STELLAHEDRAL GEOMETRY OF MATROIDS

CHRISTOPHER EUR, JUNE HUH, MATT LARSON

ABSTRACT. We use the geometry of the stellahedral toric variety to study matroids. We iden-
tify the valuative group of matroids with the cohomology ring of the stellahedral toric variety,
and show that valuative, homological, and numerical equivalence relations for matroids coincide.
We establish a new log-concavity result for the Tutte polynomial of a matroid, answering a ques-
tion of Wagner and Shapiro-Smirnov—Vaintrob on Postnikov-Shapiro algebras, and calculate the
Chern-Schwartz-MacPherson classes of matroid Schubert cells. The central construction is the
“augmented tautological classes of matroids,” modeled after certain toric vector bundles on the

stellahedral toric variety.
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1. INTRODUCTION
Let £ = {1,...,n}. For S < E, we write eg for the sum of the standard basis vectors },,_¢ e;

in the vector space R¥. A matroid M on E is a collection B of subsets of E, called the bases of M,

such that every edge of the convex hull

P(M) = convi{ep | Be B} < RF

is parallel to e; — e; for some ¢ and j in E. By definition, the coordinate sum of any point in

the base polytope P(M) is a constant integer rk(M), called the rank of M, which is equal to |B| for
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any B € B. The condition on the edges of the base polytope is equivalent to the basis exchange
property appearing in the work of Whitney [Whi35] that introduced matroids:

Forany By, By € Band any i € B1\By, thereis j € By\Bj such that (B;\i)uj € B.

The above definition of matroids via base polytopes arose from the study of moment map im-
ages of torus orbit closures in Grassmannians by Gelfand, Goresky, MacPherson, and Serganova
in [GGMS87]. See [Kun86, Chapter 1] for an excellent historical overview of early contributions,
and [Ard22] and [Eur] for snapshots of recent advances in the theory of matroids. For a general
introduction to matroids, and for any undefined matroid terms, we refer to [OxI11].

For a nonnegative integer » < n, we consider the free abelian group generated by the set of
matroids of rank r on E:

Mat, (E) = { Z M,

¢; is an integer and M; is a rank r matroid on E}

We study three equivalence relations on Mat,. (E)—valuative, homological, and numerical.

Definition 1.1. Let 1p() be the indicator function of the base polytope of M, which is the
function R¥ — Z defined by 1p)(z) = 1if € P(M) and 1p\(z) = 0 otherwise. An element
2.; ciM; is said to be valuatively equivalent to zero if the function ), ¢;1p(\1,) is zero.

Figure 1 illustrates an element of Mats ([4]) that is valuatively equivalent to zero. The val-
uative group of rank r matroids on E, denoted Val,(E), is the group Mat,(E) modulo the
subgroup of elements valuatively equivalent to zero. A homomorphism of abelian groups
Mat, (E) — G is said to be valuative if it factors through the valuative group. Many matroid
invariants, including the Tutte polynomial, the Kazhdan-Lusztig polynomial, the motivic zeta
function, the Chern-Schwartz—MacPherson cycle, and the volume polynomial of the Chow ring,
turn out to be valuative. See [AFR10, AS23, Ard22] for extensive lists and history of the study

of valuative matroid invariants.

@&@+0

FIGURE 1. An element of Mats ([4]) that is valuatively equivalent to zero

For the homological equivalence relation, we use the augmented Bergman fan ¥ of M, which is
an r-dimensional simplicial fan in R” obtained by gluing together the order complex of the lat-
tice of flats and the independence complex of M. For an explicit description, see Definition 5.10.
The augmented Bergman fan, introduced in [BHM22], is a central object in the proof of the
Dowling-Wilson top-heavy conjecture and the nonnegativity of the matroid Kazhdan-Lusztig
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polynomial [BHM*]. The constant weight 1 is balanced on the augmented Bergman fan, defin-
ing a Minkowski weight [X)] in the sense of [FS97]. We review the definition of Minkowski
weights and their identification with homology classes on toric varieties in Section 5.2.

Definition 1.2. An element ), ¢;M; is said to be homologically equivalent to zero if the Minkowski
weight > . ¢;[Xw, ] is zero.
For the numerical equivalence, we use the bilinear intersection pairing
Mat,.(E) x Mat,, (E) — Z, (M,M') — deg(M A M'),
where the integer deg(M A M), for a rank r matroid M and a rank n — r matroid M’ on E, is

, 1 if there are bases B of M and B’ of M’ such that B n B’ = (&,
deg(M A M) =

0 if otherwise.

We will identify this intersection pairing with an instance of the intersection product on the
homology of a certain n-dimensional smooth projective variety; see Theorem 1.6 and Section 7.

Definition 1.3. An element ), ¢;M; is said to be numerically equivalent to zero if it is in the kernel
of the intersection pairing.

Our first main result states that these three equivalence relations coincide.

Theorem 1.4. The following conditions are equivalent for any n € Mat, (E).
(1) nis valuatively equivalent to zero.
(2) nis homologically equivalent to zero.

(8) nis numerically equivalent to zero.

We establish this equivalence via the combinatorics and algebraic geometry of the stellahe-
dron Il of E, which is an n-dimensional simple polytope in R” with the following equivalent
descriptions.

o The permutohedron of E is the convex hull of the permutations
Oy = conv{w- (1,2,...,n) | wis a permutation of £} < R¥.
Writing R, for the nonnegative orthant, the stellahedron of E is
Iy = {ueRE)| there exists v € II; such that v — u e RZ}.

This description shows that the permutohedron Il is the facet of IIz on which the
standard inner product with ez is maximized.

o The independence polytope of a matroid M is the convex hull

I(M) = conv{es | I < B for some basis B of M} < R¥.
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Writing U,. g for the uniform matroid of rank r on £, whose bases are all size r subsets
of E, the stellahedron of F is the Minkowski sum

g = Y I(Upg).
r=0

This description shows that the standard n-dimensional simplex I(U; g) and the stan-
dard n-dimensional cube I(U,, g) are Minkowski summands of the n-dimensional stel-
lahedron Ilg. Figure 2 illustrates the case E = [3].

We remark that the stellahedron Il is a realization of the graph associahedron of the star graph
with the set of endpoints E; see for example [PRW08, §10.4]. We refer to [CD06] and [Dev09] for
discussions of graph associahedra and their realizations.'

) -s-08

FIGURE 2. The stellahedron of [3] as the sum of three independence polytopes

The stellahedral fan X is the normal fan of the stellahedron IIg. It is a simplicial fan that is
unimodular with respect to the lattice Z¥ < RE. The stellahedral variety of E is the associated
smooth projective toric variety Xg. In this introduction, all varieties will be over the complex
numbers. We follow the conventions of [Ful93] and [CLS11] for toric varieties. The compact
complex manifold X is the central geometric object behind Theorem 1.4.

Let T be the open torus (C*)E of the stellahedral variety Xp. The two descriptions of the
stellahedron have the following geometric consequences:

o The permutohedral variety X p, the toric variety of the permutohedron Il;, admits a 7-
equivariant embedding
g X — Xg,
corresponding to the permutohedral facet I1 ; of I1 .
o There is a birational toric morphism to the n-dimensional projective space
TE: X E — PE,

corresponding to the Minkowski summand I(U; g) of Ilg.

UIn [FS05, PRW0S, Pos09], an n-dimensional graph associahedron is realized as a generalized permutohedron in
R™+1. For the star graph with the set of endpoints E, the stellahedron I1 and the projection of that graph associahe-
dron to R¥ have the same normal fan.
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¢ There is a birational toric morphism to the n-dimensional product of projective lines
me: Xp — (PH)E,
corresponding to the Minkowski summand I(U,, g) of IIg.
Summarizing, we have T-equivariant maps

XE‘L—E>XE

NN
PF ")

The image of X ; in P¥ is the hyperplane at infinity P(CF), and the image of X  in (P!) is the

E

point 0. Note that PX and (P')¥ are equivariant compactifications of the additive group CF.
In Section 3, we observe that the stellahedral variety X is also a CF-equivariant compactifica-
tion of C¥, and that both maps to P¥ and (P')¥ are equivariant with respect to C¥.

Theorem 1.5. For every integer r, the assignment M — [Xy;] defines an isomorphism
ValT(E) ; HQT(XE; Z)

from the valuative group of matroids on £ to the homology of the stellahedral variety of E.

Theorem 1.5 explains the coincidence of the valuative and the homological equivalence rela-
tions in Theorem 1.4. In Corollary 7.9, we use Theorem 1.5 to give a geometric interpretation
of a result of Derksen and Fink on a combinatorial basis of the valuative group [DF10]. The
restriction of [Xy] to the permutohedral variety X, is given by the Minkowski weight [X],
which is the constant balanced weight 1 on the Bergman fan X, if the matroid is loopless and
the constant balanced weight 0 if otherwise. Thus, Theorem 1.5 also recovers a result of Hampe
that identifies the homology of X ; with the valuative group of loopless matroids [Ham17].

Poincaré duality for X endows the homology of Xz with the intersection product that is
dual to the cup product on the cohomology of Xz. We identify this intersection product with
matroid intersection. Recall that the matroid intersection of matroids M and M’ on E is a matroid
M A M’ on E whose bases are the minimal members of the family

{B n B’ | Bis abasis of M and B’ is a basis of M'}.

In particular, M A M’ has rank zero if and only if M and M’ have bases B and B’ that are disjoint.
Let us denote by crk(M) = n — r the corank of a rank r matroid M on E.

Theorem 1.6. The intersection product on X satisfies

Smam]  if erk(M) + crk(M’) = ectck(M A M'),
] g = | ] k() & crk(AY) = erk(M A M)
0 if otherwise.
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Theorem 1.6, together with Poincaré duality for X, explains the coincidence of the homolog-
ical and the numerical equivalence relations in Theorem 1.4. By restricting to the permutohedral
variety X , we recover the following description of the intersection product on the homology
of X i, previously established by Speyer in [Spe08, Proposition 4.4].

Corollary 1.7. The intersection product on X ; satisfies

5] [Sap] = [Zyawr]  if M A M is loopless,
ML 0 if otherwise.

Recall that a realization of M over C is an r-dimensional linear subspace L < C¥ such that
B = {B c E |the projection C¥ — C? restricts to an isomorphism L = C? }

The augmented wonderful variety W, is the closure of L in X g. We show in Corollary 5.11 that the
homology class of the augmented wonderful variety in the stellahedral variety is given by

[WL] = [EM] € HQT(XE,Z).

The intersection of W, and X j; is the wonderful variety W ; of de Concini and Procesi [DCP95],
which is the closure of the projective hyperplane arrangement complement P(L) n (C*)¥/C* in
X . The main geometric objects behind the displayed identity and the proofs of Theorems 1.5
and 1.6 are certain T-equivariant vector bundles on X g which we call “augmented tautological
bundles.” For a linear subspace L = C¥, these are T-equivariant vector bundles Q;, and S, on
X that have the following properties:

¢ The augmented wonderful variety W, is the vanishing locus of a distinguished global
section of Q@ (Theorem 5.2). Consequently, the normal bundle Ny, /x,, is isomorphic
to the restriction of Qy, to W, (Corollary 5.4).

o The logarithmic tangent bundle 7Ty, (— log 0W1,) of Wi, viewed as a compactification of
L = Wi \0W7p, is isomorphic to the restriction of Sy, to W, (Theorem 9.2).

See Definition 4.2 for the construction of the augmented tautological bundles. By restricting
these bundles Q;, and Sy, to the permutohedral variety X 5, one recovers the “tautological bun-
dles” @, and S; (Definition 4.5) introduced in [BEST23].

In general, for an arbitrary matroid M with possibly no realization over C, instead of vector
bundles on X we have T-equivariant K-classes [Qm] and [Sy] on Xg. These classes, which
we call “augmented tautological classes,” satisfy the following properties:

e If L  C¥ is a realization of M, then [Qu] = [Q1] and [Sm] = [S1] as T-equivariant
K-classes (Proposition 4.4).

e The assignments M — [Qy] and M — [Su] are both valuative maps from Mat,.(E) to
the Grothendieck ring of T-equivariant vector bundles on Xz (Proposition 4.7).
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o By restricting [Qwm] and [Sum] to the permutohedral variety X, one recovers the “tauto-
logical classes of matroids” [Q,,] and [S);] introduced in [BEST23].

The Chern classes of augmented tautological classes relate well to independence polytopes and
augmented Bergman classes of matroids:

e Under the correspondence between base-point-free divisor classes on toric varieties and
polytopes [CLS11, Section 6.2], the first Chern class ¢1(Qwm) of [Qm] corresponds to the
independence polytope I(M*) of the dual M+ of M.

e The top Chern class ¢,—(Qm) N [Xg] of [Qum] is the augmented Bergman class [Xy].
The augmented tautological classes behave particularly well with respect to the following ex-
ceptional isomorphisms between the Grothendieck ring of vector bundles K (Xg) and the coho-

mology ring H*(Xg, Z). For any K-class [£], we write ¢(€) for its total Chern class and [det £]
for the K'-class of its determinant line bundle.

Theorem 1.8.
(1) There is a unique ring isomorphism
¢: K(Xp) > H*(Xg,Z)
that satisfies ¢([det Q1 ]) = ¢(Qy) for any linear subspace L < CF.
(2) There is a unique ring isomorphism
(: K(Xp) > H*(Xp, Z)

that satisfies (([Ow, ]) = [W] for any linear subspace L < CF.

Recall that the classical Hirzebruch-Riemann—Roch formula requires the use of rational co-
efficients. We show that the isomorphisms ¢ and ( satisfy the following Hirzebruch-Riemann-
Roch-type formula with integer coefficients. We write the sheaf Euler characteristic map and
the degree map by

x: K(Xg) > Z and H*(Xg,Z) - 7.
XE
For each i in E, let m;: X — P! be the i-th factor of the map mr: Xp — (P1)%.

Theorem 1.9. For any £ € K(Xg), the exceptional isomorphisms ¢ and ¢ satisfy

x(©) = | 00)-A@mi0n ) = [¢(0) - elrOm (1)
E i€
Despite apparent similarities, these identities are not consequences of the classical Hirzebruch-
Riemann—-Roch theorem, since ¢ and ( differ from the Chern character map. The integral classes
(@,ep 7 Opi (1)) and ¢(n}0pz(—1)) " play the role of the Todd class for ¢ and ¢. The iso-
morphisms ¢ and ( are closely related to the isomorphism K(X ) > H*(X y,Z) in [BEST23,
Theorem D] in two different ways; see Remark 6.7.
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We prove the existence of the isomorphisms in Theorem 1.8 in Section 6, and use it to prove
Theorems 1.5 and 1.6 in Section 7.1. The uniqueness of the isomorphisms in Theorem 1.8 is then
derived from Theorem 1.5 in Section 7.1. We prove Theorem 1.9 in Section 8.1.

Theorem 1.9 reveals remarkable numerical properties of the augmented tautological classes.
Recall that the Tutte polynomial of a matroid M on E, introduced by Tutte [Tut67] for graphs and
by Crapo [Cra69] for matroids, is the bivariate polynomial

TM($7 y) _ Z (iC o 1)rkM(E)—rkM(S) (y _ 1)|S\—rkM(S)’
SCE
where 1tky: 28 — 7Z here denotes the rank function of M. We give the following geometric
interpretations of the Tutte polynomial as intersection numbers of the Chern and Segre classes
of augmented tautological classes. For a K-class [£] and a formal variable u, we set
c(&,u) = zci(é')ui and s(&,u) = Zsi(é')ui,

where ¢;(€) is the i-th Chern class of [€] and s;(€) is the i-th Segre class of [£].

Theorem 1.10. For any rank r matroid M on E, we have

Tvu+Lv+1)= J (S, u) 0" e(Qn, v ) (P T Op (1)).

XE i€EE

Eliminating S using 9V, we get the following identity for the homogeneous polynomial

T4y x+y+z+w)

t — T 'n,—T'T
o) = (54 2) (o 0 T (S, T

Theorem 1.11. For any rank r matroid M on E, we have

tm(z,y, z,w) = J S(WEOPE(*l),I) ‘C(@W;{O]}Dl(l),y) - 8(Qyp, 2) - (O, w).

XE el
The second formula implies the following analytic property of the Tutte polynomial.

Theorem 1.12. For any rank r matroid M on E, the polynomial ¢\ (x, y, z, w) is a denormalized
Lorentzian polynomial in the sense of [BH20, BLP23].

See Section 8.3 for a short review of Lorentzian polynomials, and see Remark 8.9 for a strength-
ening of Theorem 1.12. If M has a realization L < C¥E, Theorem 1.12 follows from Theorem 1.11
and the fact that the vector bundle Q; is globally generated. For an arbitrary, not necessarily
realizable, matroid M, we establish Theorem 1.12 by constructing tropical models of augmented
tautological classes, and then by applying tools from tropical Hodge theory as developed in
[ADH23, Section 5].

Remark 1.13. Consider the homogeneous polynomial

z+y :c+y>

t — —1 T n=rm
bl o) = (o) 2 (o 0 T (2L, 2
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In [BEST23, Theorems A and B], the authors show the identity

zM(xaﬁ%sz) = JX S(WEO]P’(CE)<_1)737) 'C(QULEvy) ) S(QK/I’Z) : C(prw)

and show that this polynomial is a denormalized Lorentzian polynomial. The authors do not
know whether this result can be deduced directly from Theorem 1.11 and 1.12, or vice versa.

Specializing Theorem 1.12 by setting « = 1, y = 0, 2 = ¢, w = 0, we obtain the following
corollary, which appeared in [Wag98, Problem 6.10] and [SSV22, Conjecture 2] in the context of
Postnikov-Shapiro algebras of graphs [PS04].

Corollary 1.14. For any rank r matroid M, the coefficients of the polynomial ¢" Tyi (g™, 1 + q)
form a log-concave sequence with no internal zeroes.

We conclude with the study of the geometry of matroid Schubert varieties via augmented
tautological bundles. For a realization L < C¥ of a matroid M, its matroid Schubert variety
Yy, is the closure of L in (P!)”. Matroid Schubert varieties play a central role in the proof of
the Dowling-Wilson top-heavy conjecture in the realizable case [HW17], and their intersection
cohomologies are the main objects of study in the proof of the general case [BHM*]. Matroid
Schubert varieties satisfy several features analogous to those of classical Schubert varieties in
flag varieties; see [BHM*]. Two such features are as follows:

e The map ms: X — (P')¥ restricts to a resolution of singularities W, — Y}, for any
L < CP. The boundary 0W;, = Wi \L is a simple normal crossings divisor on W7..

e The standard affine paving of (P')¥ restricts to an affine paving of a matroid Schubert
variety Y7, whose k-dimensional cells are

UF ={peY|pi=cwifand onlyifi ¢ F},

one for each rank k flat F' of M. Writing yr for the homology class of the closure of U*,
which is another matroid Schubert variety, we have

H.(YL,Z) x>~ @ Zyp,
Fel(M)
where £(M) is the lattice of flats of M.
As mentioned before, the restriction of Sy, to the augmented wonderful variety Wy, is isomor-
phic to the log-tangent bundle Ty, (—log dWp,). This allows us to deduce the following remark-

ably simple formula for the Chern-Schwartz-MacPherson (CSM) classes of matroid Schubert
cells in their varieties. See Section 9.2 for a brief review of CSM classes.

Theorem 1.15. The Chern-Schwartz—MacPherson class of 1, in Y7, is the sum over all flats

csu(1L) = Y, yre Ho(YL,7Z).
FeL(M)
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In particular, the CSM class of L in Y7, is effective. The analogous effectivity of CSM classes
of classical Schubert cells in their varieties was established in [AMSS].

We include an appendix that discusses notions of valuativity and polytope algebras. We
mostly collect statements from the literature, but we also give an isomorphism between a certain
polytope algebra and the K-ring of a smooth projective toric variety.

Notation. Let k be an algebraically closed field of arbitrary characteristic. A variety is an ir-
reducible and reduced scheme of finite type separated over k. When k = C, the singular ho-
mology groups in even degrees and the Chow homology groups coincide for smooth projective
toric varieties and augmented wonderful varieties, so we will use the two groups interchange-
ably in such cases, and similarly for the singular cohomology ring and the Chow cohomology
ring. We denote by (-, - the standard pairing on kZ or ZZ.

Acknowledgements. We thank Alex Fink and Ravi Vakil for helpful conversations, Mario Sanchez
for a helpful discussion on the proof of Lemma A.12, and the referees for their careful reading
and suggestions.

2. TORUS-EQUIVARIANT GEOMETRY PRELIMINARIES

We collect some facts about the torus-equivariant K-ring and torus-equivariant Chow ring of
a smooth projective toric variety. The reader may skip this section and refer back as needed.

Let X5 be the smooth projective toric variety with fan ¥, and let T = GZ be the torus with
character lattice Char(T) = Z¥”. Suppose that T acts on Xy, via a surjective map of tori with
connected kernel to the dense open torus of Xy, so that the corresponding map of cocharacter
lattices is ZF — ZF /(lin nZ¥) for some linear subspace lin = Z¥ @ R. This data is encoded by

the n-dimensional complete fan ¥ in R” with lineality space lin such that £/lin = 3.

2.1. Localization theorems. Let K'r(Xx) be the T-equivariant K-ring of Xy, the Grothendieck

ring of T-equivariant vector bundles on X5. Let K (Xy) denote the K-ring of X5. By forget-

ting the equivariant structure, one has a surjective map Kr(Xy) — K(Xy). By taking the T-

equivariant sheaf Euler characteristic, one has a K (pt)-module homomorphism X Kp(Xy) —
Kr(pt). We identify Kr(pt) = Z[Char(T)] with the Laurent polynomial ring Z[T;*, ..., TF!]

where T; is the standard character of i € E under the identification Char(T) = ZF.

Let A%.(Xy) denote the equivariant Chow ring of Xy, as defined in [EG98], and let A*(Xy;)
denote the Chow ring of X. Similar to the K-rings, one has a surjective map A% (Xs) —
A*(Xy) and a A% (pt)-module homomorphism ST 1 A% (Xs) — A%(pt). We identify AS.(pt) with
the polynomial ring Z[t1, ..., ¢,]. Let {: A*(Xx) — Z be the (non-equivariant) degree map.

Let ¥(k) denote the set of cones of dimension %k of ¥. For each maximal cone o of ¥, we
have a map Kr(Xsx) — Kr(pt,) = Z[T, ..., TE"] given by pulling back to or localizing at the
corresponding fixed point pt,. Similarly, we have a map A%(Xx) — A% (pt,) = Z[t1,...,ts].
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These maps can be combined into maps Kr(Xs) — Kr(XZ) = [Toesn) Kr(pt) and A% (Xx) —
A (XT) = [Loes(n) AT (pt), where XI' denotes the set of T-fixed points of Xy. For a character
v=(v1,...,0,) € Z¥, we denote T® = T{* - - - T¥» and t, = vit; + - - - + v,t,,. Then we have the

following localization theorem.

Theorem 2.1. Let X, as above. Then

(1) [VV03, Corollary 5.11] The restriction map Kr(Xx) — K7 (XZ) is injective, and its im-
age is the subring of [ [, .,(,,) K7 (pt) given by

fo—for=0mod 1 -T"
whenever dimo n o’ =d — 1 withR(o no’) = kerv

fe | EKr(t)
ceX(n)
Moreover, the map K1 (Xy) — K(Xy) forgetting the equivariant structure is surjective,
with kernel I ¢ equal to the ideal generated by f— f(1,...,1) where f is a global Laurent
polynomial, i.e., f, for all o € ¥(n) equals a common Laurent polynomial.

(2) [Pay06] The restriction map A% (Xx) — A%(XL) is injective, and its image is the subring
of HUGZ(n) A’}(pt) given by

fo — for =0 mod ¢,
whenever dimo N o’ =d — 1 withR(c no’) = kerv

fe [T Axb)
oceX(n)
Moreover, the map A% (Xsx) — A*(Xy) forgetting the equivariant structure is surjec-
tive, with kernel 14 equal to the ideal generated by f — f(0,...,0) where f is a global
polynomial, i.e., f, for all o € ¥(n) equals a common polynomial.

2.2. Duality, rank, symmetric powers, exterior powers, Chern classes, and Segre classes. We
now recall the description of several operations on the equivariant K-ring of a toric variety in
terms of localization at fixed points. Let [£] € Kr(Xyx) be an equivariant K-class, localizing to
[£]s = Zf;l as ;T at a torus-fixed point corresponding to a maximal cone o € X(n).

There is a ring involution Dx on Kr(Xy) defined by sending the class of an equivariant
vector bundle to the class of the dual vector bundle. The dual class Dk ([£]) := [£] has

ko
Dk ([E)o = ). ag T~
i=1

There is a corresponding ring involution, denoted Dy, on A%.(Xx), defined by Da(t;) — —t;
at each torus-fixed point. This multiplies by (—1)* on A% (Xyx). These involutions descend to
K(Xy)and A*(Xy).

As toric varieties are integral, every coherent sheaf on a toric variety has a rank. As the rank
is additive in short exact sequences, this defines a ring homomorphism rk: K7 (Xx) — Z, which
descends to K (Xs) — Z. The rank of [£] is Zfil a.;, which is independent of the choice of .
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The operation that assigns to each equivariant vector bundle its j-th symmetric or exterior
power extends naturally to K (Xy) and Kr(Xx). Explicitly, with u a formal variable, we have
that

_:w

>y NIElu

The function that sends a vector bundle to its equivariant total Chern class extends to a func-
tion ¢’ K7(Xs) — A%(Xyx), which is multiplicative in the sense that 7 (£ + F) = ¢Z(€)-cT (F).
The equivariant Chern polynomial ¢? (£, u) is the polynomial ¢ (£) + ¢ (E)u + L' (E)u? + - -+,
where u is a formal variable. Define similarly the Chern polynomial ¢(€,u) € A®*(Xx)[u]. The

k Ao i
) o 1 o,
1_|_Tma7 aa7’ and S mJ 5 0’“’] = _— .
i 1( : JZO yarle] E <1_Tma’iu)

equivariant total Chern class localizes to

© ko
= Z CJT(E)GUJ 1_[ (1 + uty,, )",

Jj=0
where u is a formal variable.

If € is a vector bundle on Xy, then £ has a Segre class in A*(Xy), characterized by the
property that ¢(£)s(€) = 1. We define the equivariant Segre class to be the inverse of ¢! (£) in
A%(X%)[cT(£)71]. Because ¢(€) is a unit in A*(Xy), there is a natural map A% (Xx)[c? (€)' —
A*(Xy), and the image of s7(€) is s(£). Define the (equivariant) Segre polynomial in the same
way as the (equivariant) Chern polynomial.

3. STELLAHEDRAL VARIETIES

We describe the stellahedral fan ¥z and its variety X in several different ways, and we
record several useful properties of Xr we will need. The closely related permutohedral fan X
and its variety X ;, will often appear and aid the discussion.

3.1. The stellahedral fan via compatible pairs. We describe the stellahedral fan in terms of its
cones. We start by describing the closely related permutohedral fan, which both serves as a
motivation for and appears as a substructure in the stellahedral fan.

Definition 3.1. The permutohedral fan X1, is a fan in R” /Rey, that consists of cones o4 for each
chain J : F} ¢ --- & F}, of nonempty proper subsets of £ where

og = cone{€p,...,Ep, }.

Here we denoted 7 for the image of u € R” in R¥ /Rep.

That this definition of X is equivalent to its description as the normal fan of the permuto-
hedron II; = conv{w - (1,2,...,n) | wis a permutation of E} < R¥ is a standard fact about
Coxeter reflection groups; see for instance [BB05]. We now give a similar description of the
stellahedral fan ¥z in terms of “compatible pairs” as given in [BHM 22, §2].
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Definition 3.2. A pair (I, ) consisting of asubset I € EandachainF: F} & F, & --- & Fj of
proper subsets of E is said to be compatible if I is a subset of every element of . We write ] < F
in this case.

Both the subset I and the chain J are allowed to be empty. In contrast to the permutohedral
case, the empty set is allowed to be an element in the chain . Make the following a definition.

Proposition 3.3. [BHM*22, Proposition 2.6] The stellahedral fan X is a simplicial fan that
consists of cones o<y for each compatible pair I < F where

or<y = conefe; | i € I} + cone{—ep\r | F' € T}.

We denote the rays of the fan 3 by

pi = O(iy<g = cone(e;) foreachie E and pg = og<(s} = cone(—ep\g) foreach S ¢ E.

The proposition gives the following corollary concerning the stars of the stellahedral fan.
Recall that for a fan ¥ in RE, the star of a cone ¢ € ¥ is a fan, denoted star, &, in RE /Ro whose
cones are the images of the cones in ¥ containing o.

Corollary 3.4. [BHM"22, Proposition 2.7] Let I = {iy,...,i;} < F: F; & --- & F}, be a com-
patible pair, and by convention set Fj,.1 = E (so F} = E if J is an empty chain). Then, the
isomorphism

k
R¥/Ros<s = R¥/R{e;,,...,ei,,—epr, ..., —epp ) = RV < [ [R5 /Rep,, \r,
i=1

induces an isomorphism of fans

k
stary,_, X ~ EFl\I X HEFi+1\F11'
i=1
Example 3.5. When (I,5) = (J, {}) corresponding to the ray pg = cone(—eg), we have that
star,, ¥p ~ Yp. In particular, we recover that the permutohedral variety X ; arise as the T-
invariant divisor of Xz corresponding to the ray pg, as noted in the introduction. From the

map Z¥ — ZF /Zpy = 7.F /Zef, we have that the open dense torus of X j, is the projectivization
PT = (k*)F/k* of T.

We will often use Example 3.5 to recover or relate the “augmented” structures on stellahedral
varieties to the “non-augmented” versions on permutohedral varieties. We will use the more
general star structures of the stellahedral fan in §4.2, where we study the restriction of aug-
mented tautological bundles to various torus-invariant subvarieties of the stellahedral variety.
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3.2. Refinements and coarsenings. We record how the stellahedral fan Xy arises as either a
refinement or a coarsening of certain fans. First, we note that ¥z is an iterated stellar subdivision
of coarser fans in two distinguished ways. Both statements can be verified via Proposition 3.3.

Proposition 3.6. Let X g be the stellahedral fan of E. The following hold.

(a) Let X, be the fan in R” whose maximal cones are the cones generated by the cardinality-
nsubsets of {e1, es,...,e,, —eg}. Then X is obtained from 3,, by performing the stellar
subdivision of all maximal cones of ¥,, that contain the vector —eg, then performing the
stellar subdivision of the inverse images of codimension 1 cones that contain —eg, and
SO on.

(b) Let (31)¥ be the fan in RE whose maximal cones are the 2" orthants of R”. Then X is
obtained from (X)” by performing the stellar subdivision of the negative orthant, then
performing the stellar subdivision of the codimension-1 faces of the negative orthant,
and so on.

Since the toric varieties of ¥ and (X1)% are P¥ and (P!)¥, respectively, the above two de-
scriptions of ¥ i can be rephrased to say that the stellahedral variety Xz is an iterated blow-up
along smooth centers from P¥ and from (P!)E. The two maps 75: Xg — PF and my5: Xp —
(P1)¥ are the blow-down maps. For i € E, let m;: X — P! be the composition of 7, with the
projection to the i-th P!. These maps from X to projective spaces give the following distin-
guished divisor classes on Xp.

Definition 3.7. With notations as above, we denote

o = 75 (hyperplane class of P¥) and y; = 7} (hyperplane class of P').

We now describe the stellahedral fan ¥ as a coarsening of a permutohedral fan. This de-
scription of ¥ i will be useful for our discussion of the tropical geometry of augmented won-
derful varieties in §5.3 and for producing a basis for ¥ in §7.2.

Denote by E = E 11 {0}. Let p be the isomorphism of lattices
p: ZE/ZeE —7F given by (ag,a1,...,a,) — (a1 —ag, ..., an — ag).

That is, for S € E we have €5 — eg if 0 ¢ Sand s — —epgif 0 € S. To show that the
stellahedral fan X of E is the image under p of a coarsening of the permutohedral fan X
of E, we use the following notions from [DCP95, FY04] in an equivalent formulation given in
[Pos09, §7]. A building set is a collection G of subsets of F such that {i} e Gforanyi e E, and
if Sand S" are in G with S n S’ # & then so is S U S’. The nested complex N of a building
set G is a simplicial complex on vertices G whose faces are collections {X;,..., X} € G such
that for every subcollection {X,, ..., X,,} with £ > 2 consisting only of pairwise incomparable
elements, one has Ule Xi, ¢ G. When E € G, the set of cones

{cone{ex,, ..., 6x,} S R¥/Rej | {X1,..., X} € G\{D, E} a face of N}
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is a smooth fan in R” /Rej; that coarsens the permutohedral fan ¥ ;.

Proposition 3.8. The collection G = {S U 0 | S € E} u E is a building set whose fan projects
isomorphically onto the stellahedral fan ¥z under p.

Proof. Both the facts that G is a building set and that the faces of N are {S; U 0,...,S, U0} U I,
where @ € S; < --- € S € Fand ¥ < I < 54, are straightforward to check. The rest of the
proposition follows from Proposition 3.3. O

3.3. Polymatroids. A standard correspondence between polyhedra and divisors on toric vari-
eties [CLS11, §6.2] (see also [ACEP20, §2.4]) states the following: For a lattice polytope @ and
the toric variety X defined by its normal fan ¥, the base-point-free torus-invariant divisors
on X are in bijection with deformations of (), which are lattice polytopes whose normal fans
coarsen Y. We show that specializing this to the stellahedral variety Xg gives a correspon-
dence between the set of base-point-free divisor classes on X and a family of polytopes called
“polymatroids” introduced in [Edm70].

Definition 3.9. For vectors u,v € R¥, let us denote u > v if u — v € RE. A polymatroid on E is a
nonempty polytope P in the nonnegative orthant RZ satisfying the following two properties:

(1) If v € RE such that u > v for some u € P, then v € P.

(2) For any v € R, every maximal u € P such that u < v has the same coordinate sum
<’LL, €E >

An integral polymatroid is a polymatroid whose vertices lie in Z¥.

We will use the following “strong normality” of integral polymatroids in the proof of Propo-
sition 3.16.

Proposition 3.10. [Wel76, Chapter 18.6, Theorem 3] Let Py, ..., P be integral polymatroids on
E. Then any lattice point ¢ € Z¥ in the Minkowski sum P; + - -- + P isasum p; + - -- + py of
lattice points p; € P; n Z%. In particular, an integral polymatroid P is a normal polytope.

This property of polymatroids implies that the closure of the image of the map
T — P21 s PIPOZEISL defined by ¢ > ([ ] mep,nzes -« - [E Imepy ze)

is isomorphic to the toric variety of the normal fan of P, + - -- + P. For a general discussion of
normal polytopes in toric geometry, see [CLS11, Chapter 2].

To relate polymatroids to base-point-free divisor classes on X, we will need the following
equivalent description of (integral) polymatroids. A function f: 2¢ — R with f(&) = 0 is said
to be non-decreasing and submodular if

(non-decreasing) f(S) < f(S’) whenever S € S’ € E, and
(submodular) f(S U S") + f(SnS) < f(S)+ f(S) forall S,5' € E.
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Theorem 3.11. [Edm?70, (8)] Polymatroids on E are in bijection with non-decreasing and sub-
modular functions f: 2¥ — R with f(&) = 0. The bijection is given by

apolytope P — f: 2% — Rwhere fp(S) = max{{u,es) | ue P} for S F
afunction f: 28 >R — P ={ueRE | {es,u) < f(S)forall S c E}.
A polymatroid P is integral if and only if the function f is Z-valued.”

Example 3.12. The independence polytope I(M) of a matroid M is an integral polymatroid where
the function f is the rank function rky. It follows that rkys is a non-decreasing and submodular
function. Conversely, the rank function characterization of matroids implies that an integral
polymatroid contained in the Boolean cube [0, 1]¥ is the independence polytope of a matroid.
See [EAm70] for details.

The following proposition implies that, up to translation, polymatroids are exactly the defor-
mations of the stellahedron.

Proposition 3.13. For a proper subset J < S < E, let Dg be the torus-invariant divisor on X
corresponding to the ray o <(sy = cone(—ep\g) of Xp. Let [Dg] be its divisor class in A*(Xp).
Then the map defined by
(integral polymatroid P defined by f: 2¥ — Z) — Z f(E\S)[Ds] € AY(XEg)
PCSSCE
is a bijection between the set of integral polymatroids on E and the set of base-point-free divisor
classes on Xg.

For the proof we will need the following consequence of Proposition 3.3, which follows from
[CLS11, Theorem 6.1.7].

Corollary 3.14. (cf. [BHM22, Proposition 2.10]) A collection of rays in X is a minimal collec-
tion of rays that do not form a cone in X g if and only if the collection is either

{pi,ps}fori¢ SC E or {ps, ps'} for incomparable S, S’ < E.

Proof of Proposition 3.13. We begin by noting that the primitive vectors in the rays of ¥y are
{ei | ie E}u{—epgs | S & E}. Because the cone spanned by {e; | i € £} is a maximal cone in
Y, the presentation of the class group A'(Xg) in terms of torus-invariant divisors, as given in
[CLS11, Theorem 4.1.3], implies that any divisor class [D] € A'(Xg) can be written uniquely as
[D] = ZSgE cs[Dg] with ¢g € Z. Let us set cg = 0 by convention, and let D = ZSQE csDg be a
divisor. We now need check that the line bundle Ox, (D) of the divisor D on X is base-point-
free if and only if the function f: 2¥ — Z given by S — cp\ g defines a polymatroid on E.

2In some previous works [DF10, CDMeS22], the terminology “polymatroid” refers to associating the polytope P =
{ue ]Rgo | (es,uy < f(S) for all proper S & E and {eg,u) = f(E)} to a non-decreasing and submodular function f
with (&) = 0. Our polytope P is equal to {u € RE | there exists v € P such that v — v € R}, and hence contains

P as a face.
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For this end, we will use a criterion for base-point-freeness on toric varieties in terms of
piecewise linear functions. Following the conventions of [CLS11], the divisor D = }; scr ¢sDs
corresponds to the piecewise linear function ¢p on RE defined by assigning the value 0 to e;
for i € E and the value —cs to —ep\g for S & E. Applying a criterion for base-point-freeness
[CLS11, Theorem 6.4.9] to the stellahedral fan along with Corollary 3.14, one has that Ox, (D)
is base-point-free if and only if the following two conditions are satisfied:

(1) Forie E and a subset S < FE not containing 4, one has

¢p(e; —ems) = ¢p(e;) + vp(—ems).

Equivalently, since i ¢ S implies that e; — e\ g = —ep\ (sui), noting that ¢p(e;) = 0 and
—¢p(—ep\s) = cs gives
Csui < €S-

(2) For incomparable proper subsets S and S’ of E, one has

¢p(—eps —ers) = vp(—eps) + ¢p(—eps ).

Equivalently, since —ep\ s —ep\ s/ = —€p\(s~57) — €R\(sus’), and because ¢ p is linear on
cone{—ep\(s~s), —€g\(sus) ), hoting that —pp(—ep\s) = cs gives

Ccsns’ +Csusr < cs +cgr.

Here, note that when S U S’ = E, our convention that cg = 0 is consistent because
¢p(—emp) = ¢p(0) = 0.

In terms of the function f: S — cp\g, the first condition is equivalent to f(S) < f(S u i), and
the second condition is equivalent to f(S v S’) + f(S n S’) < f(S) + f(S"). O

For an integral polymatroid P, let Dp = } g f(E\S)Ds be the corresponding divisor on
Xp. Let Xp be the toric variety of the normal fan of P, considered as a fan in R” so that Xp is
considered as a T-variety. Note that Xp may have dimension less than n, so the action of 7' on
Xp may have a nontrivial kernel.

Example 3.15. For any matroid M, we have that the divisor D;(r) induces a toric morphism
Xg — X Inparticular, we recover the two distinguished maps from X in the introduction:
When P is the simplex I(U; g), whose normal fan is ¥,,, we obtain the map ng: X — PE.
When P is the boolean cube I(U,, z), whose normal fan is (£;)¥

(P~

, we obtain the map mz: Xp —

3.4. Orbit-closure in a flag variety and additive-equivariance. We have so far described the
structure of Xg as a toric variety, i.e., in terms of the T-action. Here we show that Xy ad-
mits an action by a larger group that contains the additive group GZ. Let us begin with the

1-dimensional case.
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The multiplicative group G,, acts on the additive group G, viat-b = tb for t € G,, and
be G,. Let G = G,, x G, be semi-direct product. Concretely, the groups G,,, G,, and G embed
into G L as follows.

Gy Go, G > GLy via tn—><t 0>,bH<1 b),(t,b)»—><t b).
01 01 0 1

We denote by V = k? the resulting G-representation. The group G thus acts on P(V) = P! by
(t,0) - [z : y] = [tx + by : y]

with two orbits {[z : 1] | b € k} ~ Al and {[1 : 0]}, denoted {o0}. When we treat P! as the toric
variety of the fan in R! consisting of the three cones {R>o, R<o, {0}}, the orbit A! is identified
with the toric affine chart of P! corresponding to Rx¢. In particular, letting Dy 1) be the toric
divisor on P! corresponding to the interval [0, 1] = R!, we may identify V = H°(P!, Op:(1))¥
by giving T-linearization of Op:1 (1) as Op1 (0) = Op1 (Do 17)-

Let us now show that the stellahedral variety X ; admits a G¥-action. We do this by realizing
Xp as a GF-orbit closure in a flag variety. While there are several alternate ways to exhibit
the GF-action on X, as listed in Remark 3.18, the orbit closure description will be useful for

defining the augmented tautological bundles in the next section.

From the G-action on V = k?, we endow V¥ ~ k¥ @ k¥ with the GF-action given by

(t,b) — <d1a§(t) d1ag}§(b)). Let A: k¥ — VE be the diagonal embedding.

Proposition 3.16. Let £L = {L; < --- S L} be a flag of linear subspaces of k¥ realizing matroids
M, ..., My, and let P be the polymatroid I(M;) + --- + I(M;). Then the GF-orbit closure of
[A(L)]in FI(dim(Ly),...,dim(Ly); VF) is identified with Xp.

Proof. We first consider the case when ¢ = 1, so we are taking the GZ-orbit closure of [A(L1)]
in Gr(dim(L;); VE). Let A be a matrix whose rows form a basis for L, so the rows of (A A)
form a basis for A(L;). Then the GP-action on Gr(dim(L1); V'¥) is given by

- [(a 4)]- {(A 2 (diaé;(t) diaf(b)>t} (w4 4)].

This implies that the T-orbit closure coincides with the G¥-orbit closure.

The normalization of T'- [A(L4)] is a toric variety, so it is defined over Spec Z. We may there-
fore consider the moment polytope of its complexification, which is given a polarization via the
Pliicker embedding of the Grassmannian. The vertices of the moment polytope are given by

the T-weights of the non-zero maximal minors of (A A), where T acts by scaling the first n

columns. Every non-zero maximal minor of (A A ) is given by a subset S; of the first n rows
and a subset Sy of the second n rows such that S; L S; is a basis for M;. The T-weight of this
minor is eg,, so the moment polytope is I(M).
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Let S be the set of non-loops of M;. The vertices of I(M;) generate the lattice 75, which
implies that the character lattice of the embedded torus in the normalization of T - [A(L;)] is
Z5. Every lattice point in I(M; ) is a vertex, so the restriction map H®(Gr(dim(L1); VF); O(1)) —
H(T -TA(L1)], ©(1)) is surjective. By Proposition 3.10, T - [A(L;)] is projectively normal and
therefore normal, so T - [A(L;)] is isomorphic to X I(My)-

We now treat the general case. There is an embedding FI(dim(L1),...,dim(L,);V¥) —
Hle Gr(dim(L;); VF), and the computation above implies that the T-orbit closure of [A(£)] is
also the G¥-orbit closure. By Proposition 3.10, the Segre embedding of T - [A(L)] corresponds
to the Minkowski sum of polytopes (with the complete linear series), which implies that the
moment polytope of T - [A(L)] is P. Using that P is a normal polytope, we get that T - [A(£)]
is isomorphic to Xp. O

The flag of matroids realized by a general full flag £ = {L1 < L» & --- & L,, = k¥} over an
infinite field k are exactly the uniform matroids Uy g, ..., U, g. Since the stellahedron Il is the
Minkowski sum I(U; g) + - - - + I(U,, g), we have the following corollary.

Corollary 3.17. The G¥-orbit closure of a general full flag of linear subspaces £, viewed as a
point in FI(1,...,n;VF) via A, is identified with Xp. In particular, X has the structure of a
GF-variety.

Remark 3.18. With P! as a G-variety described above, G¥ acts on (P')¥ with 2" orbits. In §3.2,
we described X as the iterated blow-up of the strict transforms of the proper G¥-orbit closures
in increasing order of dimension. The functoriality of the blow-up then gives Xg a GE-action,
and the blow-down map Xg — (P')¥ is G¥-equivariant.

Alternatively, one notes that P¥, viewed as the projective completion P(k¥ @ k) of k¥, is
a GP-equivariant compactification of k¥ with the obvious action of G¥. The proper G¥-orbit
closures in PE are then exactly the coordinate subspaces of PZ contained in the hyperplane at
infinity P(k¥) < PF. In §3.2, we described X as the iterated blow-up of the strict transforms
of these proper G¥-orbit closures in the increasing order of dimension. Again, the functoriality
of the blow-up gives X a G-action with an equivariant blow-down map Xz — PF.

Lastly, one may also appeal to [AR17, Theorem 3.4 & 4.1] to show that any toric variety Xp
of the normal fan ¥ p of a polymatroid P on E admits a GF-action that is compatible with the
torus-action: One verifies that {—e; | i € E} form a “complete collection of Demazure roots” of
Y p as defined in (loc. cit.).

4. AUGMENTED TAUTOLOGICAL BUNDLES AND CLASSES

4.1. Well-definedness. We now construct the augmented tautological bundles and augmented
tautological classes. Recall the notation VE = k¥ @ k¥. Recall that for any polymatroid P (such
as an independence polytope), one has a T-equivariant map Xz — Xp because the normal fan
Y p coarsens Y. Let us prepare with the following trivial case.
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Lemma 4.1. Consider the map Xz — Gr(n; VF) obtained as the composition of Xy — X I(Un.5)
with the map Xy, ,) — Gr(n; V*) given by setting ¢ = 1 and L; = k” in Proposition 3.16. The
pullback to X of the tautological subbundle S on Gr(n; V¥) is isomorphic to @, 7 Op1 (—1),

equipped with the unique T-linearization that is trivial on the G¥-orbit A¥ < Xp.

Proof. By construction, the pullback of S to X is a subbundle of Ogﬁ(i", and @, 7 Op1(—1)
(with the unique 7T-linearization that is trivial on A¥) is a subbundle of O()B(i” whose fiber over
any point in A¥ is the diagonal A(kF). It follows from the construction of the map Xp —
Gr(n; VE) that the pullback of S has the fiber over any point of A” equal to A(k”); the result
follows because we may check whether two subbundles of O?(i” are equal on a dense open
subset.

Alternatively, we had given Op: (1) the T-linearization as the line bundle Op: (Dyg 17), which
is trivial on the G-orbit A! of P(V). This resulted in the identification of V with H° (P!, Op:(1))V.
Since I(U,,,g) = [0,1]7, we find that (P')? ~ Xy, ) — Gr(n; VF) is the map induced by the
E-fold product of the injection of vector bundles Op: (—1) — Opr @ V. O

Given a linear subspace L < k¥, we now construct vector bundles fitting into a short exact
sequence that is modeled after 0 — L — kP — k¥ /L — 0. Because we would like at least one
of the vector bundles to be globally generated, the vector bundles S;, and Qj, will be defined
so that they fit into the short exact sequence 0 — Sy — @, 7 Op (1) — Qp — 0 with
@icp mFOp1(1) in the middle instead of @), 7 Op1 (—1). As a result, when we define the dual

bundle QY, we are led to consider the orthogonal dual L+ = (k¥/L)¥ < k¥ of the realization
L < k¥ of a matroid M, which realizes the dual matroid M=.

Definition 4.2. Let L < k¥ be a realization of a rank r matroid M on E. Setting ¢ = 2 and
Ly = L+ € Ly = k¥ in Proposition 3.16 supplies us with a map

XE - XI(ML)-&-I(Un,E) - Fl(n —Tr,n; VE)
Define the augmented tautological bundles S;, and Qp, by
Q;, = the dual of the pullback to X of the tautological rank n — r subbundle of Fi(n — r,n; V)

Sy, = the dual of the quotient bundle (P 7 O(—1)/9Qy .
el

That Qy is a subbundle of @),_j 7} O(—1) follows from Lemma 4.1 and the fact that Proposi-
tion 3.16 supplies us with a commuting diagram

o T

Xgp —— XI(Un,EH-I(ML) — Fl(n—r,n; VE)

l !

Xromry —— Gr(n—mr; VE).
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Remark 4.3. By construction, we have a short exact sequence of G¥-equivariant vector bundles
0—>8, > PrfOr(l) > QL -0,
i€k
which, when restricted to the G-orbit A, is canonically identified with

0> 0ue®L— Oy kY - Oy ®KF /L — 0.

For arbitrary matroids M, we construct (I'-equivariant) K -classes [Sm] and [Qm] on Xg. By
Theorem 2.1.(1), the T-equivariant K-ring of X g is identified with a subring of the product ring
[Ispm Z[T{, ..., TF']. So we will specify these classes by specifying their localization values
at each torus-fixed point indexed by a maximal cone of ¥ .

By Proposition 3.3, the maximal cones of ¥ are in bijection with compatible pairs I < F
where (§ € I < E and ¥ is a (possibly empty) maximal chain of proper subsets of E containing
I. For a chain J containing I, write /I for the new chain of subsets of £\I obtained by remov-
ing I from each subset in the original chain. A maximal chain ¥ : & ¢ F} & --- & F,,_; orders
the ground set by F; < F3\Fy < --- < E\F,,_1, and for each matroid M on E we denote:

e Bs(M) the minimal basis of M under the lexicographic ordering, and

¢ B5(M) the complement of By(M) in the ground set of M.

Proposition 4.4. For a matroid M on E, the augmented tautological classes defined as

[SM]jgfj = rkM(I) + 2 Ti_l and

i€Bgy;r (M/T)

[Qulr<s = | —tkn(D) + >, T
ieBg,, (M/I)
are well-defined T-equivariant K-classes on Xp. Moreover, if L is a realization of M, then

[Si] = [Sm] and [Qr] = [Qu].

Proof. First we check that [Qr] = [Qwm]. Then taking the case L = {0} gives that

(DO (V]r<s = 11|+ 3] T

i€l ieE\I
As [Sp] + [Qr] = [B,cp mF Op1 (1)], this implies that [Sp| = [Su].

Let L < k¥ be a subspace of dimension r. Note that the rank n — r tautological subbundle

S on Fi(n —r,n; V) is pulled back from the forgetful map Fi(n —r,n; V) — Gr(n — r; VE).
The image of the T-fixed point on Xz corresponding to a maximal compatible pair I < F is
a T-fixed point p of Gr(n — r; VF) such that every non-zero Pliicker has weight equal to the
vertex of I(M*) on which any functional in the interior of o< attains its minimum, which is

eBg

/1 (M/I)- Then

[Slp = I| —=tku(I) + >, Tie Kr(p).
i€ B, (M/I)
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As pullbacks commute with each other, this implies that [Q) |i<g = [S]p = || — rkm(I) +
Die B, (M) T;, so applying Dy gives that [Qr] = [Om]. In particular, it gives the claimed for-
mula for [D,c 7 Op:1 (1)] = [Q{oy]-

Now we check well-definedness. As [Syi] 4+ [Qum] = [P, 7 Op: (1)], it suffices to check that
[Sm] is well-defined. There are two types of codimension 1 cones in X g. The first type is given
by a compatible pair I < F where I = F; and there is some ¢ such that F,,1\F; = {i,j}. This
cone is contained in the kernel of the functional e; —e;. Let o7<5, and o7<5, be the two maximal
cones containing o;<g; they are obtained by inserting either £} u i or F; U j into F. Because the
normal fan of I(M*) coarsens ¥z, the vertices of I(M+*) that functionals in the interiors of o7< 7,
and o<y, attain their minimum on are either identical or differ by an edge. Because o7<5, and
o1<7, have the same “I,” this edge must be parallel to e; — e;, and so the symmetric difference
of By, /;1(M/I) and Bg,,;(M/I) is either {i, j} or J. This implies that, along o;<5, [Sm] satisfies
the condition of Theorem 2.1.

The second type of codimension 1 cone is given by a compatible pair I < Fwhen I u j = I3,
which is contained in the kernel of e;. Then the maximal cones containing o;<g are o7, j<g and

0 ;<5 Where 7 is obtained by adding I to F. Then a similar argument to the first case shows that
Bg10;(M/1 w j) and Bs,(M/I) either coincide or differ by {;}. O

These augmented tautological bundles and classes are related to the non-augmented tauto-
logical bundles and classes introduced in [BEST23] as follows. Endow Ogi with the inverse

T-equivariant structure, i.e., (t1,...,t,) - (T1,...,2n) = (t7 @1, ... 15 wy,).

Definition 4.5. Let L < k” be a realization of a matroid M. Then the (non-augmented) tautolog-
ical bundles S; and Q, are the unique T-equivariant vector bundles on X j; that fit into a short
exact sequence

OF
O—>§L—>O§E—>9L—>O
where the fiber over the identity is identified with

0-L—-kP -KkP/L —o0.

One can show that the short exact sequence in the above definition is the restriction to X ; of
the short exact sequence 0 — S;, — @, 5 7 Op1 (1) — 9 — 0.

3

For each matroid M, the authors of [BEST23] define classes [Sy;] and [Q,,] in K7(Xy). The
T-fixed points on X j are in bijection with complete flags J of subsets of E. The tautological
classes are described by

[Sulr= > T7' and [Qylr= > T,

i€By (M) ieB§ (M)

In particular, these are restrictions to X ;; of the augmented tautological classes [Sy ] and [Qwm].
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4.2. Basic properties. We now develop some basic properties of augmented tautological classes.
These properties and their proofs are similar to those considered in [BEST23, Section 5].

Proposition 4.6. For a matroid M, we have that [det Qy;] equals the K-class of the line bundle
corresponding under Proposition 3.13 to the polymatroid I(M*).

Proof. As a T-equivariant K-class, we have from Proposition 4.4 that

[det Onlr<s = 1_[ Tt
ieBg,, (M/T)

for a maximal cone o;<g of ¥g. Since the vertex of I(M*) that minimizes the pairing with a
vector in the interior of o;<75 is e B, (M/I)s the result follows.

Alternatively, by appealing to Proposition 4.7 one can reduce to the case where M admits a
realization L, in which case the diagram above Remark 4.3 implies that det Q;, defines the map

XE — Xiour) given by the line bundle Ox,, (D)) O

Proposition 4.7. Any function that maps a matroid M to a fixed polynomial expression involv-
ing symmetric powers, exterior powers, tensor products, and direct sums of [Sy], [Om], [Sm]”,
and [Qy]Y is valuative, and similarly for a fixed polynomial expression in the Chern classes of
the augmented tautological classes.

For instance, the proposition implies that the assignments M — ¢(Qu) and M — s(Qy;) are
valuative.

Proof. Let 72" be the free abelian group with the standard basis indexed by the subsets of E.
Consider the function

B,
Mat(E) — @ 72 given by M — 2 €By,(M/I)-
Yg(n) or<7€Xp(n)
By Proposition A.4, this function is valuative; see also [AFR10, Theorem 5.4]. Any fixed poly-
nomial expression in the augmented tautological classes or their Chern classes factors through
this map and is therefore valuative. O

We now consider how augmented tautological classes restrict to T-invariant subvarieties of
XEg. By Corollary 3.4, for a (not necessarily maximal) compatible pair I < F: F} & --- & Fj, the
corresponding T-invariant subvariety Z;<5 < Xg corresponding to the cone o7<g is naturally
identified with

k
Zi<y ~ Xpp\g ¥ HKFHI\FI--
i=1

This identification then induces isomorphisms

k k
Kr(Zi<s) = Kr(Xpn 1) @ Q) Kr(X g, \r,) and AT (Zi<y) = AHXpp ) @ Q AT (X gy, v r)-

i=1 =1
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Proposition 4.8. Under the above identification, we have that

k
[SM]|Z1<3 = rkM(I)[OZIS’f:I + [’SM\Fl/I] ® 1®k + Z 1®(i71) ® [§M|Fi+1/F7¢] ® 1®(k7i)v and
i=1

k
[Qumlzres = (] =tk (D)[Oz, 5] + [Qup 1] @ 188 + Y 1V @[Q 1 ] @1,
i=1
In particular, when 7 = ¢J, we have that c(Sm)|z, ~ ¢(Sw/r) asaclassin A*(Z;) ~ A*(Xp\1),
and similarly for Q.

Proof. The fan of Z;<5 is the star of o7<5, and the localization of an augmented tautological
class to a T-fixed point of Z;<5 is the same as the localization to the T-fixed point of X at the
corresponding maximal cone of ¥ .

The face of I(M*) on which functionals in the (relative) interior of o;< attain their mini-
mum is naturally identified with I((M|F,/I)*) x [T5_, P((M|F;;1/F;)*), and this identification
is compatible with the corresponding identification for IIz. As the localizations of augmented
tautological classes to a fixed point corresponding to a maximal cone of ¥ i depend only on ver-
tex of I(M*) on which any functional in the interior of that maximal cone attains its minimum,
this product decomposition gives the result. O

5. AUGMENTED WONDERFUL VARIETIES AND BERGMAN CLASSES

5.1. Augmented wonderful varieties.

Definition 5.1. Let L < k¥ be a linear subspace. With k¥ identified with the toric affine chart
of X corresponding to the cone og<g = RE of ¥, the augmented wonderful variety W, of L is
defined as the closure of L in Xg.

We note an equivalent description of the augmented wonderful variety, which can be de-
duced from Proposition 3.6. For a flat F < E of M, let Lr = L n (k"\' @ 0F). The projective
completion P(L&@k) of L contains a copy of P(L) as the hyperplane at infinity, and so it contains a
subspace identified with P(Lr) for every flat F of M. Under the iterated blow-up 7 : Xp — PF,
the augmented wonderful variety W7, is the strict transform of P(L ® k) < P(k® @ k) = PF,
fitting into the diagram

Wy — Xpg
| |
P(L®k) — PE.

This makes Wy, equal to the variety obtained by blowing up P(L @ k) at the linear spaces P(Ly)
corresponding to corank 1 flats of M, then blowing up at the strict transforms of linear spaces
corresponding to corank 2 flats of M, and so on.

We relate augmented wonderful varieties to augmented tautological bundles as follows.
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Theorem 5.2. For a linear subspace L < k¥, the augmented wonderful variety Wy, is the van-
ishing locus of a distinguished global section of Q..

We prepare to prove Theorem 5.2 with the following lemma.

Lemma 5.3. Let Q be a vector bundle of rank k£ on a smooth variety X, and let L € H (X, Q)
be a subspace which generates Q. Suppose there exists a nonempty open U < X such that for a
general s € L, the vanishing locus V' (s) is nonempty and the intersection V'(s) n U is integral of
codimension k. Then V' (s) is integral for a general s € L.

Proof. Once we show that V (s) is irreducible, the unmixedness theorem [Eis95, Corollary 18.14]
implies that V' (s), which is of codimension &, has no embedded points, and hence is integral. To
show that V' (s) is irreducible, let S be the kernel of Ox®L — Q, and let A(S) be the total space of
S, which is irreducible. We consider the map 7 : A(S) — X x L — L. For s € L, the fiber 771 (s)
is isomorphic to the vanishing locus V' (s). Since V (s) is nonempty for a general s, the map wis a
dominant map between varieties, and hence a general fiber of 7 is pure-dimensional. Now, let Z
be the total space of the restriction of S to the closed subvariety X\U. Since dim Z < dim A(S),
we see that Z cannot contain a component of a general fiber of 7. Hence, a general fiber of 7 is
irreducible, as desired. O

Proof of Theorem 5.2. Take the vector v = (1,...,1,0,...,0) € kP ®kP. Let us identify kX ®k” =
HY(Xp, @, mfO(1)) = (VF)V. The vector v then defines a global section of ®,_, 7*O(1), and
hence a global section of Q, via the surjection P, 7FO(1) - Q. On the GF-orbit A” of Xp,
Remark 4.3 identifies the restriction of v with the section

(@1, ) € (K[, ... 20]) " = HOAP, Oyr @ KP).

So the image of v in H(AF, Oyr ® k¥ /L) vanishes exactly on L. The G-orbit of v is dense in
k” @ k. Hence, by GF-equivariance, the GF-orbit of the image of v in H%(Xp, Q) is dense
in a subspace of H°(Xf, Q1) that globally generates Q.. In other words, the section v is a suf-
ficiently general section satisfying the conclusion of the above lemma, from which the theorem
now follows. O

Corollary 5.4. Let L < k¥ be a linear subspace of dimension 7.

(1) The normal bundle Ny, /x,, is identified with the restriction Qp |, .

(2) The K-class of the structure sheaf [Oy, ] € K(Xz) equals 3 (~1)'[ A\’ Q).

Proof. As Wy, is a smooth subvariety of X of dimension r, that W, is the vanishing locus of a
global section of @y, implies that the Koszul complex

0> A"7Qp = > ATQY - QF - Ox,

is a resolution of Oy, . Both statements now follow. O
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5.2. Augmented Bergman classes. We describe the Chern classes of augmented tautological
classes and recover the augmented Bergman class as the top Chern class. We use the language
of Minkowski weights, defined as follows.

Definition 5.5. A d-dimensional Minkowski weight on a unimodular fan ¥ is a function w: X(d) —
Z such that the following balancing condition is satisfied: for every cone 7/ € ¥(d — 1)

Z w(T)urn, € span(r’)

T>7/
where the summation is over all cones 7 € ¥(d) containing 7/, and u.., denotes the primitive
generator of the unique ray of 7 that is not in 7. Write MW 4(X) for the set of d-dimensional
Minkowski weights on .

Minkowski weights play the role of homology classes on smooth complete toric varieties in
the following sense.

Theorem 5.6. [FS97, Theorem 3.1] Let ¥ be a complete unimodular fan of dimension m, and let
X be its toric variety. Then, for every 0 < d < m, one has an isomorphism

A" (X5) 5 MWy(X) defined by ¢ (T HJ 5-[27]) :
X

For a smooth complete toric variety X, when a Chow class £ € A*(Xy) maps to a Minkowski
weight w € MW, (X) by the isomorphism in Theorem 5.6, we say that w and £ are Poincaré duals
of each other, which is notated by writing

fﬁ [Xg] = w.

We compute the Chern classes of the augmented tautological classes in terms of Minkowski
weights on X g. By Theorem 5.6, this amounts to computing how they intersect with the vari-
ous torus-invariant strata of Xz, for which we use Proposition 4.8 to reduce to understanding
the Chern classes in the top degrees. We hence begin by computing what happens in the top
degrees.

Lemma 5.7. We have that

M =T
J c(Oum) = 0 and
Xg 0 otherwise,
M=U,Eg
f (Su) = .
Xg 0 otherwise.

Proof. We do the case of Sy. The case of Qy; is similar. If M # U,, g, then Sy has rank less than
n, 80 ¢, (Sm) = 0. If M = U, g, then S;p = @, 7 Op1(1), so we have that degc,,(Sm) = 1. O

ek i

We will also need the analogous statement for tautological bundles.
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Lemma 5.8. [BEST23, Lemma 7.3] We have that

1 M=UjgorM=U
f c(Qy) = b %t and
Xp 0 otherwise,
f c(S ) B (—1)”71 M= Unfl’E orM = U171
Xp M 0 otherwise.

We now compute the intersection numbers of the Chern classes of [Sn] and [Qy] with the
boundary stata. When the minimal element of J is the empty set, we recover [BEST23, Proposi-
tion 7.4].

Proposition 5.9. Let I < F: F} & F» & ... & Fj, be a compatible pair, and set ¢/ = codim Z7<5.
As before, we set Fj,11 = E, and when ¥ is empty we interpret Fy as E. Let [Z;<r]| € A*(Xx)
be the Chow class of the T-invariant subvariety Z;< 7. Then

Fy cclu(l),and fori = 1,...,k, exactly k + rky (1) — rknve (M) of
the minors M|F; ;1/F; are loops, and the rest are U; p,, ,\r,,

J cn—0(Qm) [Z1<5] =
Xe

0 otherwise, and

rkv(F1) —rhkm (D) = |Fi| — |I], and for ¢ = 1,. .., k, exactly
(—=1)¢ k+rkm(M) — rkv(Z) — n of the minors M|F; . /F; are coloops,
J Cnff(SM)'[ZIS?] = and the rest are U\Fz‘+1\Fi|*1’Fi+1\Fi'
XE
0 otherwise,

where e =n — k — |Fy|.
Proof. We do the case of Sw, the case of Qy; is similar. By Proposition 4.8, we have that

C(SM7U)‘ZI<5 = C(SM|F1/17U) ® \

k k
i=

) A(Swmip,, /1) € A" (Xpp) ® @)1 A (X g, 0\F,)-

Then Lemma 5.7 implies that the intersection number vanishes unless M|F; /T is boolean, and
each M|F; 41 /F; is either a coloop or is a corank 1 uniform matroid. Note that M|F} /I is boolean
if and only if rkn (F1) —rkm (1) = |Fi| —|I], and the fact that rky (M) = rka (1) + rka (M| Fy/T) +
<+ + > rky (M| Fi4q/F;) implies that, if the intersection number is non-zero, then exactly & +
rkn (M) — rky (1) — n of the minors M| F;1/F; are coloops. In this case, the intersection number
is (—=1)¢, where

e=> ([Fix1/F| - 1),



28 CHRISTOPHER EUR, JUNE HUH, MATT LARSON

where the sum is over the minors such that M|F; 1 /F; is not a coloop. The set E decomposes
into a disjoint union of elements where the corresponding minor is a coloop, is in I, is in a
non-coloop minor, or is in F1\, so

n = (k+rka(M) = tkn (1) = n) + 1] + Q0 |F /F]) + (|11 ] = [1]).

We also have that the number of non-coloops is n + rky (I) — rka (M). Substituting, we see that
e=n—k—|F]. O

We now define and derive certain properties of augmented Bergman fans and augmented
Bergman classes.

Definition 5.10. For a matroid M of rank r on E, the augmented Bergman fan, denoted Xy, is the
subfan of ¥z consisting of cones ;<5 where the subset I < E is independent in M and the flag
J consists of proper flats of M. The augmented Bergman class [¥y] of M is the weight

1 ifoe ZM

[Xm]: Zg(r) > Z definedby o +—
0 otherwise.

[BHM*22, Proposition 2.8] states that, up to scaling, the augmented Bergman class is the
unique way to assign weights to the cones of the augmented Bergman fan that results in a
Minkowski weight.

Corollary 5.11. Let M be a matroid of rank r on E.

(1) We have that ¢,,—,(Om) = [2m]. In particular, the augmented Bergman class [Xy] is a
well-defined Minkowski weight.

(2) The assignment M — [X)] is valuative.

(3) If L < k¥ is a realization of M, then [Sy] = [W.].

Proof. The first statement follows from Proposition 5.9. The second statement follows from the
first by Proposition 4.7. The third statement follows from the first by Theorem 5.2. O

By restricting to the permutohedral variety, we recover properties of “non-augmented” Bergman
fans and classes as follows. Note that for a loopless matroid M, the augmented Bergman fan Xy
contains the ray pg.

Definition 5.12. The (non-augmented) Bergman fan of a loopless matroid M on E is ¥y =
star,, YXu. Equivalently, it is the subfan of ¥ consisting of cones o4 where the flag J con-
sists of nonempty proper flats of M. The (non-augmented) Bergman class [Z,] is the Minkowski
weight on X defined by assigning weight 1 to the cones of Xy;.

The Bergman class of a matroid with a loop is defined to be zero. Since [ Q] restricts to [Q, ]
on X and [Xy] restricts to [X);], Corollary 5.11 recovers the properties of Bergman classes
stated in [BEST23, Corollary 7.11].
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5.3. Tropical geometry of augmented Bergman fans. The contents of this subsection are not
logically necessary for the rest of the paper, but will be useful elsewhere. We explain how
augmented Bergman fans are related to tropicalizations. We point to [MS15] for a background
in tropical geometry.

Proposition 5.13. Let L < k¥ be a realization of a matroid M of rank r. For a general b e Gf , the
tropicalization of the very affine variety L, = (L + b) n T equals the support of the augmented
Bergman fan Xy;.

Proof. Let E = E L {0} and let p: 7B /Ze; — 7 be the isomorphism described in §3.2. Under
the isomorphism p, we may identify T with the projectivization PT of the torus T' = (Ik*)E . We
show that the tropicalization of L, = PT is the support of a subfan in ¥ 7 that maps isomorphi-
cally under p onto the augmented Bergman fan Xy;.

Let L = {x € k¥ | Atx = 0} for an (n — 7) x n matrix AL. For an element b € GZ, let
V¥ € GF be such that L + b = {x € k¥ | Atx = ¥'}. In other words, the closure of L + b
in the projective completion P(k” @ k) = IP’(IkE) is the projectivization of the linear subspace
{(x,20) € kE | Atx — b'zg = 0}. Since b’ is general because b was, this linear subspace is a
realization of the matroid M = M x 0 on E called the free coextension of M, whose set of bases is
defined as

{Bu0|Babasisof M} u {S < E | S contains a basis of M and |S| = r + 1}.

It is a classical statement [Stu02, AKO6] that the tropicalization of a linear subspace is the support
of the Bergman fan of the corresponding matroid. Thus, it suffices now to show that the support
of the Bergman fan of the free coextension is equal to that of the augmented Bergman fan under
the isomorphism p. This follows from the lemma below, which is a restatement of the discussion
in [MM, §5.1]. O

Lemma 5.14. Let M be a matroid on F, and M its free coextension matroid on E. The collection
G={Fu0|Fc FEaflatof M} u {i € E | i not a loop in M}

is a building set on the lattice of flats of M that induces the fan structure on the support [X5| <
R¥ /Re of the Bergman fan of M consisting of cones

cone{€; | i € I} + cone{e€p o | F' € F}

for each compatible pair I < J with I < F independent in M and J a flag of nonempty proper
flats of M.

We remark that the tropicalization of (L+b)nT for a non-general b can differ from the support
of Y. Nonetheless, by G~ -equivariance, the homology class of the closure W, of L + b in the
stellahedral variety X is independent of b € k¥. Taking b to be general, Proposition 5.13 gives
an alternate proof that [Wp] = [Ewm], for instance by [Kat09, Proposition 9.4].
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6. EXCEPTIONAL ISOMORPHISMS

We construct the pair of isomorphisms between K (Xg) and A*(Xg) that were stated in The-
orem 1.8. The two isomorphisms will be related via the two involutions Dg and D4 described
in §2.2.

We begin by recalling Theorem 2.1, which identifies the T-equivariant K-ring Kr(Xg) with

asubring of the productring [ [ 5, () Z[T{, ..., T+ of Laurent polynomial rings, and identi-

Zlty, ... tn)
ceXg(n) ’ )
of polynomial rings. Let A%.(Xg)[[ [;,.5(1 + t;) '] be the ring obtained by adjoining the inverse

fies the T-equivariant Chow ring A% (X ) with a subring of the productring | |

of the polynomial [ [, (1 + ¢;) to the ring A% (Xg). For an element f in such product rings,
denote by f, the (Laurent) polynomial corresponding to o € Xg(n).

Theorem 6.1. The map (r: Kr(Xg) = A%(Xg)[[ [,cx(1 + t;) '] defined by sending
fo(Ti,...,Tn) = fo(L4+1t1,...,1 +t,) forany o € Ep(n)

is a ring isomorphism, which descends to a ring isomorphism ¢: K(Xg) — A*(XEg).

Proof. Every edge of the stellahedron Il is parallel to either e; for some i € E or to e; — e;
for some i # j € E. Thus, the conditions f,(T1,...,T,) — for(T1,...,T) = 0 mod 1 —T"
appearing in Theorem 2.1.(1), in the case of K1 (Xg), state that either f, — f,» = 0 mod 1—7T; or
fo—for=0mod 1— % The latter is equivalent to stating that f, — fo» = 0 mod T; —T;. Under
the transformation 7; — 1+ ¢; defining {7, these two conditions become f, (1 +¢1,...,1+t,) —
for(l4t1,...,14+t,) =0 mod t; and fo(1+t1,...,14+tn) — for(1+t1,...,1+t,) = 0 mod t; —t;,
which are exactly the conditions appearing in Theorem 2.1.(2) in the case of A%(X ). Hence,
the map (r is well-defined and is clearly an isomorphism.

We now check that the isomorphism (7 descends to a ring isomorphism on the non-equivariant
rings. We recall from Theorem 2.1 that the kernel I of the quotient map Kr(Xg) - K(Xg)
is the ideal in K¢ (Xg) generated by f — f(1,...,1) for f a global Laurent polynomial, and
that the kernel I4 of the quotient map A% (Xg) — A*(Xg) is the ideal in A%.(Xg) generated
by f — f(0,...,0) for f a global polynomial. Note that the polynomial [ [, (1 + t;) whose
inverse was adjoined to A}.(Xg) maps to 1 under this quotient map. It thus remains only to
show that {7 maps I isomorphically onto I’y = I4[[[;.x(1 +t;)~']. Butboth {r(Ix) < I, and
¢r(Ix) 2 Iy are straightforward to verify by considering their generators. O

By conjugating ¢ by the two involutions D and D 4, we have the “dual” isomorphism.
Definition 6.2. Let ¢: K(Xg) — A*(Xg) be the isomorphism defined by ¢ = D4 o ( o Dg.

We remark that, similarly to Theorem 6.1, one can show that the map ¢ : K7(Xg) = A% (Xg)[] Licg(1—
t;)~'] defined by sending

f(Th,...,T) — f((1—t1)7", ..., (1 —t,)"") for a Laurent polynomial f € Z[T{!, ..., T+!]

is an isomorphism, which descends to the non-equivariant isomorphism ¢.
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We now show that ¢ and ¢ behave particularly well with respect to K-classes with “simple
Chern roots,” a notion introduced in [BEST23].

Definition 6.3. A T-equivariant K-class [£] € Kr(Xg) has simple Chern roots if for each maximal
o € X, there is a sequence (ay0, 00,1, - - -, Ao,n) such that [E], = ag0 + 201 a6 Ti-

Note that [Qn]Y and [Sum]Y have simple Chern roots.

Proposition 6.4. Let [£] € K1 (X g) have simple Chern roots. With u a formal variable, we have

S GrVIED = s 1750 (5,2

7=0 Tu+1
j;w(/\j[g])uj — (u+ 1O ()T (gv, - 1) ,
X crlsym (e’ = s (a . 1)  and

Proof. We prove the formulas involving ¢. The formulas involving ¢ are similar (and the first
formula follows from [BEST23, Proposition 10.5]). Since [£] has simple Chern roots, we have
that [£], = o0 + D 1, Ti for some multiset /,. We then compute

2 9r(NEDew = (ut 1)* o W TT(1/(1 = )1~ ti/(u + 1))

j=0 iel,
:(UJrl)rk(S)ST(EV)UcT <5v7u—1’—1>a’ and
[€])o : 1t "(€)s 1
o7 (Sym’ [£])ou’ = _ o7 <gv’ ) 7
j;) 7( [€]) (1 — w)aeo+lLl 11;[0 1—t;/(1—u) (1 —u)k®) 1—u),
as desired. .

We note in particular the following consequence of Proposition 6.4.

Corollary 6.5. Let M be a matroid of rank r on E. Let D;\1) be the T-invariant divisor associ-
ated to I(M™) as discussed above Example 3.15.

(1) One has ¢([Ox,, (Drry)]) = ¢(Qm) and (([Ox, (Draury)]) = s(Qyp)-
(2) If L < k” realizes M, then (([Ow,]) = [WL].
Proof. Applying ( = D4 o ¢ o D to the first formula in the proposition gives

2 SN TEN W = (u+ 1)Ee(€, - )

j=0
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for [£] € K(XEg) with simple Chern roots. Since [Qn]Y has simple Chern roots with rk(Qw) =
n—r,and since [A\""" Qu] = [det Qu] = [Ox, (Drmzy)] by Proposition 4.6, the first statement
now follows by setting [£] = [Qum]" and noting that ¢(£, —u) = ¢(€Y, u). The second statement
follows from the first formula in the proposition and Corollary 5.4. O

Example 6.6. Note that [det QUn—l,E] = [OXE (DI(UI,E))] and [det QUO,E] = [OXE (DI(Un,E))]'
Because the line bundles Ox (D, ,)) and Ox, (D, ,)) induce the maps np: Xp — P¥
and mr: Xg — (PY)F, respectively, we have

$([Ox5(Dru, »)]) =1+a and ¢([Ox,(Di, »)]) = [ [(1 +y:) = (D7} Om (1))

ek i€E
Here, recall the notation that o = ¢ (750pz (1)) and y; = c1 (7 Op1(1)).

Remark 6.7. Let us remark on how the maps ¢ and ( here are related to the exceptional iso-
morphism for permutohedral varieties given in [BEST23, Theorem D]. Just as for augmented
tautological bundles, classes, and Bergman classes, the first relation comes from considering
X as a T-fixed divisor on X g: The restriction of ¢ to X ;; recovers the isomorphism ¢ between
K(Xg)and A*(X ) in [BEST23, Theorem D].

Let us now sketch a different relation. Let E = E L {0} as in §3.2, where we noted that the
stellahedral fan ¥ can be considered as a coarsening of the permutohedral fan ¥ . In other
words, we have a T-equivariant birational map p: X — Xg. One can show that there is a
commuting diagram

K(Xp) —— A*(Xp)

l l

K(Xp) — A*(X})

where the two vertical maps are the respective pullback maps, and one has similar commuting
diagrams for ¢ and the T-equivariant versions of ( and ¢. Both Theorem 1.8 and Theorem 1.9
can then be deduced from the commutativity of the diagrams and [BEST23, Theorem D].

7. VALUATIVE GROUP, HOMOLOGY, AND THE INTERSECTION PAIRING

7.1. The polytope algebra and the proof of Theorem 1.4. For the proof of Theorem 1.4, the last
remaining ingredient is the polytope algebra introduced in [McM89]. For a polytope Q < R¥,
define the function 15: RF — Z by 1g(u) = 1if u € P and 0 otherwise. Recall that a (lattice)
polytope P is said to be a (lattice) deformation of () if its normal fan ¥ p coarsens that of Q.

Definition 7.1. Let X be the normal fan of a smooth polytope Q < R¥. Let I(X) be the subgroup
of Z&” generated by {1p | P a lattice deformation of )}, and let transl(X) to be the subgroup of
[(%) generated by {1p — 1p, | u € Z¥}. We define the polytope algebra to be the quotient

I[(X) = I(X)/transl(X).
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For a lattice deformation P, let us denote by [P] its class in the polytope algebra I(X).
The polytope algebra, as the terminology suggests, is a ring with multiplication induced by
Minkowski sum, that is, by [P] - [P’] = [P + P’]. It was well-known among experts that the
polytope algebra is naturally identified with K (Xy); this is realized in Theorem A.10. When we
apply the theorem to the stellahedral variety, noting that deformations of the stellahedron are
exactly polymatroids (Proposition 3.13), we deduce the following.

Theorem 7.2. The map sending an integral polymatroid P on E to [Ox,(Dp)] defines an iso-
morphism [(Xg) ~ K(Xg).

We now prove Theorem 1.5 by showing that we have a sequence of isomorphisms
@ Val,(E) ~1[(Zp) ~ K(Xp) ~ A*(Xg).
r=0

We prepare for the first isomorphism in the sequence with the following lemma.

Lemma 7.3. The intersection of an integral polymatroid with an integral translate of the boolean
cube [0, 1]7, if nonempty, is a translate of the independence polytope of a matroid.

Proof. Fori € E and a € Z, let us define the hyperplane H; , = {u € R¥ | {e;,u) = a} and its
half-spaces Hfa = {u € R¥ | (+e;,u) > +a}. It follows from Definition 3.9 that a polymatroid
intersected with any half-space H,', or H;, is a translate of a polymatroid if it isn’t empty. So,
the intersection of an integral polymatroid with an integer translate of the boolean cube is a
translate of a polymatroid if nonempty. By Example 3.12, it now suffices to verify that this
polymatroid is integral.

By [Edm70, (35)], the intersection of two integral polymatroids is a polytope whose vertices
lie in ZF. By intersecting an integral polymatroid P with integral polymatroids of the form
H?:l [0,a;], for a; € Zs(, we see that all vertices of the intersection of P with an integral translate
of the boolean cube are in Z”. O

Proposition 7.4. The map @®!"_, Val,(E) — [(Xg) defined by M — [I(M1)] is an isomorphism.

Proof. To see that the given map is well-defined, note that the base polytope of the dual P(M*) is
—(P(M) — eg), and that the independence polytope I(M™) is the intersection with [0, 1] of the
Minkowski sum P(M1) + [—1,0]¥. Each of these operations—translation, negation, Minkowski
sum, and intersection—preserves valuative relations. Surjectivity of the map is immediate from
Lemma 7.3, since given an integral polymatroid P, by tiling R” with integer translates of the
boolean cube, we can express [P] € [(Z) as a linear combination of the classes of independence
polytopes of matroids.

For injectivity, first we show that the only relations between indicator functions of translates
of independence polytopes come from valuativity. Suppose we have Zi;l a;ilr,)+u;, = 0 for
a; € Z, u; € Z"™, and M, a matroid on E. We show that then Zi;l a;1rm,) = 0 as an element in
ZF" . By Proposition A 4, this implies that ¥ a;1 p(m;) = 0 because each I(M;) has P(M;) as
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the face maximizing the pairing with eg. For a subset S < E, let {5 be the subset of {Mj, ..., M}
consisting of matroids whose set of loops is equal to S, or equivalently, the smallest coordinate
subspace containing the independence polytope of the matroid is R¥ = R¥. Let us pick a linear
ordering (So = J,51,52,...,5n = E) of the subsets of E that refines the partial order by
inclusion. We claim by induction that >y, ets, Glioy) = 0. In the base case Sy = (7, the
polytopes I(M;) for all M; € £g, nontrivially intersect the interior of the boolean cube [0, 1]%,
whereas none of those of M;/ € {g, for i > 0 do. Hence that Zle a;lrm,)+u;, = 0 implies that
ZMjeeSO ajlray,) = 0. For the induction step at S;, we may assume that (s, ..., (s, , are empty.
Then, we repeat the argument with “the interior of the boolean cube” replaced by “the relative
interior of the cube [0, 1] x {0}#\%”. That is, the polytopes (M) for all M; € g, nontrivially
intersect the relative interior of the cube [0,1]% x {0}\%, whereas none of those of M/ € (s,
for i’ > i do. Hence, again we conclude ZMjeéSi ajlro;) = 0 from Zle ailiv)4+u; = 0,
completing the induction.
Now suppose that Zle a;[I(M;)] = 0 for a; € Z and M, a matroid on E. This means that
k

Z ailran) + Z bpm(lpim —1p) =0

i=1 Pm
for some collection of polymatroids P, vectors m € Z", and integers bp ,,. Using Lemma 7.3, we
can rewrite this as

k ‘
Z a;lrar) + Z Cj(lf(M'j)erj - 11(M3.)) =0
i=1 j=1

for some collection of matroids M’ and vectors m; € Z". Then the previous discussion implies
that equality still holds when we remove the second sum, as desired. O

Proof of Theorem 1.5. In Proposition 7.4, we have constructed an isomorphism P,_, Val,(E) —
I(Xg) defined by M — [I(M™)]. Now, composing the isomorphism [(Xz) ~ K(Xg) in Theo-
rem 7.2 with the isomorphism ¢: K(Xg) — A*(Xg) in §6, we obtain an isomorphism I($x) —
A*(Xg), which by Corollary 6.5 maps [I(M*)] to ¢(Qu) for a matroid M. By Corollary 5.11, the
top nonvanishing degree part c,, k(v (Qum) of ¢(Qur) is the augmented Bergman class [Xy], so
we conclude from the graded structure of A*(Xg) that P, _, Val,(E) — A*(Xg) defined by
M — [Xy] is an isomorphism of abelian groups. O

With Theorem 1.5, we can now complete the proof of Theorem 1.8.

Proof of Theorem 1.8. That ¢ and ¢ are ring isomorphisms was proved in Section 6, and that they
satisfy the stated properties is Corollary 6.5. To verify that the stated properties characterize
the maps, note first that A'(X ) generates A*(Xg) as a ring, and that the augmented Bergman
classes of matroids of rank n — 1 span A'(Xg) because Val,,_1(F) ~ A'(Xg) by Theorem 1.5.
The result now follows because every matroid of rank n — 1 is realizable over any field, and if
L < k¥ realizes a matroid M of rank n—1 then [W,] = [Em] and ¢(Qr) = 1+¢1(QL) = 1+ [Su]
by Corollary 5.11. O
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We now prove Theorem 1.6 by using Lemma 7.3 with Corollary 6.5 and Corollary 5.11.

Proof of Theorem 1.6. If crk(M) + crk(M’) > n = crk(M A M’), then the result vacuously holds, so
we may assume that crk(M) + crk(M’) < n. Note that, by Corollary 5.11, the degree crk(M) +
crk(M') part of ¢(QOwm)e(Qwmr) is [Em] - [Emv], so by Corollary 6.5 it suffices to compute the degree
erk(M) +crk(M’) part of ¢([1(M*)]-[I(M'4)]). By Lemma 7.3, we may write [I(M*)]-[I(M'*)] =
[I(M*Y) + I(M'*)] as a sum of the classes of independence polytopes of matroids by intersecting
it with the tiling of R” by translates of the boolean cube and using inclusion-exclusion on the
faces. This gives an expression for non-equivariant K-class [[(M*)] - [[(M'})] as a sum of the
K-classes of independence polytopes of matroids.

The intersection of 7(M*) + I(M'*) with the boolean cube is I((M A M’)1). The image of
[I((M A M)1)] under ¢ is [Zy ] in degree crk(M A M’). Therefore, it suffices to show that
the images under ¢ of all of the other terms in the expression of [I(M~*) + I(M'})] as a sum of
the classes of independence polytopes of matroids are zero in degrees at least crk(M) + crk(M’).
Every other polytope appearing requires a nontrivial translation towards the origin to realize it
as an independence polytope, since an independence polytope always contains the origin. As
the lattice distance from the origin of any vertex of I(M*) + I(M'*) is bounded by crk(M) +
crk(M'), this means that, after translating one of these polytopes so that it is the independence
polytope of a matroid, that matroid has rank at most crk(M) + crk(M’) — 1. Then the result
follows from Proposition 5.9. O

We showed in the discussion following Corollary 5.11 that [Xy] restricts to [Xy;] on X .
Hence, by restricting to X ; < X, we obtain Corollary 1.7 from Theorem 1.6. We also deduce
that if M, M/, and M A M’ are loopless, then crk(M) + crk(M’) = crk(M A M').

7.2. A Schubert basis. For a total order < on E and two subsets I = {i; < --- < i,} and
J ={j1 <--- < jr} of E with same cardinality, let us say that I < Jif iy < jyforallk=1,...,r.
Definition 7.5. A Schubert matroid on E of rank r is a matroid whose set of bases is

{BC E||B|=rand B < I}
for some total order < on E and a subset I < E with |I| = r.

Because I < J if and only if (E\I) > (E\J), the dual of a Schubert matroid is a Schubert
matroid. We note the following equivalent description of the bases of a Schubert matroid.
Remark 7.6. Let < be a total order on E, and [ = {i; < --- < i,.}. Define

Liumps = {ij € I | j = r or there exists e € E'such thati; < e <i;;1}.

Writing liymps = {¢1 < --- < {1}, define a chain F1, ..., F} of subsets of £ and positive integers
dl, ey dk by

Fj={eeE|e<t;} and di+---+dj=|F;nI| forj=1,...,k
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Note that by construction, we have d; < |Fi| and d; < |F;\F;_1| forall j = 2,...,k. The set
{B < E | |B|] = rand B < I} of the bases of the Schubert matroid associated to < and I then
can be described equivalently as the set

{Bz{bl < v <br}§E|{b17--~,bd1+~-+dj}gFj fOI'aHjIL...,k’}.

Schubert matroids appear in the literature under various other guises such as nested matroids
[Ham17], Bruhat interval polytopes [TW15], generalized Catalan matroids [BAMO06], and shifted
matroids [Ard03].

Theorem 7.7. The augmented Bergman classes of Schubert matroids on E form a basis for
A% (XE).

We prepare the proof with the following lemma.

Lemma 7.8. For & ¢ F' < E, denote by hp the divisor Dy, ,qu, ) corresponding to
I(Uy,r ® Up, g\ r) under Proposition 3.13. Then, the set of monomials

d d
{1t

form a basis for the Chow cohomology ring A°(Xg).

FGeFc --cRCh d <|Fl di<|Fi\Fi,1|Vi:27...,k:}.

Proof. LetG = {SU0| S < E} U E be the building set on E = E i {0} in Proposition 3.8, and let
Y ¢ denote the corresponding fan. Then, [FY04, Corollary 2] states that the Chow cohomology
ring of ¥g has a presentation

Zlzx | X € G]

A*(Sg) = —,
<ZX1.‘.ZX,C|{Xl,...,Xk}notafaceof/\/>+<2x9izx|Z€E>

and moreover, [FY04, Corollary 1] states that the set of monomials
{Z;%UO"'Z?;‘ZUO gchc---CFkFCFE, d < |F‘1‘7 d; < |Fi\Fifl| Vi =2,. 7]6}

form a basis for A°(X¢). We modify this basis by performing an upper triangular linear change
of variables as follows. For ¢ ¢ F' C F, let

hp= Y —zauo.
FEGSE

When G is given any total order that refines the partial order by inclusion, replacing zr_o by h
is an upper triangular linear change of variables. Hence, we have that

~a v
{hFl"'th

B < S F, S E, di <|Fi, di<|Fi\Fi—1‘Vi:2a---7k}

is a basis of A*(Xg). It remains only to verify that for any J < F' € E, the element hp e AY(Zg)
corresponds to hp € A*(Xg) under the isomorphism p: £ — ¥ g of Proposition 3.8.

In the presentation of A(Xg) above, for & < S & E, the variable 25, represents the torus-
invariant divisor associated to the ray cone(€s) of ¥g, which under the isomorphism p: ¥g —
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Y g in Proposition 3.8 maps to the ray pg of ¥g. Moreover, it follows from the linear relation
D x50 2x = 0in A®(Xg) that the expression ), p —2cuo for ?LF can be rewritten as

hp = Z 2500

JSSCE
F&S

Hence, the isomorphism p: ¥ — X g maps h F to the element

2 [DS] € Al(XE)a

JSSCE
FES

which by Proposition 3.13 corresponds to 1(Uy,r @ Uy g\ ) because the rank function rk of the
matroid Uy p @ Uy g\ p is given by rk(E\S) = 1if F ¢ S and 0 otherwise. O

For matroids M and M’ on E, there is a dual notion to matroid intersection, matroid union,
defined by M v M’ := (M+ A M't)+L. The bases of M v M’ are the maximal elements among the
unions of the basis of M and M’.

Proof of Theorem 7.7. For (& < F < E, let Hp be the corank 1 matroid whose unique circuit is F.
Equivalently, its dual matroid H is the matroid U; r @ Ug,p\r- We note from Proposition 4.6
and Corollary 5.11 that

hr = [Dyusy] = a1(Qup) = [Zup].
Now, applying Theorem 1.6 to Lemma 7.8 yields the theorem once we show the following;:
For an element h‘i}l e hf,’; in the monomial basis of A*(Xg) given in Lemma 7.8, the matroid
intersection
H}ldl A~--AH}S’“ =Hp A~ AHp A~ AHp, Ao AHp,

is a Schubert matroid of corank d; +- - - +dj, and every Schubert matroid arises in this way. Since
the dual of a Schubert matroid is a Schubert matroid, we may instead prove the dual statement
that the matroid union

Hll;l v---vHJﬁ1 (VERR lel;k v---vHJﬁk
dy times dy. times
is a Schubert matroid, and that every Schubert matroid of rank d; + - - - + d, arises in this way.
Since every matroid in the above matroid union is of rank 1, a basis of the matroid union is
obtained by selecting d; elements of F; foreachi = 1,. .., k such that the union of all the selected
elements has as large cardinality as possible. By Remark 7.6, we see that such matroid union are

exactly the Schubert matroids of rank d; + - - - + d. O

Combining Theorem 1.5 with Theorem 7.7 recovers the following result of Derksen and Fink
[DF10, Theorem 5.4].

Corollary 7.9. Schubert matroids on E of rank r form a basis for Val,.(E).
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Because Schubert matroids are realizable over any infinite field, combining Corollary 5.11
and Corollary 6.5 with Theorem 7.7 also yields the following.

Corollary 7.10. The K-classes [Ow,]| of augmented wonderful varieties span K(Xg) as an
abelian group.

8. NUMERICAL PROPERTIES

8.1. The Hirzebruch-Riemann-Roch-type formulas. We now prove Theorem 1.9 using Corol-
lary 7.10. While one can prove Theorem 1.9 by mimicking the proof of [BEST23, Theorem D], we
present a proof that avoids the use of the Atiyah-Bott localization formula. Recall the notation
a =7mhc1(Ope(1)).

Proof of Theorem 1.9. We first verify the formula involving the ¢ map, i.e., that

([€]) = Jg([g]) (A+at +a"

for any [£] € K (XEg). Corollary 7.10 implies that it suffices to show this for the case [£] = [Ow, ]
for any linear subspace L < k¥. Now, we have x([Ow,]) = 1 since Wy, is obtained from a
projective space by a sequence of blow-ups along smooth centers. On the other hand, using
Corollary 6.5 and applying the projection formula to 7 gives that

|l rasran = [ (@) (14 (O (1) + -+ (Oes (1)) - 1.

Having established the formula involving ¢, we now use Serre duality to derive the formula
involving ¢, i.e.,

<(1€)) = [ (1€1) - o( Dr0n ).

ek

First, by [CLS11, Theorem 8.1.6], the anti-canonical divisor of X is the > scp Ds + Yvier Dis
where Dg denotes the torus-invariant divisor of the ray pg, and D; that of the ray p; in ¥g. By
Proposition 3.13, one checks that > g Ds = Dy, ) and > . Di = Dj(u, ). In summary,
we have that the anti-canonical bundle wy  of X is

wxp = Oxp (D1, ») + Dru, p)-
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Corollary 6.5, in the form of Example 6.6, thus gives ¢([wx, 1) = (1 + a) - ¢(P;cp 7FOpr (1)).
Applying Serre duality, along with the definition that ( = D4 o ¢ o Dk, we conclude

xX([€]) = (=1)"X([€]" - [wxz])

0 GllE) ew) - aktat)
~ (0" [ Da(olE] 6wk, ) (4 ate+an)
— (0" [ Da(ollE] - 1+ 0) (@ TOn)) - (L +at e +ar)
= (1" [ Da(o1E) (D0 1)
= D e(Dfom (1)),
Xe )
as desired. O

8.2. Tutte polynomial formulas. We show that two specializations of the Tutte polynomial
arise as volume polynomials of augmented tautological classes. The first is the rank-generating
function of a matroid, i.e., Tm(u + 1,v + 1). This computation does not show that the rank-
generating function has any log-concavity property because it involves the Chern class of [Sm],
and Proposition 5.9 shows that ¢(Sy) is rarely nef or anti-nef. We also compute the intersection
numbers of a second set of classes, which gives a more complicated specialization of the Tutte
polynomial. This computation can be used to show that the result is Lorentzian and therefore
has log-concavity properties. Recall the notation that y; = 7 (c1(Op:(1))) for i € E, and let
u! =[], u;forI € E.

Theorem 8.1. Let M be a matroid on E of rank r. For I € F, we have
f c(Sm, 2) - w c(Qn, w Hyl — yrrkna (1) [T =rkn (1)
Xe el

In particular, summing over all < E, we have that

n
J c(Sm, 2) - w" " e(Qm, wh) - H (1 + yiu;) Z 2k (D) | =k (D),
XE =1

ICE

Proof. By Proposition 4.8, the restriction of the Chern classes of augemented tautological classes
to Xp\; are the Chern classes of the augmented tautological classes of the contraction M/I.
Now one notes that SXE c(Sm, 2) - c(Qm,w) = SXE cr(Sm) - 2" cnr(Om) - W™ = 2"w" " since

[Su] + [Qu] = [@icp 7/ Or (1)]- 0

Theorem 1.10 is immediate from Theorem 8.1. We now prove Theorem 1.11. The proof uses
the Hirzebruch-Riemann-Roch-type formulas for both ¢ and ¢ to obtain the equality of certain
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intersection numbers. We first state a combinatorial lemma that will be used twice in the proof
of Theorem 1.11.

Lemma 8.2. Let M be a matroid of rank r on E. Then

Z allyr=rioa(D n=|1=roa Dy, <d b 40— c> (a4 by (a +d a+b+ c) .

=, b’ a+b’ c

Proof. Using the rank generating function for the Tutte polynomial, we compute

db
Z aMlpr=riu(D gn=Ill=r+tku (D o ( JCFC>

ICE b
r () i () d—b r—rkm (J) b | J|—=|T|—rknm (J)+rkm (1)
_ Ilgr—rkm (1) n—|I|—r+rkym (1 v Y
- I (%) ()
ICE JoI
_ Z a\I|b\.]|7\I|Cnfrf\.]|+rkM(.])(d_ b)rfrkM(J)
ICJCE
— Z b|J‘cn—'f‘—|J‘+rkm(J)(d_ b)?"—rkm(J) Z au‘b—‘”
JSFE IcJ
+b\!7
_ Z b|J\Cn—r—|J\+rkM(J)(d_b)r—rkM(J) (CL ; )
JCSFE
d . b T—rkM(J) a + b |J\—rkM(J)
_ b)Y T
(a+b)c J;E<a+b> < c )
a+d a+b+c
_ BY T
(a+b)c M (a +0b’ c > ’
as desired. 0

Proof of Theorem 1.11. Note that s(75Ops(—1),2) = 1 + ax + o?2? + - - -. We prove the result in
three steps.

Step 1: We show that
® [ st@ia) et@uw = T, + 2)
XEg

As [Sum] + [Qu] = [@yep ™ Op1(1)], we have s(Qyy, 2) = (@, TFO(=1),2)71 - (S, 2) =
c(PBjep mFOpi (1), 2) - ¢(Sy, 2). We compute
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| 5@ cQuw) = | @mron1).): c(5v.2) - c(@u.w)
Xg XE i€E
j S ([w) -2 elSuts—2) - e Qats w)
Xp ICE el
\IIJ 5M/17—Z) (QM/h w)
ICE Xp\1
= 3 Ml gyrron (D) gyl =(r sk (D)
ICFE
= 2w Y (= 1) D (g ) ) — T (0,1 4 2).
ICFE

Step 2: We show that
@ [ (rassatst ) s(@a) e@uw) = w5, T,
XE

zZ rtw
As the result is homogeneous, it suffices to prove the claimed formula after evaluating « = 1.
We compute x((3;50 A [Qum]"w") (X5, Sym’[Qum] ¥ 27)) in two different ways, using Proposi-
tion 6.4 and the Hirzebruch-Riemann—Roch-type formulas for both ¢ and ¢. We then get that

JXE(1+a+a2+---)-(w+1)”_r-c<QK/[,wil) -(1—z)r—n.s(9§4,zi1)
1 1
= J.XE (P 7F0p (1)) - (w+ 1) <QM, n 1) (1=2)""-s (QM7 12) .

i€E
Replacing w by —w/(w + 1) and z by z/(z — 1) and cancelling common terms, we obtain that
j I+a+- ) c(Qu,w)-s(Qy,2) = c(@ 7 Op1(1)) - c(On,w + 1) - s(Opm, 1 — 2).
Xp Xe  ieE
Now we apply (1), noting s(Qm, 1 — z) = s(Qy}, z — 1), to obtain that

fXE c(Qu,w+1)-s(Qpz—1) = (2= 1)"(w+1)"""Ty (07 z}t}{) .

Arguing as in Step 1 and using Proposition 4.8, the above equation implies that

j n 1+yzuz QM,UJ+1) (Ql\\//hz_l)

X

= Z uI(Z _ 1)r—rkM(1)(w + 1)n—|[\—r+rkM(I)TM/I (0’ Z+’UJ> .
ICE w+1

Setting each u, to 1 and using that [ [(1 + ;) = ¢(@ 7 Op1 (1)), we get that

c(@ ¥ O0p1(1)) - c(On,w + 1) - s(Qyp, 2 — 1)

XE i€E

_ 2 (Z _ 1)r—rkM(I)(w + 1)n—\l|—r+rkM(1)TM/I (O7 zZ+ w) .
=% w+1
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Applying Lemma 8.2 witha =1,b= 2z —1,c=w + 1, and d = 0, we obtain (2).
Step 3: We finish the computation. We have that

fx (1+ax+a®2® +---) c(@ 7 O0pi(1),y) - s(OQyp, 2) - ¢(Owm, w)

IS
= Z ! (1+ax+a2x2+-~-)-s(QK/I/pz)-c(QM/I,w)
ICE Xe\r
+z+
= Ml (g w)nfm—rﬂkaTM/I(f, u)
IcE z T +w
Then the result follows from Lemma 8.2 witha =y, b= 2,¢ =z + w,and d = z. O

8.3. Positivity properties. We now use Theorem 1.11 to prove Theorem 1.12, which states that
the 4-variable transformation of the Tutte polynomial in Theorem 1.11 is a denormalized Lorentzian
polynomial. Let us begin by reviewing the language of Lorentzian polynomials developed in
[BH20].

For a homogeneous degree d polynomial f = ). zm Gut" € Rlz1, ..., 2], its normalization

ue
isN(f) = Zuezgo au% where u! = uq!- - - up,!. The polynomial f is said to be the denormalization
of N(f). The polynomial f is a strictly Lorentzian polynomial if every monomial of degree d has a
positive coefficient and every (d — 2)-th coordinate partial derivative of f is a quadric form with
signature (+, —, —, ..., —). Itis a Lorentzian polynomial if f is a limit of strictly Lorentzian polyno-
mials. Lorentzian polynomials satisfy a strong log-concavity property [BH20, Example 2.26] and
are preserved under nonnegative linear change of variables [BH20, Theorem 2.10]. Polynomi-
als whose normalization is Lorentzian, called denormalized Lorentzian polynomials, share similar

properties [BLP23, §4.3].

We now place the strategy used in the proof of [BEST23, Theorem 9.13] into an axiomatic
framework and use the framework to deduce the theorem. The key tool will be the theory of Lef-
schetz fans, a notion introduced in [ADH23, Definition 1.5]. Lefschetz fans are certain (possibly
non-complete) simplicial quasi-projective balanced fans whose Chow ring satisfies an analogue
of the Kahler package. We summarize their fundamental properties.

Theorem 8.3. The following hold.

(1) [ADH23, Theorem 1.6] If ¥ is a Lefschetz fan, then any quasi-projective simplicial fan
with the same support as ¥ is Lefschetz.

(2) [ADH23, Lemma 5.27] A product of Lefschetz fans is Lefschetz.
(3) [AHK18, Theorem 8.9] The Bergman fan of a loopless matroid is Lefschetz.

(4) [BH20, Theorem 4.6], [ADH23, Theorem 5.20], see also [BEST23, Lemma 9.12] Let X be
an ¢-dimensional smooth projective fan, and let ¥’ be a d-dimensional subfan that is
Lefschetz and defines the Minkowski weight [%'] € A*~¢(Xx) as a balanced fan. Then,
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for any base-point-free divisors Dy, ..., D,, € A'(Xy), the polynomial
Z (J le ..... Dié" . [E']) xlf xﬁ;{‘
iy 4etig=d WXZ

is denormalized Lorentzian.

Let us now set up the axiomatic framework. For a finite set .S, denote
Mat§ = the set of loopless and coloopless matroids with ground set S.

We say that a map ¢: Matg — G taking values in an abelian group G is valuative if it is a
restriction to Matg of a valuative map on the set of all matroids on S. Let N be a nonnegative
integer that depends on n (e.g. N = 2n), and let [N] = {1,..., N}. Our framework consists of
three objects (F, T, X):

e amap F(): Maty — Mat[y;,

e atorus T with an action on k% via a map ¢: T — G, and

e a smooth projective T-variety X with a dense open T-orbit T (which is a quotient torus
of T), such that ¢ naturally descends to : T — G /G,.

We require that these objects satisfy the following properties:

(i) The assignment M +— [Y |, sending a matroid M on E to the Bergman class of the
matroid Fy on [N], is valuative.

(ii) There is a map

n N
F: []Gr(rE) k) — [ [ Gr(B; [N])(k)
r=0 R=0

such that for any realization L < k¥ of M € Mat, the matroid Fy equals the matroid
on [N] realized by F¥. We often abuse notation and write F' for F’* also.

(iii) For any L < k¥, specifying the fibers over € T to be ¢(t~!)F, defines a T-equivariant
vector subbundle 77, of O%" on X.

(iv) The Segre class s(F) € A*(X) depends only on the matroid that L realizes.

(v) The assignment M +— 5(F(L realizing M)) from the set of k-realizable matroids in Mat7 to
A*(X) is valuative.

Because every matroid in Matj; is valuatively equivalent to a linear combination of k-realizable
matroids in Maty, [BEST23, Lemma 5.9], the conditions (iv) and (v) imply that we have a unique
valuative extension M — s(Fy) € A*(X) such that s(Fyv) = s(Fr) whenever L realizes M.
Thus, we may define the following.
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Definition 8.4. With F, T, and X satisfying the conditions above, for a matroid M € Maty; we
define [P(Fy)] € A*(X x PN=1) by

N—-R
Z -FM §N R—i

where R is the rank of Fy; and § = ¢;(O(1)) is the hyperplane class of PY~! pulled back to
X x PN-1,

When M is realized by L < k¥, then [P(Fy)] = [P(FL)] by [EH16, Proposition 9.13].

Example 8.5. In the setting of [BEST23], we let n = N with T = GE acting on X = X j; naturally
viaT — PT, and acting on k¥ by the inverse standard action. If we set F to be the identity map,
which satisfies the conditions listed above, we then have 7, = S; . If we set I’ to be the matroid
duality map (i.e., M — M+* and L — L1), which also satisfies the conditions listed above, we
then have 7 = Q7.

Example 8.6. Let N = 2n, and let T = GE act on k¥ x kf by t - (z,y) = (t"',y), and act on
XE as its open dense torus. Let pre’F' be the map that adds parallel element to each element
in a matroid M on E to get a matroid pre’Fyr on £ 1y E. Note that M +— [¥,,./, ] is valuative,

since [X,

pre ) 19 the image of [X,] under the diagonal embedding x — (=, z). In fact, the map

M — pre' Fyy itself is valuative. If we set F' to be pre’ F' precomposed with matroid duality map,
we then have 71, = Q. If we set F to be pre/ ' precomposed and then post-composed with
matroid duality maps (note that one duality takes place on E and the other on E L E), we get
Fr = K, where K, is defined by the exact sequence

0K > 000 - 9p—0.

Note that the K-class [K;] depends only on the matroid that L represents because [[1] =
[0%F ® 0%F] — [QL]. Note also that s(K1) = ¢(QL).

Theorem 8.7. Under the conditions above, there exists a smooth projective (T’ x G, /G, )-toric
variety Yx with a birational toric morphism 7: Y5 — X x PV~1 such that for every matroid
M € Maty, there exists a Lefschetz subfan X x , of ¥ such that m[Yx g, ] = [P(Fum)], where
[Xx, ] denotes the Chow cohomology class on Yy that is Poincaré dual to the Minkowski
weight of constant weight 1 on the Lefschetz fan ¥ x ;.

Proof. First, we set the birational toric morphism 7 restricted to the tori to be given by (¢,t') —
(t, p(t)t'). Now, we can take ¥ to be any unimodular projective fan inside Cochar(T)g x (RY /R)
such that it refines (the fan of X) x Xy, and makes Ys; — X x PN~1into a valid toric morphism.

We take ¥ x p, to be the subfan of ¥ with support Cochar(T)gr x X, . By Theorem 8.3.(3),
the support of the fan X x p, is equal to the support of a product of two Lefschetz fans, and
hence by Theorem 8.3.(1) and (2), ¥ x r,, is a Lefschetz fan. By the assumptions, the assignment
M — [Fu] and the assignment M — [P(Fy)] are valuative. On the other hand, the assumption
that M — [, ] is valuative implies that M — [Xx r,] is also valuative. Thus, for the desired
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equality 7, [Xx g, | = [P(Fm)], it suffices to show it when M has a k-realization L.

For a loopless matroid M’ on a set E’ realized by a linear subspace L' < k', the Minkowski
weight with constant weight 1 on the Bergman fan ¥ is the tropicalization of P(L') n GE /G,
[Stu02, AKO6]. Hence, the Minkowski weight with constant weight 1 on X x g, is the tropical-
ization of T x (P(FL) n G /G,,), so the Chow class [~ x f,,] equals the class of the closure of
T x (P(F) nGY /G,,) inside Ys. On the other hand, by construction the map 7 bijectively maps
T x (P(FL) n G} /G,,) to an open subset of P(Fy,), an irreducible subvariety of X x PN~1. Then
the result follows. U

Remark 8.8. If there are several maps F(V), ... F(*) from Mat to Mat]y ), each satisfying the
conditions listed above with a common X and T fixed throughout, the theorem easily general-
izes to the multi-projectivization []P’(]-'IS/} )) Xx o0 Xx ]P(]-"Ig/lf ))]

Proof of Theorem 1.12. First we assume that M is loopless and coloopless. Note the Q) embeds
into O?{E “E because @, , mO(—1) does, and we can apply Theorem 8.7 to this embedding.
Therefore there is a smooth projective toric variety Vs with torus GZ x GEZ-¥/G,,, x GE-E /G,,,
amapm: Y — Xp x P~ x P2"~! and a Lefschetz subfan Y x,, v of ¥ such that 7. [Sx, m] =
[P(Km) xx, P(Qy)]. Let 6 and e be the first Chern classes of the pullbacks of O(1) to Xg x

P2n=1 xP?"~1 from the two projective spaces. Then, with the shorthand - = 1+a+a*+---+a",

we have
1
| o @ mon ) (G 2) - Q)
Xg 1T O R
J L Dm0 T T ) o, PO
= ~C 7'[' — .
Xpxp2n—ixpm—1 L —ar 7" S A M) 7 Xe M
1 N . W*én-ﬁ-r—l 7T>l<€n—r—1
= - - . *Op1 (1), ) - . S 7
Lfgl—ﬂ'*aaj T C(g‘%m (1), y) 1—7%02 1— n%ew [Xx5M]

where we have used a and ¢(@),.p 7} Op1 (1)) to refer also to their pullbacks to Xz x P2~ x
P27~ Then the result follows from Theorem 8.3.(4), using that ¢(@®,_; 7FO(1)) is the Chern
class of a direct sum of nef line bundles.

Any matroid M of rank 7 on E can be written as the direct sum of matroids Uy ; ® U, ® M/,
where M’ is a loopless and coloopless of rank r — ¢ on a ground set of size n — j — ¢. Because the

Tutte polynomial is multiplicative for direct sums of matroids, we have that

(5 + 2)" (@ + )" Ty (z+y x+y+z+w>

y+2z’ T+ w

; ; rT+Yy r+y+zt+w
(x+y+z+w)ﬂ(x+y)‘(y+z)rf(x+w)"ﬁTTM,< yrry )

y+z T+ w
By [BH20, Corollary 3.8], products of denormalized Lorentzian polynomials are denormalized
Lorentzian, which implies the result. O

Remark 8.9. One can obtain stronger log-concavity results by replacing ¢(@), . 7 Op1 (1), y) with
[ Licg(1+ysu;) to obtain a Lorentzian polynomial in n + 3 variables x, z,w, u1, . . . , u,. Using that
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specializations of Lorentzian polynomials are Lorentzian [BH20, Theorem 2.10], we obtain that
the polynomial ty(z, y, z, w) in Theorem 1.12 is Lorentzian after each 2%y’z°w? term is replaced

2%y’ 2z w?

by =2 By setting x = 2 = 0, this gives a new proof of [HSW22, Corollary 9].

9. CHERN-SCHWARTZ-MACPHERSON CLASSES

9.1. Log tangent bundles. There is a natural log structure on Xz obtained by viewing it as
a simple normal crossings (snc) compactification of AZ; let 0X denote the boundary divisor.
Note that this is not the usual log structure on a toric variety. We obtain a log structure on W7y,
for any linear space L by declaring the inclusion Wy, < Xg to be strict. Equivalently, we view
W, as an snc compactification of L. Let W, be the boundary divisor of Wp; note that oW, =
0X g Wi, For an snc pair (X, D) (i.e., a smooth variety X with an snc divisor D) over k, we use
QL (log D) to denote the log cotangent bundle of (X, D) over k, and 7x (— log D) := Q% (log D)
to denote the log tangent bundle. Recall that we identified Q1 [w,, with Ny, /x,, in Corollary 5.4.

Lemma 9.1. Let .: Y — X be an inclusion of smooth varieties over k, and let D be an snc
divisor on X such that (Y, D nY)) is an snc pair. Then there is an exact sequence

0 — Ty(—log Dly) — t*Tx(—log D) = Ny,x — 0,

where Ny x is the normal bundle of Y — X. If a group scheme G acts on X preserving D and
Y, then this is an exact sequence of G-equivariant sheaves.

Proof. By [Ols05, 1.1(iii)], we have that Ly g, Ly s are Q3. (—log D|y ), Q% (—log D). By [Ols05,
1.1(ii)], Ly,x can be identified with Ny/ / «[1]. Then the result follows from [Ols05, 1.1(v)] and
dualizing. The last statement follows from functoriality. Alternatively, one can deduce the
lemma from the map of short exact sequences

0 Qx‘y Qx(logD)|y —_— @ioDi|y — 0
0 Qy Qy(lOngy) e C—BZ OD”Y — 0
by applying the snake lemma. O

Theorem 9.2. As an L-equivariant sheaf, Ty, (— log W) can be identified with Sp|w, , in such
a way that the exact sequence 0 — S;, — @, ;7 Op1(1) — Qp — 0 restricts to the exact
sequence 0 — Ty, (—logdWy) — 1*Tx,(—logdXg) — Nw, /x, — 0.

Theorem 9.2 is closely related to [BEST23, Theorem 8.8]. The G,,-equivariant structure on
Sp|w, is different from the G,,-equivariant structure on Ty, (— log 0W},) in general.

Proof. First we do the case of n = 1, in which case the stellahedron II; is the interval [0, 1]. In
other words, we have P! with the log structure given by the divisor dP! = oo, where w is the
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point [1 : 0] € P. The exact sequence
0 — O(—2) — Qp:1(log P — Oy, — 0

implies that 7p: (— log 0P!) is isomorphic to Op: (1). By [HT99, Proposition 2.3], there is a unique
Gq-equivariant structure on Op: (1), so Tpi(—log dP') is isomorphic to Op:(1) with the G,-
equivariant structure described in §3.4. As the formation of the log tangent bundle behaves
well with respect to products, the log tangent bundle of (P')¥ (viewed as a compactification
of AP) is Hic g Op:1 (1), with the induced GZ-equivariant structure. Now, since Xp — (P!)F isa
composition of blow-ups at the boundary, the pullback @, _ 7 Op1 (1) of Hie g Op: (1) is isomor-
phic to the log-tangent bundle of X as GE-equivariant sheaves (see, for example, the proof of
[Bri09, Lemma 2.1]).

Now we do the general case. By Lemma 9.1, it suffices to see that the following square com-

mutes, as that will identify S|y, with the kernel of the map 7x, (—1log 0Xg)lw, — Nw, /xp-

C—BiEEW;kOPl(l)‘WL — Qrlw,

l |

TXE(—log 8XE)|WL E— NWL/XE

It suffices to check that this diagram commutes after restricting to a dense open subset. As the
top and bottom maps are maps of L-equivariant sheaves, it suffices to note that this diagram
commutes on the fiber over 0 € AZ. At the fiber over 0, both horizontal maps can be identified
with the natural projection k¥ — k¥ /L, and the vertical maps with the identity. O

9.2. Chern-Schwartz-MacPherson classes of matroid Schubert varieties. First we review the
theory of Chern-Schwartz—MacPherson (CSM) classes. As CSM classes are defined only for va-
rieties over a field of characteristic zero, we fix k = C and work with singular homology instead
of Chow. Then, for any locally closed subset Z of a proper variety X, there is a homology class
csm(lz) € Ho(X,Z). If X is smooth and Z = X, then the CSM class agrees with the Poincaré
dual of the total Chern class of the tangent bundle. Together with its functorial properties, this
property completely determines the CSM class of any variety. If f: X — Y is a morphism be-
tween proper varieties that restricts to an isomorphism over Z, then f.(csn(12)) = csnm(15(z2))-

We now prove Theorem 1.15. Let L < k¥ be a linear space of dimension r, and let Y7, be
the closure of L in (P!)¥, the matroid Schubert variety of L. Recall from the introduction that
the singular homology Hs (Y1, Z) has a basis labeled by the flats of rank k. For a flat F, set
LY = L/Lp. The closure of a cell labeled by F can be identified with the matroid Schubert
variety of the linear space LY. For aflat F, let yr € Ho. (Y7, Z) denote the class of the closure of
the cell corresponding to F. Because (P!) is the Schubert variety for the boolean matroid, in
particular we obtain a basis for the singular homology of (P!)¥, where each I < E defines the
class y; € Hy7((P*)¥,Z). Note that the product [],.; y; of the divisor classes in Definition 3.7
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is Poincaré dual to y; in the sense that for I’ < E, we have ([ [,.; vi) nyr = 1if I = I’ and is 0
otherwise.

Lemma 9.3. The pushforward H,.(Y.,Z) — H.((P')¥,Z) sends yr to }.; yr, where the sum is
over bases of M| F.

Proof. In degree 7, this follows from [AB16, Theorem 1.3c]. The general case then follows from
the identification of the closure of the cell indexed by F' with the matroid Schubert variety of
LE. |

Proof of Theorem 1.15. Because the W, is an snc compactification of L, the CSM class of L in Wy,
is ¢(Tw,, (—log 0WL)) n [Wr] by [Alu99, Theorem 1]. Let :: W, — Xg be the inclusion. As
Tw, (—log dWyp) = 1*Sp, and [Wi] = ¢,—-(QL), the projection formula implies that

L*(C(TWL(— log BWL)) M [WL]) = C(SL) )] Cn—r(QL) N [XE]

Using Theorem 8.1 and Theorem 9.2, one can show that

J vec(Tiv, (= log V1)) - nyz _ 1, I 1ndep.endent

Xg el 0, otherwise.

Therefore, the pushforward of csar(1r) € Ho(Wi,Z) to Ho((P')”,Z) iS 3} jngependent ¥7- The
functoriality of CSM classes implies that this is the pushforward of the CSM class of L in Y7.
From Lemma 9.3, we note that the pushforward on homology from Y7, to (P*) is injective, and
Y. yr pushes forward to the claimed class. O

Remark 9.4. Using the stratification of Y7, by cells which are identified with matroid Schubert
varieties for restrictions to flats of M, Theorem 1.15 implies that

csu(ly,) = Y. {GeL(M)|G2F} yr.
FeL(M)

APPENDIX A. POLYTOPE ALGEBRAS AND K-RINGS OF TORIC VARIETIES

The notion of valuativity and the polytope algebra both have many variants, sometimes
equivalent and sometimes not. In this mostly expository appendix, we collect these together,
and record their relationship to the K-ring of toric varieties.

A.l. Variants of valuativity. Valuative functions have been studied extensively as combinato-
rial generalizations of measures. We point to [McM93b] and [Sch14, §6] as references and give a
brief summary here.

For S < R" (or Q"), denote its indicator function by 1g: R™ (or Q") — Z defined as

1s(2) 1 ifzesS
S\T) =
0 otherwise.
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Let 8§ < 2%" be a collection of nonempty” subsets of R”. We write
I(8) :==Z{15 | S € 8}

for the Z-module generated by the indicator functions of elements of 8. For a hyperplane H <
R", let H" and H~ denote the two closed half-spaces that it defines. The notion of valuative
functions on 8§ has many variants:

Definition A.1. For an abelian group A, we say a function f: Su{J} — A with f(&J) = 0is

(a) weakly valuative if f(S) = f(SNH")+ f(SnH™) — f(Sn H) forany S € 8 and
hyperplane H suchthat Sn H*,SnH~,Sn HE€S,

(b) (when 8 consists of polyhedra) satisfies the weak inclusion-exclusion principle if for
any polyhedral subdivision S = U?=1 S;such that S € S and [, ; S; € Su{J} for every
J < {1,...,k}, the inclusion-exclusion relation f(S) = ZJQ{LM,C}(—1)|J"1f(ﬂjej S;)
holds,

(c) is additive (a.k.a. valuative) if f(S7 U S2) + f(S1 N S2) = f(S1) + f(S2) for any pair
Sl, SQ € 8 such that Sl U Sg, 51 N SQ € SU{@},

(d) satisfies the inclusion-exclusion principle if for any union S = Ule S;such that S e §
and (), ; S; € 8u{J} for every J < {1,...,k}, the inclusion-exclusion relation f(S) =

ZJQ{I,...,k}(_1)|J‘_1f(ﬂj6] S;) holds,

(e) is strongly valuative if there exists a (unique) map of Z-modules f: I(8) — A such that

~

f(S) = f(1g) forall S e 8.

The following implications between the various notions of valuativity are immediate.

Whether some or all of the implications can be reversed in the diagram for a given collection 8
is a difficult problem in general. We collect some previous results here.

Theorem A.2. As before, let § be a collection of nonempty subsets of R”™.

(1) [Gro78] If 8 is intersection-closed, i.e., 51,52 € § = S1 NSy = ForS; nSs €8, then
we have (¢) < (d) <= (e). For example, the family of all convex bodies in R" is
intersection closed.

3Some authors allow & € 8 and then impose by convention a triviality for ¢, such as f(&J) = 0 for a function f on
8. See for instance [Sal68, McM89]. Here, we prefer to begin with collections of nonempty subsets.
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(2) [Sal68, Vol57] If § = P, the family of all polytopes in R"™ (which is intersection-closed)
then we further have (a) < (c) so all five notions are equivalent. A minor modifica-
tion of the proof also shows that the same holds for Q, the family of all polyhedra in R™
(see [McMO9, §3.2] for an explicit proof).

(3) [McMO09] If 8 = Qp or Py, where Q, is the family of all A-polyhedra in R™ for a rank
n lattice A = R™ (similarly P, is the family of all A-polytopes), then we have (¢) <
(d) < (e). Note that Q4 and P, are not intersection-closed.

When § is the family of extended generalized permutohedra, i.e., lattice polyhedra in R”
whose normal fans coarsen (possibly convex subfans of) the normal fan of the standard permu-
tohedron of dimension n — 1 in R”, Derksen and Fink showed that (b) <= (e) [DF10, Theorem
3.5]. We ask whether the equivalence holds more generally:

Question A.3. How are the different variants of valuativity in Definition A.1 related to each
other when § is the set of all (lattice) polytopes whose normal fans coarsen a fixed complete
(smooth and/or projective) rational fan?

We record here a useful consequence of Theorem A.2 that taking faces of polytopes is a
strongly valuative operation. For a vector v € R” and a polytope P < R", let face(P,v) be
the face of P on which the standard inner product with v is minimized.

Proposition A.4. Let Pi,..., P, be (lattice) polytopes in R™, and suppose Zle a;1p, = 0 for
some a1, ...,ai € Z. Then, for any v € R", one has Zle a;lace(py,0) = 0

Proof. In other words, we need show that the function on the set of all (lattice) polytopes sending
P to 1guce(p,v) is strongly valuative. By Theorem A.2, it suffices to show that this function is
additive in the sense of Definition A.1(c), and this additivity is an immediate consequence of
[McMO09, Theorem 4.6]. O

A.2. Variants of polytope algebras. Fix a positive integer n. For a family § of nonempty subsets
in R™, let

Z(8) := { Z asS | ag € Z all but finitely many non—zero}
Ses

be the free abelian group generated by the set S. Define the following subgroups of Z(8):

val(8) = the subgroup generated by the additive (a.k.a. valuative) relations, i.e.,
P+Q—-—PuQ@Q—PnQwhenever P,Q,PnQ,PuQE€S,
stVal(8) = the kernel of the map Z(8) — I(8) defined by S — 1g, and
transl(8) = the subgroup generated by translation invariance relations, i.e.,

P — (P + v) whenever Pand P + v € 8 forv e R".
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We may consider the following four quotient groups

11(S) = Z(8)/ val(s),
TI(8) = Z(8)/(val(8) + transl(8)),
I(8) = Z(8)/stVal(8), and

I(8) = Z(8)/(stVal(8) + transl(8)).

In each these four cases, for an element P € § we denote by [P] its image in the quotient group.
For a commutative ring A, we write IT4 = [ ® A, and similarly for II, I, and I.

We now consider the case where § is a family of polytopes. In good cases, one may give
these quotients groups a ring structure as in the following lemma, which is a minor variation of
[McM89, Lemma 6]. In this appendix, we use w for the Minkowski sum of polytopes when it is
helpful to distinguish it notationally from the addition in Z(8).

Lemma A.5. Suppose § is a Minkowski-sum-closed family of polytopes in R™. That is, if P and
(@ are polytopes in 8, then so is their Minkowski sum P w ). Then, for the quotient groups IL(8)
and T1(8), the multiplication given by

[P]-[Q] =[P wQ]for P,Q € §, and extended linearly to the whole group,
is well-defined. In particular, if further § contains the origin o of R”, then the quotient groups

are unital commutative rings with [o] the unit.

Proof. [Had57,1.2.2] shows that if )1 and @2 are polytopes such that @1 U Q)2 is a polytope, then
Po(@Qu@:)=(Pv@i)u(PwQ) and Pw(Q1nQ2)=(Pw@)n(PvQy)

for any polytope P < R"™. Hence, the multiplication via Minkowski sum is well-defined. O

For a subring R of R, let P be the set of all nonempty R-polytopes in R, i.e., the polytopes
that have vertices in R". Usually R will be either Z, Q, or R. When R is Q or R, Theorem A.2.(1)
implies that II(Pr) = I(Pr), and hence I1(Pr) = I(Pg) also. The same conclusion holds when
R = Z by Theorem A.2.(3). The ring IIg(Pr) is what is often called McMullen'’s polytope algebra
as defined in [McM89, McM93al.

For polytopes P and @), one says that () is a weak Minkowski summand of P if there is a polytope
@’ and A > 0 such that A\Q w Q' = P. It is straightforward to show that this is equivalent to
stating that the normal fan of @) coarsens that of P.

Definition A.6. Given a complete fan ¥ in R"™, we define the subfamily Pr 5, < Pr to be the set
of R-polytopes whose normal fan coarsens X. Let us define

II(R,X) = the image of Z(Pr 5) < Z(Pr) in II(Pr),

and likewise for II(R, %), I(R, ¥), and I(R, ¥).
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Note that, per Question A.3, it is unclear whether II(Pr 5) = II(R, ¥). Itis clear however that
H(R, E) = H(?Ryg), and also that transl(TRyg) = Z(TR’E) N transl(fPR), so that E(R, E) = ﬂ(?R’g).
Thus, when R is Z, Q, or R, the equivalence of additivity and strong valuativity, as noted in
Theorem A.2(3), yields the following.

Proposition A.7. When R is Z, Q, or R, one has
O(R,Y) =I(R,%) =1(Prx) and II(R,Y)=1(R,Y%) =1Pryx).

We conclude this section with another variant of the polytope algebra given in [Mor93].
Given a complete rational fan ¥, Morelli defines rings Lx(Z"™) and Lx(Z") as follows. For a
point p € R™ and a polytope P, if p € P then define TC,(P) = Rx¢{P — p} to be the tangent
cone of P at p, and if p ¢ P define by convention TC,(P) = . Let € be the collection of cones
(always centered at the origin) in R”, and let Cx; = {C < R™ | C'¥ € ¥} be the collection of cones
which are duals of the cones in ¥. Linearly extending the map P +— 17¢, (p), we obtain a map
0,: I(Pz) — I(C) for any point p € Z". We then define

Ly, (Z") = the subgroup generated by f € I(Pz) such that 6,(f) € I(Cx) for all p € Z", and
Lx(Z™) = the image of Ly (Z") in I(Py).

In the paragraph preceding [BG09, Theorem 10.46], the wording is somewhat ambiguous so as
to assume implicitly that £x(Z") is equal to [(Pz 5;). We ask explicitly:

Question A.8. For which complete fans ¥ is Lx,(Z") = [(Pz,x) and/or L (Z") = 1(Pz5)?

In [FPO05], the authors give examples of smooth proper toric varieties which admit no non-
trivial nef line bundles, so [(Pzx) = Z, which gives examples of smooth fans for which both
equalities in the question fail. We will later prove Theorem A.10 which, when combined with
a result of Morelli (Theorem A.11 here), implies that for smooth projective fans ¥ we have that
LE(ZH) = H(szg) and LE(Zn) = ﬂ(fpz’g).

A.3. Relation to (operational) Chow rings. Let R = Z or QQ from this section onwards, so that
we may consider toric varieties and their (Q-)divisor classes associated to polytopes. Let ¥
be a complete rational fan and Xy, be its toric variety. We point to [Ful93] for basic facts on
toric varieties. Recall that a lattice polytope () € Pz s defines a nef T-equivariant line bundle
Oxy (Dg) in X, with the property that its divisor class [Dg] € Pic(Xy;) does not change when
we translate ). See [CLS11, Chapter 6] for a discussion of polytopes and line bundles. We
collect some results of Fulton and Sturmfels.

Theorem A.9. Let ¥ be a complete rational fan, and let A*(Xs;) be the operational Chow coho-
mology ring of the toric variety Xs. Then, we have:

(1) [FS97, Theorem 3.1] The operational Chow ring is isomorphic (as a graded ring) to the
ring of Minkowski weights on the fan ¥ with product structure coming from the fan
displacement rule.
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(2) [FS97, Theorem 5.1] If X is projective, the exponential map, sending [Q] — exp([Dgq]),
defines an injection of rings I (P x) — A®(Xx)g whose image is the subring generated
by A'(Xx)g = Picg(Xs). The exponential map is an isomorphism when ¥ is further
simplicial.

(3) [FS97, Theorem 5.2] The exponential map defines an isomorphism between I (Pg) and
the direct limit lim A*(Xx)g over all complete fans.

The image exp([Dg]) of the exponential map applied to @ can be described in terms of
Minkowski weights as follows: The cone dual to a face F' of () gets weight equal to the lat-
tice volume of F (in the lattice of the affine span of F'). For the case when R = R, after a
suitable modification of the definitions for the ring of Minkowski weights and the exponential
map above, one has a similar injective map [McM89, Theorem 2] that is an isomorphism when
¥ is further simplicial [McM93a, Theorem 5.1]. See also [Bri97].

A4. Relation to K-rings. Let K(X) be the Grothendieck ring of vector bundles on a smooth
complete variety X. For a smooth complete C-variety X, the Hirzebruch-Riemann—Roch theo-
rem gives that the Chern character map ch: K(X)g — A(X)q, defined on classes of line bun-
dles by [£] — exp(c1(L)), is a ring isomorphism. Comparing this to the second statement in
Theorem A.9, one concludes that there is an isomorphism Io(Pg ) ~ K(Xs)g determined by
[Q] — [Ox,(Dg)] when X is projective and smooth. Obtaining this isomorphism not only over
Q but over Z is the topic of this section. In particular, we prove the following.

Theorem A.10. Let X be a smooth projective fan, and let K(Xx) be the Grothendieck ring of
torus-equivariant vector bundles on Xs. Then, there is a ring isomorphism

Yr: I(Pzs) > Kr(Xs)

determined by the property [P] — [Oxy(Dp)] for any P € Pz 5. This descends to an isomor-
phlsm 1/): ﬁ(?zz) = K(XE)

Morelli proved a similar result for any smooth complete (not necessarily projective) fan; the
following theorem collects [Mor93, Theorems 5, 6, and 8]. For k € Z-, let U* be the k-th Adams
operation, which is a ring endomorphism of K(r)(Xx) that satisfies W*[£] = [£L®¥] for £ a (T~-
equivariant) line bundle. For m € Z" and [€] € K1 (Xy), let x(Xx, [E])m be the weight m Euler
characteristic.

Theorem A.11. Let ¥ be a smooth complete fan.
(1) The map Ir: Kr(X5) > Ly(Z") < 22" given by [€] = (m/k > x(Xs; UH[E]),n) s a
well-defined ring isomorphism.

(2) The map Ir descends to an isomorphism I: K (Xy) = Lx(Z"™).
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However, in light of Question A.8, it is unclear whether this proves Theorem A.10. We con-
clude with our proof of Theorem A.10 in the form of two lemmas. The proof of the second
lemma uses ideas of Morelli.

Lemma A.12. There is a surjective ring homomorphism ¢ : I(Pz 5) — K7 (Xs) determined by
the property [P] — [Oxy(Dp)] for any P € Pz 5. It descends to a surjective ring homomor-
phlsm ’(/JZ E(?Z,E) — K(XE>

Proof. First we show that ¢1 is well-defined. We use the localization theorem for the torus-
equivariant K-theory of smooth complete toric varieties [Nie74, Theorem 3.2], which embeds
Kr(Xyx)asasubringof [ [ ;.
to a point in XZ, the class of [Ox, (Dp)] is sent to T~'=, where v, is the vertex of P on which

XT K7 (pt). For each fixed maximal cone ¢ € ¥, which corresponds

any functional in the interior of o achieves its minimum. That this is well-defined follows from
Proposition A.4. To see that 7 is a ring homomorphism, note that if P and @) are polytopes,
then the vertex of P w () on which any functional in the interior of ¢ achieves its minimum is
the sum of the corresponding vertices of P and Q.

For the surjectivity of o7, first note that for a complete smooth toric variety Xy, the ring
Kr(Xy) is generated as a ring by the classes of T-equivariant line bundles [Kly84, Corollary 1]
(see also [AP15, Lemma 2.2]). If ¥ is further projective, any T-equivariant line bundle is isomor-
phic to LY ® M for some ample T-equivariant lines bundles £ and M. Since 91 surjects onto
the classes of T-equivariant ample line bundles, it suffices now to show that for a T-equivariant
ample line bundle £, its inverse class [£"] is a sum of powers of [£] (possibly with different
equivariant structures). Concretely, suppose we have a lattice polytope P < R™ whose normal
fan X p equals X. Let NV be the number of lattice points in P. Denoting ps = >} ¢ p for a subset
S € P nZ" we claim that

N
[OXE(_DP)]:Z(_l)k_l Z [Oxy (Dk—1)p—ps)] aselements in K7 (Xx).

k=1 ScPAZ"
|S|=k

By multiplying [Ox, (Dp)], we equivalently check that

N
Z (-1)F Z [Ox5(Drp—pg)] = 0.
k=0 el

Here the k = 0 term should be interpreted as [O] with the trivial equivariant structure. At each
T-fixed point z of X5 corresponding to a vertex v of P, the localization value of the left-hand-
side is zero since [Ox. (D(|s|+1)P—ps.. )z = [Oxs(D)s|p—ps )]z forany S < (P n Z")\v.

Finally, we note that for Q € Py x, the divisor class [Dg] is invariant under translation of @,
so translation invariance is clear. Therefore 11 descends to a map ¢: [(Pz ) — K(Xx), which
is surjective because Kr(Xx) — K(Xy) is surjective. O

Lemma A.13. The maps ¢ and ¢ given in the previous lemma are injective.
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Proof. For [€] € Kr(Xx), consider the function Q" — Z defined by
m/k — x(Xg; U*[E])m form e Z™ and k € Z-,.
In order to see that this is a well-defined function, we need to check that
X(Xs; UF[ED)m = x(X5; ¥ [E]) . for any n € Zy.

By Lemma A.12 and because the classes of the polytopes P € Pz » generate I(Pz x), it suffices
to check that

X(Xg; \Ifk[OXE (Dp)])m = X(XE; \Pnk[OXE (Dp)])nm for any n e Z>o

for an arbitrary polytope P € Pz 5. This then follows from the fact that for any positive integer
¢ and m € Z", one has

P 1 ifmelP
X( X5, U [Oxy, (Dp))m = ,
0 otherwise.
Indeed, ¥¢[Ox,, (Dp)] = [Ox, (D¢p)], we can identify H°(Xx; Ox,, (D¢p)) with the vector space
spanned by lattice points in P, and the higher cohomology of base-point-free line bundles on
toric varieties vanishes [Ful93, §3.4 & §3.5].

We now construct a map Kr(Xs) — I[(Pzy). By Lemma A.12, every class [£] € Kp(Xy) is
of the form [£] = )}, a;[Ox,, (Dp,)] for some P; € Pz 5. We send [£] to Y, a;[P;] € I(Pzx). The
construction above recovers the evaluations of ) a;[P;] at points in Q™. Because two finite sums
of indicator functions of lattice polytopes are equal if they agree on Q", this map is well-defined.
It is clearly a left-inverse of )7 which descends to a left-inverse of 1. a
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