF1q ´ rkMpIq “ |F1| ´ |I|, and for i “ 1, . . . , k, exactly

k ` rkMpMq ´ rkMpIq ´ n of the minors M|Fi`1{Fi are coloops,

and the rest are U|Fi`1zFi|´1,Fi`1zFi
,

0 otherwise,

where ϵ “ n´ k ´ |F1|.

Proof. We do the case of SM, the case of QM is similar. By Proposition 4.8, we have that

cpSM, uq|ZIďF
“ cpSM|F1{I , uq b

k
â

i“1

cpSM|Fi`1
{Fi
, uq P A‚pXF1zIq b

k
â

i“1

A‚pXFi`1zFi
q.

Then Lemma 5.7 implies that the intersection number vanishes unless M|F1{I is boolean, and
each M|Fi`1{Fi is either a coloop or is a corank 1 uniform matroid. Note that M|F1{I is boolean
if and only if rkMpF1q ´ rkMpIq “ |F1| ´ |I|, and the fact that rkMpMq “ rkMpIq ` rkMpM|F1{Iq `

¨ ¨ ¨ `
ř

rkMpM|Fi`1{Fiq implies that, if the intersection number is non-zero, then exactly k `

rkMpMq ´ rkMpIq ´ n of the minors M|Fi`1{Fi are coloops. In this case, the intersection number
is p´1qϵ, where

ϵ “
ÿ

p|Fi`1{Fi| ´ 1q ,
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where the sum is over the minors such that M|Fi`1{Fi is not a coloop. The set E decomposes
into a disjoint union of elements where the corresponding minor is a coloop, is in I , is in a
non-coloop minor, or is in F1zI , so

n “ pk ` rkMpMq ´ rkMpIq ´ nq ` |I| ` p
ÿ

|Fi`1{Fi|q ` p|F1| ´ |I|q.

We also have that the number of non-coloops is n` rkMpIq ´ rkMpMq. Substituting, we see that
ϵ “ n´ k ´ |F1|. □

We now define and derive certain properties of augmented Bergman fans and augmented
Bergman classes.

Definition 5.10. For a matroid M of rank r on E, the augmented Bergman fan, denoted ΣM, is the
subfan of ΣE consisting of cones σIďF where the subset I Ď E is independent in M and the flag
F consists of proper flats of M. The augmented Bergman class rΣMs of M is the weight

rΣMs : ΣEprq Ñ Z defined by σ ÞÑ

$

&

%

1 if σ P ΣM

0 otherwise.

[BHM`22, Proposition 2.8] states that, up to scaling, the augmented Bergman class is the
unique way to assign weights to the cones of the augmented Bergman fan that results in a
Minkowski weight.

Corollary 5.11. Let M be a matroid of rank r on E.

(1) We have that cn´rpQMq “ rΣMs. In particular, the augmented Bergman class rΣMs is a
well-defined Minkowski weight.

(2) The assignment M ÞÑ rΣMs is valuative.

(3) If L Ď k
E is a realization of M, then rΣMs “ rWLs.

Proof. The first statement follows from Proposition 5.9. The second statement follows from the
first by Proposition 4.7. The third statement follows from the first by Theorem 5.2. □

By restricting to the permutohedral variety, we recover properties of “non-augmented” Bergman
fans and classes as follows. Note that for a loopless matroid M, the augmented Bergman fan ΣM

contains the ray ρH.

Definition 5.12. The (non-augmented) Bergman fan of a loopless matroid M on E is ΣM “

starρH
ΣM. Equivalently, it is the subfan of ΣE consisting of cones σF where the flag F con-

sists of nonempty proper flats of M. The (non-augmented) Bergman class rΣMs is the Minkowski
weight on ΣE defined by assigning weight 1 to the cones of ΣM.

The Bergman class of a matroid with a loop is defined to be zero. Since rQMs restricts to rQMs

on XE and rΣMs restricts to rΣMs, Corollary 5.11 recovers the properties of Bergman classes
stated in [BEST23, Corollary 7.11].
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5.3. Tropical geometry of augmented Bergman fans. The contents of this subsection are not
logically necessary for the rest of the paper, but will be useful elsewhere. We explain how
augmented Bergman fans are related to tropicalizations. We point to [MS15] for a background
in tropical geometry.

Proposition 5.13. Let L Ď k
E be a realization of a matroid M of rank r. For a general b P GE

a , the
tropicalization of the very affine variety L̊b “ pL ` bq X T equals the support of the augmented
Bergman fan ΣM.

Proof. Let rE “ E \ t0u and let p : Z rE{Ze
rE Ñ ZE be the isomorphism described in §3.2. Under

the isomorphism p, we may identify T with the projectivization P rT of the torus rT “ pk˚q
rE . We

show that the tropicalization of L̊b Ď P rT is the support of a subfan in Σ
rE that maps isomorphi-

cally under p onto the augmented Bergman fan ΣM.
Let L “ tx P k

E | AKx “ 0u for an pn ´ rq ˆ n matrix AK. For an element b P GE
a , let

b1 P GE
a be such that L ` b “ tx P k

E | AKx “ b1u. In other words, the closure of L ` b

in the projective completion PpkE ‘ kq “ Ppk
rEq is the projectivization of the linear subspace

tpx, x0q P k
rE | AKx ´ b1x0 “ 0u. Since b1 is general because b was, this linear subspace is a

realization of the matroid rM “ M ˆ 0 on rE called the free coextension of M, whose set of bases is
defined as

tB Y 0 | B a basis of Mu Y tS Ď E | S contains a basis of M and |S| “ r ` 1u.

It is a classical statement [Stu02, AK06] that the tropicalization of a linear subspace is the support
of the Bergman fan of the corresponding matroid. Thus, it suffices now to show that the support
of the Bergman fan of the free coextension is equal to that of the augmented Bergman fan under
the isomorphism p. This follows from the lemma below, which is a restatement of the discussion
in [MM, §5.1]. □

Lemma 5.14. Let M be a matroid on E, and rM its free coextension matroid on rE. The collection

G “ tF Y 0 | F Ď E a flat of Mu Y ti P E | i not a loop in Mu

is a building set on the lattice of flats of rM that induces the fan structure on the support |Σ
ĂM

| Ď

R rE{Re
rE of the Bergman fan of rM consisting of cones

conetei | i P Iu ` coneteFY0 | F P Fu

for each compatible pair I ď F with I Ď E independent in M and F a flag of nonempty proper
flats of M.

We remark that the tropicalization of pL`bqXT for a non-general b can differ from the support
of ΣM. Nonetheless, by GE-equivariance, the homology class of the closure WL`b of L` b in the
stellahedral variety XE is independent of b P kE . Taking b to be general, Proposition 5.13 gives
an alternate proof that rWLs “ rΣMs, for instance by [Kat09, Proposition 9.4].



30 CHRISTOPHER EUR, JUNE HUH, MATT LARSON

6. EXCEPTIONAL ISOMORPHISMS

We construct the pair of isomorphisms between KpXEq and A‚pXEq that were stated in The-
orem 1.8. The two isomorphisms will be related via the two involutions DK and DA described
in §2.2.

We begin by recalling Theorem 2.1, which identifies the T -equivariant K-ring KT pXEq with
a subring of the product ring

ś

σPΣEpnq ZrT˘1
1 , . . . , T˘1

n s of Laurent polynomial rings, and identi-
fies the T -equivariant Chow ringA‚

T pXEq with a subring of the product ring
ś

σPΣEpnq Zrt1, . . . , tns

of polynomial rings. Let A‚
T pXEqr

ś

iPEp1 ` tiq
´1s be the ring obtained by adjoining the inverse

of the polynomial
ś

iPEp1 ` tiq to the ring A‚
T pXEq. For an element f in such product rings,

denote by fσ the (Laurent) polynomial corresponding to σ P ΣEpnq.

Theorem 6.1. The map ζT : KT pXEq Ñ A‚
T pXEqr

ś

iPEp1 ` tiq
´1s defined by sending

fσpT1, . . . , Tnq ÞÑ fσp1 ` t1, . . . , 1 ` tnq for any σ P ΣEpnq

is a ring isomorphism, which descends to a ring isomorphism ζ : KpXEq Ñ A‚pXEq.

Proof. Every edge of the stellahedron ΠE is parallel to either ei for some i P E or to ei ´ ej

for some i ‰ j P E. Thus, the conditions fσpT1, . . . , Tnq ´ fσ1 pT1, . . . , Tnq ” 0 mod 1 ´ T v

appearing in Theorem 2.1.(1), in the case of KT pXEq, state that either fσ ´fσ1 ” 0 mod 1´Ti or
fσ ´fσ1 ” 0 mod 1´ Ti

Tj
. The latter is equivalent to stating that fσ ´fσ1 ” 0 mod Tj ´Ti. Under

the transformation Ti ÞÑ 1` ti defining ζT , these two conditions become fσp1` t1, . . . , 1` tnq ´

fσ1 p1`t1, . . . , 1`tnq ” 0 mod ti and fσp1`t1, . . . , 1`tnq´fσ1 p1`t1, . . . , 1`tnq ” 0 mod tj ´ti,
which are exactly the conditions appearing in Theorem 2.1.(2) in the case of A‚

T pXEq. Hence,
the map ζT is well-defined and is clearly an isomorphism.

We now check that the isomorphism ζT descends to a ring isomorphism on the non-equivariant
rings. We recall from Theorem 2.1 that the kernel IK of the quotient map KT pXEq Ñ KpXEq

is the ideal in KT pXEq generated by f ´ fp1, . . . , 1q for f a global Laurent polynomial, and
that the kernel IA of the quotient map A‚

T pXEq Ñ A‚pXEq is the ideal in A‚
T pXEq generated

by f ´ fp0, . . . , 0q for f a global polynomial. Note that the polynomial
ś

iPEp1 ` tiq whose
inverse was adjoined to A‚

T pXEq maps to 1 under this quotient map. It thus remains only to
show that ζT maps IK isomorphically onto I 1

A “ IAr
ś

iPEp1 ` tiq
´1s. But both ζT pIKq Ď I 1

A and
ζT pIKq Ě I 1

A are straightforward to verify by considering their generators. □

By conjugating ζ by the two involutions DK and DA, we have the “dual” isomorphism.

Definition 6.2. Let ϕ : KpXEq Ñ A‚pXEq be the isomorphism defined by ϕ “ DA ˝ ζ ˝DK .

We remark that, similarly to Theorem 6.1, one can show that the map ϕT : KT pXEq Ñ A‚
T pXEqr

ś

iPEp1´

tiq
´1s defined by sending

fpT1, . . . , Tnq ÞÑ fpp1 ´ t1q´1, . . . , p1 ´ tnq´1q for a Laurent polynomial f P ZrT˘1
1 , . . . , T˘1

n s

is an isomorphism, which descends to the non-equivariant isomorphism ϕ.
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We now show that ζ and ϕ behave particularly well with respect to K-classes with “simple
Chern roots,” a notion introduced in [BEST23].

Definition 6.3. A T -equivariantK-class rEs P KT pXEq has simple Chern roots if for each maximal
σ P ΣE , there is a sequence paσ,0, aσ,1, . . . , aσ,nq such that rEsσ “ aσ,0 `

řn
i“1 aσ,iTi.

Note that rQMs_ and rSMs_ have simple Chern roots.

Proposition 6.4. Let rEs P KT pXEq have simple Chern roots. With u a formal variable, we have

ÿ

jě0

ζT p
Źj

rEsquj “ pu` 1qrkpEqcT
ˆ

E , u

u` 1

˙

,

ÿ

jě0

ϕT p
Źj

rEsquj “ pu` 1qrkpEqsT pE_qcT
ˆ

E_,
1

u` 1

˙

,

ÿ

jě0

ζT pSymj
rEsquj “

1

p1 ´ uqrkpEq
sT

ˆ

E , u

u´ 1

˙

, and

ÿ

jě0

ϕT pSymj
rEsquj “

cT pE_q

p1 ´ uqrkpEq
sT

ˆ

E_,
1

1 ´ u

˙

.

Proof. We prove the formulas involving ϕ. The formulas involving ζ are similar (and the first
formula follows from [BEST23, Proposition 10.5]). Since rEs has simple Chern roots, we have
that rEsσ “ aσ,0 `

ř

iPIσ
Ti for some multiset Iσ . We then compute

ÿ

jě0

ϕT p
Źj

rEsqσu
j “ pu` 1qaσ,0`|Iσ |

ź

iPIσ

p1{p1 ´ tiqqp1 ´ ti{pu` 1qq

“ pu` 1qrkpEqsT pE_qσc
T

ˆ

E_,
1

u` 1

˙

σ

, and

ÿ

jě0

ϕT pSymj
rEsqσu

j “
1

p1 ´ uqaσ,0`|Iσ|

ź

iPIσ

1 ´ ti
1 ´ ti{p1 ´ uq

“
cT pE_qσ

p1 ´ uqrkpEq
sT

ˆ

E_,
1

1 ´ u

˙

σ

,

as desired. □

We note in particular the following consequence of Proposition 6.4.

Corollary 6.5. Let M be a matroid of rank r on E. Let DIpMKq be the T -invariant divisor associ-
ated to IpMKq as discussed above Example 3.15.

(1) One has ϕprOXE
pDIpMKqqsq “ cpQMq and ζprOXE

pDIpMKqqsq “ spQ_
Mq.

(2) If L Ď k
E realizes M, then ζprOWL

sq “ rWLs.

Proof. Applying ζ “ DA ˝ ϕ ˝DK to the first formula in the proposition gives
ÿ

jě0

ϕp
Źj

rEs_quj “ pu` 1qrkpEqcpE ,´ u
u`1 q
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for rEs P KpXEq with simple Chern roots. Since rQMs_ has simple Chern roots with rkpQMq “

n´ r, and since r
Źn´r QMs “ rdetQMs “ rOXE

pDIpMKqqs by Proposition 4.6, the first statement
now follows by setting rEs “ rQMs_ and noting that cpE ,´uq “ cpE_, uq. The second statement
follows from the first formula in the proposition and Corollary 5.4. □

Example 6.6. Note that rdetQUn´1,E
s “ rOXE

pDIpU1,Eqqs and rdetQU0,E
s “ rOXE

pDIpUn,Eqqs.
Because the line bundles OXE

pDIpU1,Eqq and OXE
pDIpUn,Eqq induce the maps πE : XE Ñ PE

and π1E : XE Ñ pP1qE , respectively, we have

ϕprOXE
pDIpU1,Eqqsq “ 1 ` α and ϕprOXE

pDIpUn,Eqqsq “
ź

iPE

p1 ` yiq “ c
`
à

iPE

π˚
i OP1p1q

˘

.

Here, recall the notation that α “ c1pπ˚
EOPE p1qq and yi “ c1pπ˚

i OP1p1qq.

Remark 6.7. Let us remark on how the maps ϕ and ζ here are related to the exceptional iso-
morphism for permutohedral varieties given in [BEST23, Theorem D]. Just as for augmented
tautological bundles, classes, and Bergman classes, the first relation comes from considering
XE as a T -fixed divisor on XE : The restriction of ζ to XE recovers the isomorphism ζ between
KpXEq and A‚pXEq in [BEST23, Theorem D].

Let us now sketch a different relation. Let rE “ E \ t0u as in §3.2, where we noted that the
stellahedral fan ΣE can be considered as a coarsening of the permutohedral fan Σ

rE . In other
words, we have a T -equivariant birational map p : X

rE Ñ XE . One can show that there is a
commuting diagram

KpXEq A‚pXEq

KpX
rEq A‚pX

rEq

ζ

ζ

where the two vertical maps are the respective pullback maps, and one has similar commuting
diagrams for ϕ and the T -equivariant versions of ζ and ϕ. Both Theorem 1.8 and Theorem 1.9
can then be deduced from the commutativity of the diagrams and [BEST23, Theorem D].

7. VALUATIVE GROUP, HOMOLOGY, AND THE INTERSECTION PAIRING

7.1. The polytope algebra and the proof of Theorem 1.4. For the proof of Theorem 1.4, the last
remaining ingredient is the polytope algebra introduced in [McM89]. For a polytope Q Ď RE ,
define the function 1Q : RE Ñ Z by 1Qpuq “ 1 if u P P and 0 otherwise. Recall that a (lattice)
polytope P is said to be a (lattice) deformation of Q if its normal fan ΣP coarsens that of Q.

Definition 7.1. Let Σ be the normal fan of a smooth polytopeQ Ď RE . Let IpΣq be the subgroup
of ZRE

generated by t1P | P a lattice deformation of Qu, and let translpΣq to be the subgroup of
IpΣq generated by t1P ´ 1P`u | u P ZEu. We define the polytope algebra to be the quotient

IpΣq “ IpΣq{ translpΣq.
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For a lattice deformation P , let us denote by rP s its class in the polytope algebra IpΣq.
The polytope algebra, as the terminology suggests, is a ring with multiplication induced by
Minkowski sum, that is, by rP s ¨ rP 1s “ rP ` P 1s. It was well-known among experts that the
polytope algebra is naturally identified with KpXΣq; this is realized in Theorem A.10. When we
apply the theorem to the stellahedral variety, noting that deformations of the stellahedron are
exactly polymatroids (Proposition 3.13), we deduce the following.

Theorem 7.2. The map sending an integral polymatroid P on E to rOXE
pDP qs defines an iso-

morphism IpΣEq » KpXEq.

We now prove Theorem 1.5 by showing that we have a sequence of isomorphisms
n
à

r“0

ValrpEq » IpΣEq » KpXEq » A‚pXEq.

We prepare for the first isomorphism in the sequence with the following lemma.

Lemma 7.3. The intersection of an integral polymatroid with an integral translate of the boolean
cube r0, 1sE , if nonempty, is a translate of the independence polytope of a matroid.

Proof. For i P E and a P Z, let us define the hyperplane Hi,a “ tu P RE | xei, uy “ au and its
half-spaces H˘

i,a “ tu P RE | x˘ei, uy ě ˘au. It follows from Definition 3.9 that a polymatroid
intersected with any half-space H`

i,a or H´
i,a is a translate of a polymatroid if it isn’t empty. So,

the intersection of an integral polymatroid with an integer translate of the boolean cube is a
translate of a polymatroid if nonempty. By Example 3.12, it now suffices to verify that this
polymatroid is integral.

By [Edm70, (35)], the intersection of two integral polymatroids is a polytope whose vertices
lie in ZE . By intersecting an integral polymatroid P with integral polymatroids of the form
śn

i“1r0, ais, for ai P Zě0, we see that all vertices of the intersection of P with an integral translate
of the boolean cube are in ZE . □

Proposition 7.4. The map
Àn

r“0 ValrpEq Ñ IpΣEq defined by M ÞÑ rIpMKqs is an isomorphism.

Proof. To see that the given map is well-defined, note that the base polytope of the dual P pMKq is
´pP pMq ´ eEq, and that the independence polytope IpMKq is the intersection with r0, 1sE of the
Minkowski sum P pMKq`r´1, 0sE . Each of these operations—translation, negation, Minkowski
sum, and intersection—preserves valuative relations. Surjectivity of the map is immediate from
Lemma 7.3, since given an integral polymatroid P , by tiling RE with integer translates of the
boolean cube, we can express rP s P IpΣEq as a linear combination of the classes of independence
polytopes of matroids.

For injectivity, first we show that the only relations between indicator functions of translates
of independence polytopes come from valuativity. Suppose we have

řk
i“1 ai1IpMiq`ui

“ 0 for
ai P Z, ui P Zn, and Mi a matroid on E. We show that then

řk
i“1 ai1IpMiq “ 0 as an element in

ZRE

. By Proposition A.4, this implies that
řk

i“1 ai1P pMiq “ 0 because each IpMiq has P pMiq as
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the face maximizing the pairing with eE . For a subset S Ď E, let ℓS be the subset of tM1, . . . ,Mku

consisting of matroids whose set of loops is equal to S, or equivalently, the smallest coordinate
subspace containing the independence polytope of the matroid is RS Ď RE . Let us pick a linear
ordering pS0 “ H, S1, S2, . . . , S2n “ Eq of the subsets of E that refines the partial order by
inclusion. We claim by induction that

ř

MjPℓSi
aj1IpMjq “ 0. In the base case S0 “ H, the

polytopes IpMjq for all Mj P ℓS0
nontrivially intersect the interior of the boolean cube r0, 1sE ,

whereas none of those of Mj1 P ℓSi
for i ą 0 do. Hence that

řk
i“1 ai1IpMiq`ui

“ 0 implies that
ř

MjPℓS0
aj1IpMjq “ 0. For the induction step at Si, we may assume that ℓS0

, . . . , ℓSi´1
are empty.

Then, we repeat the argument with “the interior of the boolean cube” replaced by “the relative
interior of the cube r0, 1sSi ˆ t0uEzSi”. That is, the polytopes IpMjq for all Mj P ℓSi nontrivially
intersect the relative interior of the cube r0, 1sSi ˆ t0uEzSi , whereas none of those of Mj1 P ℓSi1

for i1 ą i do. Hence, again we conclude
ř

MjPℓSi
aj1IpMjq “ 0 from

řk
i“1 ai1IpMiq`ui

“ 0,
completing the induction.

Now suppose that
řk

i“1 airIpMiqs “ 0 for ai P Z and Mi a matroid on E. This means that

k
ÿ

i“1

ai1IpMiq `
ÿ

P,m

bP,mp1P`m ´ 1P q “ 0

for some collection of polymatroids P , vectors m P Zn, and integers bP,m. Using Lemma 7.3, we
can rewrite this as

k
ÿ

i“1

ai1IpMiq `

ℓ
ÿ

j“1

cjp1IpM1
jq`mj

´ 1IpM1
jqq “ 0

for some collection of matroids M1
j and vectors mj P Zn. Then the previous discussion implies

that equality still holds when we remove the second sum, as desired. □

Proof of Theorem 1.5. In Proposition 7.4, we have constructed an isomorphism
Àn

r“0 ValrpEq Ñ

IpΣEq defined by M ÞÑ rIpMKqs. Now, composing the isomorphism IpΣEq » KpXEq in Theo-
rem 7.2 with the isomorphism ϕ : KpXEq Ñ A‚pXEq in §6, we obtain an isomorphism IpΣEq Ñ

A‚pXEq, which by Corollary 6.5 maps rIpMKqs to cpQMq for a matroid M. By Corollary 5.11, the
top nonvanishing degree part cn´rkpMqpQMq of cpQMq is the augmented Bergman class rΣMs, so
we conclude from the graded structure of A‚pXEq that

Àn
r“0 ValrpEq Ñ A‚pXEq defined by

M ÞÑ rΣMs is an isomorphism of abelian groups. □

With Theorem 1.5, we can now complete the proof of Theorem 1.8.

Proof of Theorem 1.8. That ζ and ϕ are ring isomorphisms was proved in Section 6, and that they
satisfy the stated properties is Corollary 6.5. To verify that the stated properties characterize
the maps, note first that A1pXEq generates A‚pXEq as a ring, and that the augmented Bergman
classes of matroids of rank n ´ 1 span A1pXEq because Valn´1pEq » A1pXEq by Theorem 1.5.
The result now follows because every matroid of rank n ´ 1 is realizable over any field, and if
L Ă k

E realizes a matroid M of rank n´1 then rWLs “ rΣMs and cpQLq “ 1`c1pQLq “ 1`rΣMs

by Corollary 5.11. □
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We now prove Theorem 1.6 by using Lemma 7.3 with Corollary 6.5 and Corollary 5.11.

Proof of Theorem 1.6. If crkpMq ` crkpM1q ą n ě crkpM^M1q, then the result vacuously holds, so
we may assume that crkpMq ` crkpM1q ď n. Note that, by Corollary 5.11, the degree crkpMq `

crkpM1q part of cpQMqcpQM1 q is rΣMs ¨ rΣM1 s, so by Corollary 6.5 it suffices to compute the degree
crkpMq`crkpM1q part of ϕprIpMKqs¨rIpM1Kqsq. By Lemma 7.3, we may write rIpMKqs¨rIpM1Kqs “

rIpMKq ` IpM1Kqs as a sum of the classes of independence polytopes of matroids by intersecting
it with the tiling of RE by translates of the boolean cube and using inclusion-exclusion on the
faces. This gives an expression for non-equivariant K-class rIpMKqs ¨ rIpM1Kqs as a sum of the
K-classes of independence polytopes of matroids.

The intersection of IpMKq ` IpM1Kq with the boolean cube is IppM ^ M1qKq. The image of
rIppM ^ M1qKqs under ϕ is rΣM^M1 s in degree crkpM ^ M1q. Therefore, it suffices to show that
the images under ϕ of all of the other terms in the expression of rIpMKq ` IpM1Kqs as a sum of
the classes of independence polytopes of matroids are zero in degrees at least crkpMq ` crkpM1q.
Every other polytope appearing requires a nontrivial translation towards the origin to realize it
as an independence polytope, since an independence polytope always contains the origin. As
the lattice distance from the origin of any vertex of IpMKq ` IpM1Kq is bounded by crkpMq `

crkpM1q, this means that, after translating one of these polytopes so that it is the independence
polytope of a matroid, that matroid has rank at most crkpMq ` crkpM1q ´ 1. Then the result
follows from Proposition 5.9. □

We showed in the discussion following Corollary 5.11 that rΣMs restricts to rΣMs on XE .
Hence, by restricting to XE Ď XE , we obtain Corollary 1.7 from Theorem 1.6. We also deduce
that if M,M1, and M ^ M1 are loopless, then crkpMq ` crkpM1q “ crkpM ^ M1q.

7.2. A Schubert basis. For a total order ă on E and two subsets I “ ti1 ă ¨ ¨ ¨ ă iru and
J “ tj1 ă ¨ ¨ ¨ ă jru of E with same cardinality, let us say that I ď J if ik ď jk for all k “ 1, . . . , r.

Definition 7.5. A Schubert matroid on E of rank r is a matroid whose set of bases is

tB Ď E | |B| “ r and B ď Iu

for some total order ă on E and a subset I Ď E with |I| “ r.

Because I ď J if and only if pEzIq ě pEzJq, the dual of a Schubert matroid is a Schubert
matroid. We note the following equivalent description of the bases of a Schubert matroid.

Remark 7.6. Let ă be a total order on E, and I “ ti1 ă ¨ ¨ ¨ ă iru. Define

Ijumps “ tij P I | j “ r or there exists e P E such that ij ă e ă ij`1u.

Writing Ijumps “ tℓ1 ă ¨ ¨ ¨ ă ℓku, define a chain F1, . . . , Fk of subsets of E and positive integers
d1, . . . , dk by

Fj “ te P E | e ď ℓju and d1 ` ¨ ¨ ¨ ` dj “ |Fj X I| for j “ 1, . . . , k.



36 CHRISTOPHER EUR, JUNE HUH, MATT LARSON

Note that by construction, we have d1 ď |F1| and dj ă |FjzFj´1| for all j “ 2, . . . , k. The set
tB Ď E | |B| “ r and B ď Iu of the bases of the Schubert matroid associated to ă and I then
can be described equivalently as the set

tB “ tb1 ă ¨ ¨ ¨ ă bru Ď E | tb1, . . . , bd1`¨¨¨`dj
u Ď Fj for all j “ 1, . . . , ku.

Schubert matroids appear in the literature under various other guises such as nested matroids
[Ham17], Bruhat interval polytopes [TW15], generalized Catalan matroids [BdM06], and shifted
matroids [Ard03].

Theorem 7.7. The augmented Bergman classes of Schubert matroids on E form a basis for
A‚pXEq.

We prepare the proof with the following lemma.

Lemma 7.8. For H Ĺ F Ď E, denote by hF the divisor DIpU1,F ‘U0,EzF q corresponding to
IpU1,F ‘ U0,EzF q under Proposition 3.13. Then, the set of monomials

!

hd1

F1
¨ ¨ ¨hdk

Fk

ˇ

ˇ

ˇ
H Ĺ F1 Ĺ ¨ ¨ ¨ Ĺ Fk Ď E, d1 ď |F1|, di ă |FizFi´1| @i “ 2, . . . , k

)

.

form a basis for the Chow cohomology ring A‚pXEq.

Proof. Let G “ tSY0 | S Ď Eu YE be the building set on rE “ E\ t0u in Proposition 3.8, and let
ΣG denote the corresponding fan. Then, [FY04, Corollary 2] states that the Chow cohomology
ring of ΣG has a presentation

A‚pΣGq “
ZrzX | X P Gs

xzX1 ¨ ¨ ¨ zXk
| tX1, . . . , Xku not a face of N y `

A

ř

XQi zX | i P rE
E ,

and moreover, [FY04, Corollary 1] states that the set of monomials
!

zd1

F1Y0 ¨ ¨ ¨ zdk

FkY0

ˇ

ˇ

ˇ
H Ĺ F1 Ĺ ¨ ¨ ¨ Ĺ Fk Ď E, d1 ď |F1|, di ă |FizFi´1| @i “ 2, . . . , k

)

form a basis for A‚pΣGq. We modify this basis by performing an upper triangular linear change
of variables as follows. For H Ĺ F Ď E, let

rhF “
ÿ

FĎGĎE

´zGY0.

When G is given any total order that refines the partial order by inclusion, replacing zFY0 by rhF

is an upper triangular linear change of variables. Hence, we have that
!

rhd1

F1
¨ ¨ ¨rhdk

Fk

ˇ

ˇ

ˇ
H Ĺ F1 Ĺ ¨ ¨ ¨ Ĺ Fk Ď E, d1 ď |F1|, di ă |FizFi´1| @i “ 2, . . . , k

)

is a basis of A‚pΣGq. It remains only to verify that for any H Ĺ F Ď E, the element rhF P A1pΣGq

corresponds to hF P A‚pXEq under the isomorphism p : ΣG Ñ ΣE of Proposition 3.8.
In the presentation of A1pΣGq above, for H Ď S Ĺ E, the variable zSY0 represents the torus-

invariant divisor associated to the ray conepeSY0q of ΣG , which under the isomorphism p : ΣG Ñ
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ΣE in Proposition 3.8 maps to the ray ρS of ΣE . Moreover, it follows from the linear relation
ř

XQ0 zX “ 0 in A‚pΣGq that the expression
ř

FĎGĎE ´zGY0 for rhF can be rewritten as

rhF “
ÿ

HĎSĹE
FĘS

zSY0.

Hence, the isomorphism p : ΣG Ñ ΣE maps rhF to the element
ÿ

HĎSĹE
FĘS

rDSs P A1pXEq,

which by Proposition 3.13 corresponds to IpU1,F ‘ U0,EzF q because the rank function rk of the
matroid U1,F ‘ U0,EzF is given by rkpEzSq “ 1 if F Ę S and 0 otherwise. □

For matroids M and M1 on E, there is a dual notion to matroid intersection, matroid union,
defined by M _ M1 :“ pMK ^ M1KqK. The bases of M _ M1 are the maximal elements among the
unions of the basis of M and M1.

Proof of Theorem 7.7. For H Ĺ F Ď E, let HF be the corank 1 matroid whose unique circuit is F .
Equivalently, its dual matroid HK

F is the matroid U1,F ‘ U0,EzF . We note from Proposition 4.6
and Corollary 5.11 that

hF “ rDIpHK
F qs “ c1pQHF

q “ rΣHF
s.

Now, applying Theorem 1.6 to Lemma 7.8 yields the theorem once we show the following:
For an element hd1

F1
¨ ¨ ¨hdk

Fk
in the monomial basis of A‚pXEq given in Lemma 7.8, the matroid

intersection

H^d1

F1
^ ¨ ¨ ¨ ^ H^dk

Fk
“ HF1 ^ ¨ ¨ ¨ ^ HF1
looooooooomooooooooon

d1 times

^ ¨ ¨ ¨ ^ HFk
^ ¨ ¨ ¨ ^ HFk

looooooooomooooooooon

dk times

is a Schubert matroid of corank d1`¨ ¨ ¨`dk, and every Schubert matroid arises in this way. Since
the dual of a Schubert matroid is a Schubert matroid, we may instead prove the dual statement
that the matroid union

HK
F1

_ ¨ ¨ ¨ _ HK
F1

looooooooomooooooooon

d1 times

_ ¨ ¨ ¨ _ HK
Fk

_ ¨ ¨ ¨ _ HK
Fk

looooooooomooooooooon

dk times

is a Schubert matroid, and that every Schubert matroid of rank d1 ` ¨ ¨ ¨ ` dk arises in this way.
Since every matroid in the above matroid union is of rank 1, a basis of the matroid union is

obtained by selecting di elements of Fi for each i “ 1, . . . , k such that the union of all the selected
elements has as large cardinality as possible. By Remark 7.6, we see that such matroid union are
exactly the Schubert matroids of rank d1 ` ¨ ¨ ¨ ` dk. □

Combining Theorem 1.5 with Theorem 7.7 recovers the following result of Derksen and Fink
[DF10, Theorem 5.4].

Corollary 7.9. Schubert matroids on E of rank r form a basis for ValrpEq.
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Because Schubert matroids are realizable over any infinite field, combining Corollary 5.11
and Corollary 6.5 with Theorem 7.7 also yields the following.

Corollary 7.10. The K-classes rOWL
s of augmented wonderful varieties span KpXEq as an

abelian group.

8. NUMERICAL PROPERTIES

8.1. The Hirzebruch–Riemann–Roch-type formulas. We now prove Theorem 1.9 using Corol-
lary 7.10. While one can prove Theorem 1.9 by mimicking the proof of [BEST23, Theorem D], we
present a proof that avoids the use of the Atiyah–Bott localization formula. Recall the notation
α “ π˚

Ec1pOPE p1qq.

Proof of Theorem 1.9. We first verify the formula involving the ζ map, i.e., that

χ
`

rEs
˘

“

ż

ζ
`

rEs
˘

¨ p1 ` α ` ¨ ¨ ¨ ` αnq

for any rEs P KpXEq. Corollary 7.10 implies that it suffices to show this for the case rEs “ rOWL
s

for any linear subspace L Ď k
E . Now, we have χprOWL

sq “ 1 since WL is obtained from a
projective space by a sequence of blow-ups along smooth centers. On the other hand, using
Corollary 6.5 and applying the projection formula to πE gives that

ż

XE

rWLs ¨ p1 ` α ` ¨ ¨ ¨ ` αnq “

ż

PE

c1pOPE p1qqdimL ¨ p1 ` c1pOPE p1qq ` ¨ ¨ ¨ ` c1pOPE p1qqnq “ 1.

Having established the formula involving ζ, we now use Serre duality to derive the formula
involving ϕ, i.e.,

χ
`

rEs
˘

“

ż

ϕ
`

rEs
˘

¨ c
`
à

iPE

π˚
i OP1p1q

˘

.

First, by [CLS11, Theorem 8.1.6], the anti-canonical divisor of XE is the
ř

SĹE DS `
ř

iPE Di,
where DS denotes the torus-invariant divisor of the ray ρS , and Di that of the ray ρi in ΣE . By
Proposition 3.13, one checks that

ř

SĹE DS “ DIpU1,Eq and
ř

iPE Di “ DIpUn,Eq. In summary,
we have that the anti-canonical bundle ω_

XE
of XE is

ω_
XE

“ OXE
pDIpU1,Eq `DIpUn,Eqq.
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Corollary 6.5, in the form of Example 6.6, thus gives ϕprω_
XE

sq “ p1 ` αq ¨ c
`
À

iPE π
˚
i OP1p1q

˘

.
Applying Serre duality, along with the definition that ζ “ DA ˝ ϕ ˝DK , we conclude

χprEsq “ p´1qnχprEs_ ¨ rωXE
sq

“ p´1qn
ż

XE

ζ
`

rEs_ ¨ rωXE
s
˘

¨ p1 ` α ` ¨ ¨ ¨ ` αnq

“ p´1qn
ż

XE

DA

`

ϕprEsq ¨ ϕprω_
XE

sq
˘

¨ p1 ` α ` ¨ ¨ ¨ ` αnq

“ p´1qn
ż

XE

DA

´

ϕprEsq ¨ p1 ` αq ¨ c
`
à

iPE

π˚
i OP1p1q

˘

¯

¨ p1 ` α ` ¨ ¨ ¨ ` αnq

“ p´1qn
ż

XE

DA

´

ϕprEsq ¨ c
`
à

iPE

π˚
i OP1p1q

˘

¯

“

ż

XE

ϕprEsq ¨ c
`
à

iPE

π˚
i OP1p1q

˘

,

as desired. □

8.2. Tutte polynomial formulas. We show that two specializations of the Tutte polynomial
arise as volume polynomials of augmented tautological classes. The first is the rank-generating
function of a matroid, i.e., TMpu ` 1, v ` 1q. This computation does not show that the rank-
generating function has any log-concavity property because it involves the Chern class of rSMs,
and Proposition 5.9 shows that cpSMq is rarely nef or anti-nef. We also compute the intersection
numbers of a second set of classes, which gives a more complicated specialization of the Tutte
polynomial. This computation can be used to show that the result is Lorentzian and therefore
has log-concavity properties. Recall the notation that yi “ π˚

i pc1pOP1p1qqq for i P E, and let
uI “

ś

iPI ui for I Ď E.

Theorem 8.1. Let M be a matroid on E of rank r. For I Ď E, we have
ż

XE

cpSM, zq ¨ wn´r ¨ cpQM, w
´1q ¨

ź

iPI

yi “ zr´rkMpIqw|I|´rkMpIq.

In particular, summing over all I Ď E, we have that
ż

XE

cpSM, zq ¨ wn´r ¨ cpQM, w
´1q ¨

n
ź

i“1

p1 ` yiuiq “
ÿ

IĎE

zr´rkMpIqw|I|´rkMpIquI .

Proof. By Proposition 4.8, the restriction of the Chern classes of augemented tautological classes
to XEzI are the Chern classes of the augmented tautological classes of the contraction M{I .
Now one notes that

ş

XE
cpSM, zq ¨ cpQM, wq “

ş

XE
crpSMq ¨ zr ¨ cn´rpQMq ¨wn´r “ zrwn´r since

rSMs ` rQMs “ r
À

iPE π
˚
i OP1p1qs. □

Theorem 1.10 is immediate from Theorem 8.1. We now prove Theorem 1.11. The proof uses
the Hirzebruch–Riemann–Roch-type formulas for both ζ and ϕ to obtain the equality of certain



40 CHRISTOPHER EUR, JUNE HUH, MATT LARSON

intersection numbers. We first state a combinatorial lemma that will be used twice in the proof
of Theorem 1.11.

Lemma 8.2. Let M be a matroid of rank r on E. Then

ÿ

IĎE

a|I|br´rkMpIqcn´|I|´r`rkMpIqTM{I

ˆ

d

b
,
b` c

c

˙

“ pa` bqrcn´rTM

ˆ

a` d

a` b
,
a` b` c

c

˙

.

Proof. Using the rank generating function for the Tutte polynomial, we compute

ÿ

IĎE

a|I|br´rkMpIqcn´|I|´r`rkMpIqTM{I

ˆ

d

b
,
b` c

c

˙

“
ÿ

IĎE

a|I|br´rkMpIqcn´|I|´r`rkMpIq
ÿ

JĚI

ˆ

d´ b

b

˙r´rkMpJq ˆ
b

c

˙|J|´|I|´rkMpJq`rkMpIq

“
ÿ

IĎJĎE

a|I|b|J|´|I|cn´r´|J|`rkMpJqpd´ bqr´rkMpJq

“
ÿ

JĎE

b|J|cn´r´|J|`rkMpJqpd´ bqr´rkMpJq
ÿ

IĎJ

a|I|b´|I|

“
ÿ

JĎE

b|J|cn´r´|J|`rkMpJqpd´ bqr´rkMpJq

ˆ

a` b

b

˙|J|

“ pa` bqrcn´r
ÿ

JĎE

ˆ

d´ b

a` b

˙r´rkMpJq ˆ
a` b

c

˙|J|´rkMpJq

“ pa` bqrcn´rTM

ˆ

a` d

a` b
,
a` b` c

c

˙

,

as desired. □

Proof of Theorem 1.11. Note that spπ˚
EOPE p´1q, xq “ 1 ` αx` α2x2 ` ¨ ¨ ¨ . We prove the result in

three steps.

Step 1: We show that

(1)
ż

XE

spQ_
M, zq ¨ cpQM, wq “ zrwn´rTMp0, 1 ` z

w q.

As rSMs ` rQMs “ r
À

iPE π
˚
i OP1p1qs, we have spQ_

M, zq “ cp
À

iPE π
˚
i Op´1q, zq´1 ¨ cpS_

M, zq “

cp
À

iPE π
˚
i OP1p1q, zq ¨ cpS_

M, zq. We compute
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ż

XE

spQ_
M, zq ¨ cpQM, wq “

ż

XE

cp
à

iPE

π˚
i OP1p1q, zq ¨ cpS_

M, zq ¨ cpQM, wq

“

ż

XE

ÿ

IĎE

p
ź

iPI

yiq ¨ z|I| ¨ cpSM,´zq ¨ cpQM, wq

“
ÿ

IĎE

z|I|

ż

XEzI

cpSM{I ,´zq ¨ cpQM{I , wq

“
ÿ

IĎE

z|I|p´zqr´rkMpIqwn´|I|´pr´rkMpIqq

“ zrwn´r
ÿ

IĎE

p´1qr´rkMpIqpz{wq|I|´rkMpIq “ zrwn´rTMp0, 1 ` z
w q.

Step 2: We show that

(2)
ż

XE

p1 ` αx` α2x2 ` ¨ ¨ ¨ q ¨ spQ_
M, zq ¨ cpQM, wq “ zrpx` wqn´rTM

´x

z
,
x` z ` w

x` w

¯

.

As the result is homogeneous, it suffices to prove the claimed formula after evaluating x “ 1.
We compute χpp

ř

iě0 ^irQMs_wiqp
ř

jě0 Sym
j
rQMs_zjqq in two different ways, using Proposi-

tion 6.4 and the Hirzebruch–Riemann–Roch-type formulas for both ζ and ϕ. We then get that
ż

XE

p1 ` α ` α2 ` ¨ ¨ ¨ q ¨ pw ` 1qn´r ¨ c

ˆ

Q_
M,

w

w ` 1

˙

¨ p1 ´ zqr´n ¨ s

ˆ

Q_
M,

z

z ´ 1

˙

“

ż

XE

cp
à

iPE

π˚
i OP1p1qq ¨ pw ` 1qn´r ¨ c

ˆ

QM,
1

w ` 1

˙

¨ p1 ´ zqr´n ¨ s

ˆ

QM,
1

1 ´ z

˙

.

Replacing w by ´w{pw ` 1q and z by z{pz ´ 1q and cancelling common terms, we obtain that
ż

XE

p1 ` α ` ¨ ¨ ¨ q ¨ cpQM, wq ¨ spQ_
M, zq “

ż

XE

cp
à

iPE

π˚
i OP1p1qq ¨ cpQM, w ` 1q ¨ spQM, 1 ´ zq.

Now we apply (1), noting spQM, 1 ´ zq “ spQ_
M, z ´ 1q, to obtain that

ż

XE

cpQM, w ` 1q ¨ spQ_
M, z ´ 1q “ pz ´ 1qrpw ` 1qn´rTM

ˆ

0,
z ` w

w ` 1

˙

.

Arguing as in Step 1 and using Proposition 4.8, the above equation implies that
ż

XE

ź

iPE

p1 ` yiuiq ¨ cpQM, w ` 1q ¨ spQ_
M, z ´ 1q

“
ÿ

IĎE

uIpz ´ 1qr´rkMpIqpw ` 1qn´|I|´r`rkMpIqTM{I

ˆ

0,
z ` w

w ` 1

˙

.

Setting each ui to 1 and using that
ś

p1 ` yiq “ cp
À

π˚
i OP1p1qq, we get that

ż

XE

cp
à

iPE

π˚
i OP1p1qq ¨ cpQM, w ` 1q ¨ spQ_

M, z ´ 1q

“
ÿ

IĎE

pz ´ 1qr´rkMpIqpw ` 1qn´|I|´r`rkMpIqTM{I

ˆ

0,
z ` w

w ` 1

˙

.
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Applying Lemma 8.2 with a “ 1, b “ z ´ 1, c “ w ` 1, and d “ 0, we obtain (2).

Step 3: We finish the computation. We have that
ż

XE

p1 ` αx` α2x2 ` ¨ ¨ ¨ q ¨ cp
à

iPE

π˚
i OP1p1q, yq ¨ spQ_

M, zq ¨ cpQM, wq

“
ÿ

IĎE

y|I|

ż

XEzI

p1 ` αx` α2x2 ` ¨ ¨ ¨ q ¨ spQ_
M{I , zq ¨ cpQM{I , wq

“
ÿ

IĎE

y|I|zr´rkMpIqpx` wqn´|I|´r`rkMpIqTM{I

´x

z
,
x` z ` w

x` w

¯

.

Then the result follows from Lemma 8.2 with a “ y, b “ z, c “ x` w, and d “ x. □

8.3. Positivity properties. We now use Theorem 1.11 to prove Theorem 1.12, which states that
the 4-variable transformation of the Tutte polynomial in Theorem 1.11 is a denormalized Lorentzian
polynomial. Let us begin by reviewing the language of Lorentzian polynomials developed in
[BH20].

For a homogeneous degree d polynomial f “
ř

uPZm
ě0
aux

u P Rrx1, . . . , xms, its normalization

isNpfq “
ř

uPZm
ě0
au

xu

u! where u! “ u1! ¨ ¨ ¨um!. The polynomial f is said to be the denormalization
of Npfq. The polynomial f is a strictly Lorentzian polynomial if every monomial of degree d has a
positive coefficient and every pd´2q-th coordinate partial derivative of f is a quadric form with
signature p`,´,´, . . . ,´q. It is a Lorentzian polynomial if f is a limit of strictly Lorentzian polyno-
mials. Lorentzian polynomials satisfy a strong log-concavity property [BH20, Example 2.26] and
are preserved under nonnegative linear change of variables [BH20, Theorem 2.10]. Polynomi-
als whose normalization is Lorentzian, called denormalized Lorentzian polynomials, share similar
properties [BLP23, §4.3].

We now place the strategy used in the proof of [BEST23, Theorem 9.13] into an axiomatic
framework and use the framework to deduce the theorem. The key tool will be the theory of Lef-
schetz fans, a notion introduced in [ADH23, Definition 1.5]. Lefschetz fans are certain (possibly
non-complete) simplicial quasi-projective balanced fans whose Chow ring satisfies an analogue
of the Kähler package. We summarize their fundamental properties.

Theorem 8.3. The following hold.

(1) [ADH23, Theorem 1.6] If Σ is a Lefschetz fan, then any quasi-projective simplicial fan
with the same support as Σ is Lefschetz.

(2) [ADH23, Lemma 5.27] A product of Lefschetz fans is Lefschetz.

(3) [AHK18, Theorem 8.9] The Bergman fan of a loopless matroid is Lefschetz.

(4) [BH20, Theorem 4.6], [ADH23, Theorem 5.20], see also [BEST23, Lemma 9.12] Let Σ be
an ℓ-dimensional smooth projective fan, and let Σ1 be a d-dimensional subfan that is
Lefschetz and defines the Minkowski weight rΣ1s P Aℓ´dpXΣq as a balanced fan. Then,
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for any base-point-free divisors D1, . . . , Dm P A1pXΣq, the polynomial

ÿ

i1`¨¨¨`im“d

ˆ
ż

XΣ

Di1
1 ¨ ¨ ¨ ¨ ¨Dim

m ¨ rΣ1s

˙

xi11 ¨ ¨ ¨ximm

is denormalized Lorentzian.

Let us now set up the axiomatic framework. For a finite set S, denote

Mat˝
S “ the set of loopless and coloopless matroids with ground set S.

We say that a map φ : Mat˝
S Ñ G taking values in an abelian group G is valuative if it is a

restriction to Mat˝
S of a valuative map on the set of all matroids on S. Let N be a nonnegative

integer that depends on n (e.g. N “ 2n), and let rN s “ t1, . . . , Nu. Our framework consists of
three objects pF, T,Xq:

‚ a map Fp¨q : Mat˝
E Ñ Mat˝

rNs,

‚ a torus T with an action on kN via a map φ : T Ñ GN
m, and

‚ a smooth projective T -variety X with a dense open T -orbit T (which is a quotient torus
of T ), such that φ naturally descends to φ : T Ñ GN

m{Gm.

We require that these objects satisfy the following properties:

(i) The assignment M ÞÑ rΣFM
s, sending a matroid M on E to the Bergman class of the

matroid FM on rN s, is valuative.

(ii) There is a map

Fk

p¨q :
n
ž

r“0

Grpr;Eqpkq Ñ

N
ž

R“0

GrpR; rN sqpkq

such that for any realization L Ď k
E of M P Mat˝

E , the matroid FM equals the matroid
on rN s realized by Fk

L . We often abuse notation and write F for Fk also.

(iii) For any L Ď k
E , specifying the fibers over t P T to be φpt´1qFL defines a T -equivariant

vector subbundle FL of O‘N
X on X .

(iv) The Segre class spFLq P A‚pXq depends only on the matroid that L realizes.

(v) The assignment M ÞÑ spFpL realizing Mqq from the set of k-realizable matroids in Mat˝
E to

A‚pXq is valuative.

Because every matroid in Mat˝
E is valuatively equivalent to a linear combination of k-realizable

matroids in Mat˝
E [BEST23, Lemma 5.9], the conditions (iv) and (v) imply that we have a unique

valuative extension M ÞÑ spFMq P A‚pXq such that spFMq “ spFLq whenever L realizes M.
Thus, we may define the following.
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Definition 8.4. With F , T , and X satisfying the conditions above, for a matroid M P Mat˝
E we

define rPpFMqs P A‚pX ˆ PN´1q by

rPpFMqs “

N´R
ÿ

i“0

sipFMqδN´R´i

where R is the rank of FM and δ “ c1pOp1qq is the hyperplane class of PN´1 pulled back to
X ˆ PN´1.

When M is realized by L Ď k
E , then rPpFMqs “ rPpFLqs by [EH16, Proposition 9.13].

Example 8.5. In the setting of [BEST23], we let n “ N with T “ GE
m acting on X “ XE naturally

via T Ñ PT , and acting on kE by the inverse standard action. If we set F to be the identity map,
which satisfies the conditions listed above, we then have FL “ SL. If we set F to be the matroid
duality map (i.e., M ÞÑ MK and L ÞÑ LK), which also satisfies the conditions listed above, we
then have FL “ Q_

L .

Example 8.6. Let N “ 2n, and let T “ GE
m act on k

E ˆ k
E by t ¨ px, yq “ pt´1x, yq, and act on

XE as its open dense torus. Let pre1F be the map that adds parallel element to each element
in a matroid M on E to get a matroid pre1FM on E \ E. Note that M ÞÑ rΣpre1FM

s is valuative,
since rΣpre1FM

s is the image of rΣMs under the diagonal embedding x ÞÑ px, xq. In fact, the map
M ÞÑ pre1FM itself is valuative. If we set F to be pre1F precomposed with matroid duality map,
we then have FL “ Q_

L . If we set F to be pre1F precomposed and then post-composed with
matroid duality maps (note that one duality takes place on E and the other on E \ E), we get
FL “ KL, where KL is defined by the exact sequence

0 Ñ KL Ñ O‘E
XE

‘ O‘E
XE

Ñ QL Ñ 0.

Note that the K-class rKLs depends only on the matroid that L represents because rKLs “

rO‘E
XE

‘ O‘E
XE

s ´ rQLs. Note also that spKLq “ cpQLq.

Theorem 8.7. Under the conditions above, there exists a smooth projective pT ˆ GN
m{Gmq-toric

variety YΣ with a birational toric morphism π : YΣ Ñ X ˆ PN´1 such that for every matroid
M P Mat˝

E , there exists a Lefschetz subfan ΣX,FM
of Σ such that π˚rΣX,FM

s “ rPpFMqs, where
rΣX,FM

s denotes the Chow cohomology class on YΣ that is Poincaré dual to the Minkowski
weight of constant weight 1 on the Lefschetz fan ΣX,FM .

Proof. First, we set the birational toric morphism π restricted to the tori to be given by pt, t1q ÞÑ

pt, φptqt1q. Now, we can take Σ to be any unimodular projective fan inside CocharpT qR ˆpRN{Rq

such that it refines (the fan of XqˆΣrNs and makes YΣ Ñ XˆPN´1 into a valid toric morphism.
We take ΣX,FM

to be the subfan of Σ with support CocharpT qR ˆ ΣFM
. By Theorem 8.3.(3),

the support of the fan ΣX,FM
is equal to the support of a product of two Lefschetz fans, and

hence by Theorem 8.3.(1) and (2), ΣX,FM is a Lefschetz fan. By the assumptions, the assignment
M ÞÑ rFMs and the assignment M ÞÑ rPpFMqs are valuative. On the other hand, the assumption
that M ÞÑ rΣFM

s is valuative implies that M ÞÑ rΣX,FM
s is also valuative. Thus, for the desired



STELLAHEDRAL GEOMETRY OF MATROIDS 45

equality π˚rΣX,FMs “ rPpFMqs, it suffices to show it when M has a k-realization L.
For a loopless matroid M1 on a set E1 realized by a linear subspace L1 Ď k

E1

, the Minkowski
weight with constant weight 1 on the Bergman fan ΣM1 is the tropicalization of PpL1q XGE1

m {Gm

[Stu02, AK06]. Hence, the Minkowski weight with constant weight 1 on ΣX,FM
is the tropical-

ization of T ˆ pPpFLq X GN
m{Gmq, so the Chow class rΣX,FM

s equals the class of the closure of
T ˆpPpFLqXGN

m{Gmq inside YΣ. On the other hand, by construction the map π bijectively maps
T ˆ pPpFLq XGN

m{Gmq to an open subset of PpFLq, an irreducible subvariety of X ˆPN´1. Then
the result follows. □

Remark 8.8. If there are several maps F p1q, . . . , F pkq from Mat˝
E to Mat˝

rNpkqs, each satisfying the
conditions listed above with a common X and T fixed throughout, the theorem easily general-
izes to the multi-projectivization rPpF p1q

M q ˆX ¨ ¨ ¨ ˆX PpF pkq

M qs.

Proof of Theorem 1.12. First we assume that M is loopless and coloopless. Note the Q_
L embeds

into O‘E\E
XE

because
À

iPE π
˚
i Op´1q does, and we can apply Theorem 8.7 to this embedding.

Therefore there is a smooth projective toric variety YΣ with torus GE
m ˆGE\E

m {Gm ˆGE\E
m {Gm,

a map π : Y Ñ XE ˆ P2n´1 ˆ P2n´1, and a Lefschetz subfan ΣXE ,M of Σ such that π˚rΣXE ,Ms “

rPpKMq ˆXE
PpQ_

Mqs. Let δ and ϵ be the first Chern classes of the pullbacks of Op1q to XE ˆ

P2n´1ˆP2n´1 from the two projective spaces. Then, with the shorthand 1
1´a “ 1`a`a2`¨ ¨ ¨`an,

we have
ż

XE

1

1 ´ αx
¨ cp

à

iPE

π˚
i OP1p1q, yq ¨ spQ_

M, zq ¨ cpQM, wq

“

ż

XEˆP2n´1ˆP2n´1

1

1 ´ αx
¨ cp

à

iPE

π˚
i OP1p1q, yq ¨

δn`r´1

1 ´ δz
¨
ϵn´r´1

1 ´ ϵw
¨ rPpKMq ˆXE

PpQ_
Mqs

“

ż

YΣ

1

1 ´ π˚αx
¨ π˚cp

à

iPE

π˚
i OP1p1q, yq ¨

π˚δn`r´1

1 ´ π˚δz
¨
π˚ϵn´r´1

1 ´ π˚ϵw
¨ rΣXE ,Ms,

where we have used α and cp
À

iPE π
˚
i OP1p1qq to refer also to their pullbacks to XE ˆ P2n´1 ˆ

P2n´1. Then the result follows from Theorem 8.3.(4), using that cp
À

iPE π
˚
i Op1qq is the Chern

class of a direct sum of nef line bundles.
Any matroid M of rank r on E can be written as the direct sum of matroids U0,j ‘ Uℓ,ℓ ‘ M1,

where M1 is a loopless and coloopless of rank r´ ℓ on a ground set of size n´ j ´ ℓ. Because the
Tutte polynomial is multiplicative for direct sums of matroids, we have that

py ` zqrpx` wqn´rTM

ˆ

x` y

y ` z
,
x` y ` z ` w

x` w

˙

“

px` y ` z ` wqjpx` yqℓpy ` zqr´ℓpx` wqn´j´rTM1

ˆ

x` y

y ` z
,
x` y ` z ` w

x` w

˙

.

By [BH20, Corollary 3.8], products of denormalized Lorentzian polynomials are denormalized
Lorentzian, which implies the result. □

Remark 8.9. One can obtain stronger log-concavity results by replacing cp
À

iPE π
˚
i OP1p1q, yq with

ś

iPEp1`yiuiq to obtain a Lorentzian polynomial in n`3 variables x, z, w, u1, . . . , un. Using that
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specializations of Lorentzian polynomials are Lorentzian [BH20, Theorem 2.10], we obtain that
the polynomial tMpx, y, z, wq in Theorem 1.12 is Lorentzian after each xaybzcwd term is replaced
by xaybzcwd

a!c!d! . By setting x “ z “ 0, this gives a new proof of [HSW22, Corollary 9].

9. CHERN–SCHWARTZ–MACPHERSON CLASSES

9.1. Log tangent bundles. There is a natural log structure on XE obtained by viewing it as
a simple normal crossings (snc) compactification of AE ; let BXE denote the boundary divisor.
Note that this is not the usual log structure on a toric variety. We obtain a log structure on WL

for any linear space L by declaring the inclusion WL ãÑ XE to be strict. Equivalently, we view
WL as an snc compactification of L. Let BWL be the boundary divisor of WL; note that BWL “

BXE XWL. For an snc pair pX,Dq (i.e., a smooth varietyX with an snc divisorD) over k, we use
Ω1

XplogDq to denote the log cotangent bundle of pX,Dq over k, and TXp´ logDq :“ Ω1
XplogDq_

to denote the log tangent bundle. Recall that we identified QL|WL
withNWL{XE

in Corollary 5.4.

Lemma 9.1. Let ι : Y ãÑ X be an inclusion of smooth varieties over k, and let D be an snc
divisor on X such that pY,D X Y q is an snc pair. Then there is an exact sequence

0 Ñ TY p´ logD|Y q Ñ ι˚TXp´ logDq Ñ NY {X Ñ 0,

where NY {X is the normal bundle of Y ãÑ X . If a group scheme G acts on X preserving D and
Y , then this is an exact sequence of G-equivariant sheaves.

Proof. By [Ols05, 1.1(iii)], we have that LY {S , LX{S are Ω1
Y p´ logD|Y q, Ω1

Xp´ logDq. By [Ols05,
1.1(ii)], LY {X can be identified with N_

Y {X r1s. Then the result follows from [Ols05, 1.1(v)] and
dualizing. The last statement follows from functoriality. Alternatively, one can deduce the
lemma from the map of short exact sequences

0 ΩX |Y ΩXplogDq|Y
À

i ODi
|Y 0

0 ΩY ΩY plogD|Y q
À

i ODi|Y 0

by applying the snake lemma. □

Theorem 9.2. As an L-equivariant sheaf, TWL
p´ log BWLq can be identified with SL|WL

, in such
a way that the exact sequence 0 Ñ SL Ñ

À

iPE π
˚
i OP1p1q Ñ QL Ñ 0 restricts to the exact

sequence 0 Ñ TWL
p´ log BWLq Ñ ι˚TXE

p´ log BXEq Ñ NWL{XE
Ñ 0.

Theorem 9.2 is closely related to [BEST23, Theorem 8.8]. The Gm-equivariant structure on
SL|WL

is different from the Gm-equivariant structure on TWL
p´ log BWLq in general.

Proof. First we do the case of n “ 1, in which case the stellahedron Π1 is the interval r0, 1s. In
other words, we have P1 with the log structure given by the divisor BP1 “ 8, where 8 is the



STELLAHEDRAL GEOMETRY OF MATROIDS 47

point r1 : 0s P P1. The exact sequence

0 Ñ Op´2q Ñ Ω1
P1plog BP1q Ñ O8 Ñ 0

implies that TP1p´ log BP1q is isomorphic to OP1p1q. By [HT99, Proposition 2.3], there is a unique
Ga-equivariant structure on OP1p1q, so TP1p´ log BP1q is isomorphic to OP1p1q with the Ga-
equivariant structure described in §3.4. As the formation of the log tangent bundle behaves
well with respect to products, the log tangent bundle of pP1qE (viewed as a compactification
of AE) is ‘iPEOP1p1q, with the induced GE

a -equivariant structure. Now, since XE Ñ pP1qE is a
composition of blow-ups at the boundary, the pullback

À

iPE π
˚
i OP1p1q of ‘iPEOP1p1q is isomor-

phic to the log-tangent bundle of XE as GE
a -equivariant sheaves (see, for example, the proof of

[Bri09, Lemma 2.1]).
Now we do the general case. By Lemma 9.1, it suffices to see that the following square com-

mutes, as that will identify SL|WL
with the kernel of the map TXE

p´ log BXEq|WL
Ñ NWL{XE

.

À

iPE π
˚
i OP1p1q|WL

QL|WL

TXE
p´ log BXEq|WL

NWL{XE

It suffices to check that this diagram commutes after restricting to a dense open subset. As the
top and bottom maps are maps of L-equivariant sheaves, it suffices to note that this diagram
commutes on the fiber over 0 P AE . At the fiber over 0, both horizontal maps can be identified
with the natural projection kE Ñ k

E{L, and the vertical maps with the identity. □

9.2. Chern–Schwartz–MacPherson classes of matroid Schubert varieties. First we review the
theory of Chern–Schwartz–MacPherson (CSM) classes. As CSM classes are defined only for va-
rieties over a field of characteristic zero, we fix k “ C and work with singular homology instead
of Chow. Then, for any locally closed subset Z of a proper variety X , there is a homology class
cSM p1Zq P H‚pX,Zq. If X is smooth and Z “ X , then the CSM class agrees with the Poincaré
dual of the total Chern class of the tangent bundle. Together with its functorial properties, this
property completely determines the CSM class of any variety. If f : X Ñ Y is a morphism be-
tween proper varieties that restricts to an isomorphism over Z, then f˚pcSM p1Zqq “ cSM p1fpZqq.

We now prove Theorem 1.15. Let L Ď k
E be a linear space of dimension r, and let YL be

the closure of L in pP1qE , the matroid Schubert variety of L. Recall from the introduction that
the singular homology H2kpYL,Zq has a basis labeled by the flats of rank k. For a flat F , set
LF “ L{LF . The closure of a cell labeled by F can be identified with the matroid Schubert
variety of the linear space LF . For a flat F , let yF P H2kpYL,Zq denote the class of the closure of
the cell corresponding to F . Because pP1qE is the Schubert variety for the boolean matroid, in
particular we obtain a basis for the singular homology of pP1qE , where each I Ď E defines the
class yI P H2|I|ppP1qE ,Zq. Note that the product

ś

iPI yi of the divisor classes in Definition 3.7
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is Poincaré dual to yI in the sense that for I 1 Ď E, we have p
ś

iPI1 yiq X yI “ 1 if I “ I 1 and is 0
otherwise.

Lemma 9.3. The pushforward H‚pYL,Zq Ñ H‚ppP1qE ,Zq sends yF to
ř

I yI , where the sum is
over bases of M|F .

Proof. In degree r, this follows from [AB16, Theorem 1.3c]. The general case then follows from
the identification of the closure of the cell indexed by F with the matroid Schubert variety of
LF . □

Proof of Theorem 1.15. Because the WL is an snc compactification of L, the CSM class of L in WL

is cpTWL
p´ log BWLqq X rWLs by [Alu99, Theorem 1]. Let ι : WL Ñ XE be the inclusion. As

TWL
p´ log BWLq “ ι˚SL and rWLs “ cn´rpQLq, the projection formula implies that

ι˚pcpTWL
p´ log BWLqq X rWLsq “ cpSLq Y cn´rpQLq X rXEs.

Using Theorem 8.1 and Theorem 9.2, one can show that

ż

XE

ι˚cpTWL
p´ log BWLqq ¨

ź

iPI

yi “

$

&

%

1, I independent

0, otherwise.

Therefore, the pushforward of cSM p1Lq P H‚pWL,Zq to H‚ppP1qE ,Zq is
ř

I independent yI . The
functoriality of CSM classes implies that this is the pushforward of the CSM class of L in YL.
From Lemma 9.3, we note that the pushforward on homology from YL to pP1qE is injective, and
ř

F yF pushes forward to the claimed class. □

Remark 9.4. Using the stratification of YL by cells which are identified with matroid Schubert
varieties for restrictions to flats of M, Theorem 1.15 implies that

cSM p1YL
q “

ÿ

FPLpMq

|tG P LpMq | G Ě F u| ¨ yF .

APPENDIX A. POLYTOPE ALGEBRAS AND K-RINGS OF TORIC VARIETIES

The notion of valuativity and the polytope algebra both have many variants, sometimes
equivalent and sometimes not. In this mostly expository appendix, we collect these together,
and record their relationship to the K-ring of toric varieties.

A.1. Variants of valuativity. Valuative functions have been studied extensively as combinato-
rial generalizations of measures. We point to [McM93b] and [Sch14, §6] as references and give a
brief summary here.

For S Ď Rn (or Qn), denote its indicator function by 1S : Rn (or Qn) Ñ Z defined as

1Spxq “

$

&

%

1 if x P S

0 otherwise.
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Let S Ď 2R
n

be a collection of nonempty3 subsets of Rn. We write

IpSq :“ Zt1S | S P Su

for the Z-module generated by the indicator functions of elements of S. For a hyperplane H Ď

Rn, let H` and H´ denote the two closed half-spaces that it defines. The notion of valuative
functions on S has many variants:

Definition A.1. For an abelian group A, we say a function f : SYtHu Ñ A with fpHq “ 0 is

(a) weakly valuative if fpSq “ fpS X H`q ` fpS X H´q ´ fpS X Hq for any S P S and
hyperplane H such that S XH`, S XH´, S XH P S,

(b) (when S consists of polyhedra) satisfies the weak inclusion-exclusion principle if for
any polyhedral subdivision S “

Ťk
i“1 Si such that S P S and

Ş

jPJ Sj P SYtHu for every
J Ď t1, . . . , ku, the inclusion-exclusion relation fpSq “

ř

JĎt1,...,kup´1q|J|´1fp
Ş

jPJ Sjq

holds,

(c) is additive (a.k.a. valuative) if fpS1 Y S2q ` fpS1 X S2q “ fpS1q ` fpS2q for any pair
S1, S2 P S such that S1 Y S2, S1 X S2 P SYtHu,

(d) satisfies the inclusion-exclusion principle if for any union S “
Ťk

i“1 Si such that S P S

and
Ş

jPJ Sj P SYtHu for every J Ď t1, . . . , ku, the inclusion-exclusion relation fpSq “
ř

JĎt1,...,kup´1q|J|´1fp
Ş

jPJ Sjq holds,

(e) is strongly valuative if there exists a (unique) map of Z-modules pf : IpSq Ñ A such that
fpSq “ pfp1Sq for all S P S.

The following implications between the various notions of valuativity are immediate.

pcq

��

pdqks

��

peqks

paq pbqks

Whether some or all of the implications can be reversed in the diagram for a given collection S

is a difficult problem in general. We collect some previous results here.

Theorem A.2. As before, let S be a collection of nonempty subsets of Rn.

(1) [Gro78] If S is intersection-closed, i.e., S1, S2 P S ùñ S1 X S2 “ H or S1 X S2 P S, then
we have pcq ðñ pdq ðñ peq. For example, the family of all convex bodies in Rn is
intersection closed.

3Some authors allow H P S and then impose by convention a triviality for H, such as fpHq “ 0 for a function f on
S. See for instance [Sal68, McM89]. Here, we prefer to begin with collections of nonempty subsets.
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(2) [Sal68, Vol57] If S “ P, the family of all polytopes in Rn (which is intersection-closed)
then we further have paq ðñ pcq so all five notions are equivalent. A minor modifica-
tion of the proof also shows that the same holds for Q, the family of all polyhedra in Rn

(see [McM09, §3.2] for an explicit proof).

(3) [McM09] If S “ QΛ or PΛ, where QΛ is the family of all Λ-polyhedra in Rn for a rank
n lattice Λ Ď Rn (similarly PΛ is the family of all Λ-polytopes), then we have pcq ðñ

pdq ðñ peq. Note that QΛ and PΛ are not intersection-closed.

When S is the family of extended generalized permutohedra, i.e., lattice polyhedra in Rn

whose normal fans coarsen (possibly convex subfans of) the normal fan of the standard permu-
tohedron of dimension n´1 in Rn, Derksen and Fink showed that pbq ðñ peq [DF10, Theorem
3.5]. We ask whether the equivalence holds more generally:

Question A.3. How are the different variants of valuativity in Definition A.1 related to each
other when S is the set of all (lattice) polytopes whose normal fans coarsen a fixed complete
(smooth and/or projective) rational fan?

We record here a useful consequence of Theorem A.2 that taking faces of polytopes is a
strongly valuative operation. For a vector v P Rn and a polytope P Ă Rn, let facepP, vq be
the face of P on which the standard inner product with v is minimized.

Proposition A.4. Let P1, . . . , Pk be (lattice) polytopes in Rn, and suppose
řk

i“1 ai1Pi
“ 0 for

some a1, . . . , ak P Z. Then, for any v P Rn, one has
řk

i“1 ai1facepPi,vq “ 0.

Proof. In other words, we need show that the function on the set of all (lattice) polytopes sending
P to 1facepP,vq is strongly valuative. By Theorem A.2, it suffices to show that this function is
additive in the sense of Definition A.1(c), and this additivity is an immediate consequence of
[McM09, Theorem 4.6]. □

A.2. Variants of polytope algebras. Fix a positive integer n. For a family S of nonempty subsets
in Rn, let

ZpSq :“
!

ÿ

SPS

aSS | aS P Z all but finitely many non-zero
)

be the free abelian group generated by the set S. Define the following subgroups of ZpSq:

valpSq “ the subgroup generated by the additive (a.k.a. valuative) relations, i.e.,

P `Q´ P YQ´ P XQ whenever P,Q, P XQ,P YQ P S,

stValpSq “ the kernel of the map ZpSq Ñ IpSq defined by S ÞÑ 1S , and

translpSq “ the subgroup generated by translation invariance relations, i.e.,

P ´ pP ` vq whenever P and P ` v P S for v P Rn.
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We may consider the following four quotient groups

ΠpSq “ ZpSq{ valpSq,

ΠpSq “ ZpSq{pvalpSq ` translpSqq,

IpSq “ ZpSq{ stValpSq, and

IpSq “ ZpSq{pstValpSq ` translpSqq.

In each these four cases, for an element P P S we denote by rP s its image in the quotient group.
For a commutative ring A, we write ΠA “ Π bA, and similarly for Π, I, and I.

We now consider the case where S is a family of polytopes. In good cases, one may give
these quotients groups a ring structure as in the following lemma, which is a minor variation of
[McM89, Lemma 6]. In this appendix, we use Z for the Minkowski sum of polytopes when it is
helpful to distinguish it notationally from the addition in ZpSq.

Lemma A.5. Suppose S is a Minkowski-sum-closed family of polytopes in Rn. That is, if P and
Q are polytopes in S, then so is their Minkowski sum P ZQ. Then, for the quotient groups ΠpSq

and ΠpSq, the multiplication given by

rP s ¨ rQs “ rP ZQs for P,Q P S, and extended linearly to the whole group,

is well-defined. In particular, if further S contains the origin o of Rn, then the quotient groups
are unital commutative rings with ros the unit.

Proof. [Had57, 1.2.2] shows that ifQ1 andQ2 are polytopes such thatQ1YQ2 is a polytope, then

P Z pQ1 YQ2q “ pP ZQ1q Y pP ZQ2q and P Z pQ1 XQ2q “ pP ZQ1q X pP ZQ2q

for any polytope P Ď Rn. Hence, the multiplication via Minkowski sum is well-defined. □

For a subring R of R, let PR be the set of all nonempty R-polytopes in Rn, i.e., the polytopes
that have vertices in Rn. Usually R will be either Z, Q, or R. When R is Q or R, Theorem A.2.(1)
implies that ΠpPRq “ IpPRq, and hence ΠpPRq “ IpPRq also. The same conclusion holds when
R “ Z by Theorem A.2.(3). The ring ΠRpPRq is what is often called McMullen’s polytope algebra
as defined in [McM89, McM93a].

For polytopes P andQ, one says thatQ is a weak Minkowski summand of P if there is a polytope
Q1 and λ ą 0 such that λQ Z Q1 “ P . It is straightforward to show that this is equivalent to
stating that the normal fan of Q coarsens that of P .

Definition A.6. Given a complete fan Σ in Rn, we define the subfamily PR,Σ Ď PR to be the set
of R-polytopes whose normal fan coarsens Σ. Let us define

ΠpR,Σq “ the image of ZpPR,Σq Ď ZpPRq in ΠpPRq,

and likewise for ΠpR,Σq, IpR,Σq, and IpR,Σq.
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Note that, per Question A.3, it is unclear whether ΠpPR,Σq “ ΠpR,Σq. It is clear however that
IpR,Σq “ IpPR,Σq, and also that translpPR,Σq “ ZpPR,Σq X translpPRq, so that IpR,Σq “ IpPR,Σq.
Thus, when R is Z, Q, or R, the equivalence of additivity and strong valuativity, as noted in
Theorem A.2(3), yields the following.

Proposition A.7. When R is Z, Q, or R, one has

ΠpR,Σq “ IpR,Σq “ IpPR,Σq and ΠpR,Σq “ IpR,Σq “ IpPR,Σq.

We conclude this section with another variant of the polytope algebra given in [Mor93].
Given a complete rational fan Σ, Morelli defines rings LΣpZnq and LΣpZnq as follows. For a
point p P Rn and a polytope P , if p P P then define TCppP q “ Rě0tP ´ pu to be the tangent
cone of P at p, and if p R P define by convention TCppP q “ H. Let C be the collection of cones
(always centered at the origin) in Rn, and let CΣ “ tC Ď Rn | C_ P Σu be the collection of cones
which are duals of the cones in Σ. Linearly extending the map P ÞÑ 1TCppP q, we obtain a map
θp : IpPZq Ñ IpCq for any point p P Zn. We then define

LΣpZnq “ the subgroup generated by f P IpPZq such that θppfq P IpCΣq for all p P Zn, and

LΣpZnq “ the image of LΣpZnq in IpPZq.

In the paragraph preceding [BG09, Theorem 10.46], the wording is somewhat ambiguous so as
to assume implicitly that LΣpZnq is equal to IpPZ,Σq. We ask explicitly:

Question A.8. For which complete fans Σ is LΣpZnq “ IpPZ,Σq and/or LΣpZnq “ IpPZ,Σq?

In [FP05], the authors give examples of smooth proper toric varieties which admit no non-
trivial nef line bundles, so IpPZ,Σq “ Z, which gives examples of smooth fans for which both
equalities in the question fail. We will later prove Theorem A.10 which, when combined with
a result of Morelli (Theorem A.11 here), implies that for smooth projective fans Σ we have that
LΣpZnq “ IpPZ,Σq and LΣpZnq “ IpPZ,Σq.

A.3. Relation to (operational) Chow rings. Let R “ Z or Q from this section onwards, so that
we may consider toric varieties and their (Q-)divisor classes associated to polytopes. Let Σ

be a complete rational fan and XΣ be its toric variety. We point to [Ful93] for basic facts on
toric varieties. Recall that a lattice polytope Q P PZ,Σ defines a nef T -equivariant line bundle
OXΣpDQq in XΣ, with the property that its divisor class rDQs P PicpXΣq does not change when
we translate Q. See [CLS11, Chapter 6] for a discussion of polytopes and line bundles. We
collect some results of Fulton and Sturmfels.

Theorem A.9. Let Σ be a complete rational fan, and let A‚pXΣq be the operational Chow coho-
mology ring of the toric variety XΣ. Then, we have:

(1) [FS97, Theorem 3.1] The operational Chow ring is isomorphic (as a graded ring) to the
ring of Minkowski weights on the fan Σ with product structure coming from the fan
displacement rule.
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(2) [FS97, Theorem 5.1] If Σ is projective, the exponential map, sending rQs ÞÑ expprDQsq,
defines an injection of rings IQpPQ,Σq Ñ A‚pXΣqQ whose image is the subring generated
by A1pXΣqQ “ PicQpXΣq. The exponential map is an isomorphism when Σ is further
simplicial.

(3) [FS97, Theorem 5.2] The exponential map defines an isomorphism between IQpPQq and
the direct limit lim

ÝÑ
A‚pXΣqQ over all complete fans.

The image expprDQsq of the exponential map applied to Q can be described in terms of
Minkowski weights as follows: The cone dual to a face F of Q gets weight equal to the lat-
tice volume of F (in the lattice of the affine span of F ). For the case when R “ R, after a
suitable modification of the definitions for the ring of Minkowski weights and the exponential
map above, one has a similar injective map [McM89, Theorem 2] that is an isomorphism when
Σ is further simplicial [McM93a, Theorem 5.1]. See also [Bri97].

A.4. Relation to K-rings. Let KpXq be the Grothendieck ring of vector bundles on a smooth
complete variety X . For a smooth complete C-variety X , the Hirzebruch–Riemann–Roch theo-
rem gives that the Chern character map ch : KpXqQ Ñ ApXqQ, defined on classes of line bun-
dles by rLs ÞÑ exppc1pLqq, is a ring isomorphism. Comparing this to the second statement in
Theorem A.9, one concludes that there is an isomorphism IQpPQ,Σq » KpXΣqQ determined by
rQs ÞÑ rOXΣ

pDQqs when Σ is projective and smooth. Obtaining this isomorphism not only over
Q but over Z is the topic of this section. In particular, we prove the following.

Theorem A.10. Let Σ be a smooth projective fan, and let KT pXΣq be the Grothendieck ring of
torus-equivariant vector bundles on XΣ. Then, there is a ring isomorphism

ψT : IpPZ,Σq
„
Ñ KT pXΣq

determined by the property rP s ÞÑ rOXΣpDP qs for any P P PZ,Σ. This descends to an isomor-
phism ψ : IpPZ,Σq

„
Ñ KpXΣq.

Morelli proved a similar result for any smooth complete (not necessarily projective) fan; the
following theorem collects [Mor93, Theorems 5, 6, and 8]. For k P Zą0, let Ψk be the k-th Adams
operation, which is a ring endomorphism of KpT qpXΣq that satisfies ΨkrLs “ rLbks for L a (T -
equivariant) line bundle. For m P Zn and rEs P KT pXΣq, let χpXΣ, rEsqm be the weight m Euler
characteristic.

Theorem A.11. Let Σ be a smooth complete fan.

(1) The map IT : KT pXΣq
„
Ñ LΣpZnq Ď ZQn

given by rEs ÞÑ
`

m{k ÞÑ χpXΣ; Ψ
krEsqm

˘

is a
well-defined ring isomorphism.

(2) The map IT descends to an isomorphism I : KpXΣq
„
Ñ LΣpZnq.
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However, in light of Question A.8, it is unclear whether this proves Theorem A.10. We con-
clude with our proof of Theorem A.10 in the form of two lemmas. The proof of the second
lemma uses ideas of Morelli.

Lemma A.12. There is a surjective ring homomorphism ψT : IpPZ,Σq Ñ KT pXΣq determined by
the property rP s ÞÑ rOXΣ

pDP qs for any P P PZ,Σ. It descends to a surjective ring homomor-
phism ψ : IpPZ,Σq Ñ KpXΣq.

Proof. First we show that ψT is well-defined. We use the localization theorem for the torus-
equivariant K-theory of smooth complete toric varieties [Nie74, Theorem 3.2], which embeds
KT pXΣq as a subring of

ś

ptPXT
Σ
KT pptq. For each fixed maximal cone σ P Σ, which corresponds

to a point in XT
Σ , the class of rOXΣ

pDP qs is sent to T´vσ , where vσ is the vertex of P on which
any functional in the interior of σ achieves its minimum. That this is well-defined follows from
Proposition A.4. To see that ψT is a ring homomorphism, note that if P and Q are polytopes,
then the vertex of P Z Q on which any functional in the interior of σ achieves its minimum is
the sum of the corresponding vertices of P and Q.

For the surjectivity of ψT , first note that for a complete smooth toric variety XΣ, the ring
KT pXΣq is generated as a ring by the classes of T -equivariant line bundles [Kly84, Corollary 1]
(see also [AP15, Lemma 2.2]). If Σ is further projective, any T -equivariant line bundle is isomor-
phic to L_ b M for some ample T -equivariant lines bundles L and M. Since ψT surjects onto
the classes of T -equivariant ample line bundles, it suffices now to show that for a T -equivariant
ample line bundle L, its inverse class rL_s is a sum of powers of rLs (possibly with different
equivariant structures). Concretely, suppose we have a lattice polytope P Ă Rn whose normal
fan ΣP equals Σ. Let N be the number of lattice points in P . Denoting pS “

ř

pPS p for a subset
S Ď P X Zn, we claim that

rOXΣp´DP qs “

N
ÿ

k“1

p´1qk´1
ÿ

SĎPXZn

|S|“k

rOXΣpDpk´1qP´pS
qs as elements in KT pXΣq.

By multiplying rOXΣ
pDP qs, we equivalently check that

N
ÿ

k“0

p´1qk
ÿ

SĎPXZn

|S|“k

rOXΣ
pDkP´pS

qs “ 0.

Here the k “ 0 term should be interpreted as rOs with the trivial equivariant structure. At each
T -fixed point x of XΣ corresponding to a vertex v of P , the localization value of the left-hand-
side is zero since rOXΣ

pDp|S|`1qP´pSYv
qsx “ rOXΣ

pD|S|P´pS
qsx for any S Ď pP X Znqzv.

Finally, we note that for Q P PZ,Σ, the divisor class rDQs is invariant under translation of Q,
so translation invariance is clear. Therefore ψT descends to a map ψ : IpPZ,Σq Ñ KpXΣq, which
is surjective because KT pXΣq Ñ KpXΣq is surjective. □

Lemma A.13. The maps ψT and ψ given in the previous lemma are injective.
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Proof. For rEs P KT pXΣq, consider the function Qn Ñ Z defined by

m{k ÞÑ χpXΣ; Ψ
krEsqm for m P Zn and k P Zą0.

In order to see that this is a well-defined function, we need to check that

χpXΣ; Ψ
krEsqm “ χpXΣ; Ψ

nkrEsqnm for any n P Zą0.

By Lemma A.12 and because the classes of the polytopes P P PZ,Σ generate IpPZ,Σq, it suffices
to check that

χpXΣ; Ψ
krOXΣpDP qsqm “ χpXΣ; Ψ

nkrOXΣpDP qsqnm for any n P Zą0

for an arbitrary polytope P P PZ,Σ. This then follows from the fact that for any positive integer
ℓ and m P Zn, one has

χpXΣ,Ψ
ℓrOXΣ

pDP qsqm “

$

&

%

1 if m P ℓP

0 otherwise.

Indeed, ΨℓrOXΣ
pDP qs “ rOXΣ

pDℓP qs, we can identifyH0pXΣ;OXΣ
pDℓP qq with the vector space

spanned by lattice points in ℓP , and the higher cohomology of base-point-free line bundles on
toric varieties vanishes [Ful93, §3.4 & §3.5].

We now construct a map KT pXΣq Ñ IpPZ,Σq. By Lemma A.12, every class rEs P KT pXΣq is
of the form rEs “

ř

i airOXΣ
pDPi

qs for some Pi P PZ,Σ. We send rEs to
ř

i airPis P IpPZ,Σq. The
construction above recovers the evaluations of

ř

airPis at points in Qn. Because two finite sums
of indicator functions of lattice polytopes are equal if they agree on Qn, this map is well-defined.
It is clearly a left-inverse of ψT which descends to a left-inverse of ψ. □
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