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ABSTRACT. We establish strong vanishing theorems for line bundles on wonderful varieties of hyperplane
arrangements, and we show that the resulting positivity properties of Euler characteristics extend to all
matroids. We achieve this by showing that every degeneration of a wonderful variety within the permu-
tohedral toric variety is reduced and Cohen–Macaulay. The same holds for a larger class of subschemes in
products of projective lines that we call “kindred,” which are characterized by matroidal Hilbert polynomi-
als. Our results give a new proof of the 20-year-old f -vector conjecture of Speyer and resolve the conjecture
of Tohăneanu that higher order Orlik–Terao algebras are Cohen–Macaulay.

1. INTRODUCTION

For a nonnegative integer n, let [n] = {1, . . . , n}. For a subset S ⊆ [n], let eS :=
∑

i∈S ei ∈ Rn denote
the sum of standard basis vectors indexed by S. A matroid M of rank r on [n] is a nonempty collection
B of subsets of [n] of cardinality r, called the set of bases of M, satisfying the property:

For every edge of the polytope P (M) := the convex hull of {eB : B ∈ B} ⊂ Rn,
there is a pair {i ̸= j} ⊆ [n] such that the edge is parallel to ei − ej .

The polytope P (M) is called the base polytope of M. We say that M is loopless if every i ∈ [n] is contained
in a basis of M. We point to [Wel76, Oxl11] as standard references on matroid theory and to [GGMS87]
for the equivalence of the definition of matroids given here with theirs.

The prototypical example of a matroid is given by a linear subspace L ⊆ k
[n] over a field k, which

defines a matroid of rank r = dimL with set of bases

{B ⊆ [n] : the composition of L ↪→ k
[n] with the projection k[n] ↠ k

B is an isomorphism}.

Matroids that arise in this way are called realizable matroids, and they provide an interface between
matroid theory and geometry. A key medium of this interface occurs through the wonderful variety WL

of L ⊆ k
[n], introduced by de Concini and Procesi [dCP95]. To avoid trivialities, we assume that L

is not contained in a coordinate hyperplane of k[n], or, equivalently, that the matroid of L is loopless.
Then WL is constructed as follows. Write PV for the projective space of lines in a vector space V .
Define a rational map

ϕ : P(k[n]) 99K
∏

i ̸=j∈[n]

P(k{i,j}) = (P1)(
n
2),

where each factor P(k[n]) 99K P(k{i,j}) is the rational map induced by the coordinate projection k[n] →
k
{i,j}. Then the wonderful variety WL is the closure of ϕ(PL) in (P1)(

n
2), which is smooth and can

be described as an iterated blow-up of PL [dCP95, Proposition 1.6] (see also Proposition 3.9 for the
agreement of the definition in [dCP95] with ours). In particular WL is contained in the closure of the
image of ϕ, which we denote X[n] and call the permutohedral variety (of dimension n− 1).

While almost all matroids are not realizable [Nel18], geometric properties of realizable matroids
sometimes persist for all matroids. A landmark example arises from the intersection theory of WL;
because it is a smooth projective variety, its intersection numbers display positivity properties. This
was the template for the development of the Hodge theory of matroids [AHK18], which established
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the corresponding positivity properties for Chow rings of matroids. Here, we prove cohomological
vanishing results for line bundles on WL, and we show that the positivity properties of sheaf Euler
characteristics implied by these vanishing results extend to all matroids.

The line bundles in question are the pullbacks to WL of nef line bundles on X[n]. Because X[n]

is a smooth projective toric variety, these have the following combinatorial description; we point
to [CLS11] as a standard reference on toric geometry and adopt its conventions. Applying to X[n]

the standard dictionary between toric nef divisors and polytopes [CLS11, Chapter 6], one obtains
a correspondence between nef toric divisor classes on X[n] and generalized permutohedra, which are
lattice polytopes P ⊂ Rn satisfying the property that every edge of P is parallel to ei − ej for some
i ̸= j ∈ [n] (see [BEST23, Section 2.7] and [ACEP20] for details of this correspondence). For example,
base polytopes of matroids are exactly generalized permutohedra which are contained in the unit cube.
Let LP denote the corresponding nef line bundle on X[n]. We also write LP for the restriction of the
line bundle to WL. Nef line bundles on projective toric varieties are basepoint-free, and the complete
linear system of LP induces a map fP : X[n] → P(kP∩Zn

), where the set of lattice points P ∩ Zn is
identified with the torus-invariant basis of H0(X[n],LP ) [CLS11, Chapter 4.3].

Theorem A. Let P be a generalized permutohedron in Rn. Then:

(1) Hi(WL,L⊗a
P ) = 0 unless either: (i) a ≥ 0 and i = 0, or (ii) a < 0 and i = dim fP (WL).

(2) For any a ≥ 0, the restriction map H0(X[n],L⊗a
P ) → H0(WL,L⊗a

P ) is surjective.
(3) We have RfP ∗OWL

= OfP (WL).

In Section 5.1, we show that the conclusion of Theorem A fails for some other classes of nef or
ample line bundles on wonderful varieties. In this sense, Theorem A appears to be sharp. An explicit
combinatorial formula for dim fP (WL) is provided in Theorem 4.2. If P is of the maximal dimension,
i.e., (n− 1)-dimensional, then dim fP (WL) = dimWL = r − 1. We note the following corollary.

Corollary 1.1. The section ring
⊕

a≥0 H
0(WL,L⊗a

P ) coincides with the homogeneous coordinate ring of fP (WL)

in P(kP∩Zn

), and in particular is generated in degree 1. The subvariety fP (WL) in P(kP∩Zn

) is projectively
normal and arithmetically Cohen–Macaulay.

Proof. Because a generalized permutohedron P is a normal lattice polytope (Proposition 3.9), the
homogeneous coordinate ring of P(kP∩Zn

) surjects onto the section ring
⊕

a≥0 H
0(X[n],L⊗a

P ). There-
fore (2) implies that the section ring

⊕
a≥0 H

0(WL,L⊗a
P ) is the homogeneous coordinate ring of the

subvariety fP (WL) in P(kP∩Zn

). Then (3) implies that the section ring
⊕

a≥0 H
0(WL,L⊗a

P ) coincides
with the section ring

⊕
a≥0 H

0(fP (WL),O(a)) of O(1) on P(kP∩Zn

). Because WL is smooth (and hence
normal), the isomorphism OfP (WL) ≃ fP ∗OWL

from (3) implies that fP (WL) is normal, and hence pro-
jectively normal. The projection formula and (3) imply that the natural map from Hi(fP (WL),O(a)) to
Hi(WL,L⊗a

P ) is an isomorphism for all i and a. The cohomology vanishing in (1) implies that fP (WL)

is arithmetically Cohen–Macaulay: see, e.g., [EL23, Proposition 4.5]. □

Special cases of this corollary recover results or resolve conjectures in the prior literature.

• When P is the convex hull of {eS : S ⊂ [n] and |S| = n− 1}, the homogeneous coordinate ring
of fP (WL) is known as the Orlik–Terao algebra [OT94, Ter02], and Corollary 1.1 recovers a main
result of [PS06] that this algebra is Cohen–Macaulay.

• More generally, when P is the convex hull of {eS : S ⊂ [n] and |S| = n− k} for 1 ≤ k ≤ n− 1,
the homogeneous coordinate ring of fP (WL) is known as the higher order Orlik–Terao algebra,
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studied extensively in the commutative algebra literature [GST18, TX21, Bur23]. In this case,
Corollary 1.1 resolves and generalizes the conjecture of Tohăneanu that the higher order Orlik–
Terao algebra for k = 2 is Cohen–Macaulay [Toh21].

• When P = −P (M), the convex hull of {−eB : B a basis of the matroid M of L}, the variety
fP (WL) is known as Kapranov’s visible contours compactification, appearing in the study of mod-
uli of hyperplane arrangements [Kap93, HKT06, KT06]. This variety is the log-canonical model
of a hyperplane arrangement complement associated to the data of L ⊆ k

[n]. Corollary 1.1
states that this variety is arithmetically Cohen–Macaulay.

We now describe the numerical positivity of sheaf Euler characteristics implied by Theorem A that
we will establish for all matroids. Corollary 1.1 implies that the polynomial a 7→ χ(WL,L⊗a

P ) is the
Hilbert function of a graded Cohen–Macaulay algebra which is generated in degree 1. The Hilbert
functions of such algebras were classified by Macaulay: for a univariate polynomial p(a) of degree d,
if one writes ∑

a≥0

p(a)ta =
h∗
0 + h∗

1t+ · · ·+ h∗
dt

d

(1− t)d+1
,

then the polynomial p is the Hilbert function of a graded Cohen–Macaulay algebra that is generated
in degree 1 if and only if (h∗

0, . . . , h
∗
d) is a Macaulay vector (also known as an M -vector or O-sequence).

This means that h∗
i ≥ 0 for each i and that the sequence (h∗

0, . . . , h
∗
d) satisfies certain explicit inequalities

bounding how quickly it can grow; see [BH93, Theorem 4.2.10] for details. Note that (h∗
0, . . . , h

∗
d) are

determined by the equation

p(a) =

d∑
i=0

h∗
i

(
a+ d− i

d

)
.

In particular, we see that h∗
d = (−1)dp(−1), and that (−1)dp(a) ≥ 0 for a < 0.

Previous work allows us to state an analogue of the above numerical positivity for all matroids,
as we now describe. The proof of [BEST23, Corollary 10.6] gave an explicit combinatorial formula
for the K-class [OWL

] in the Grothendieck group K◦(X[n]), showing that the class depends only on
the matroid of L. In particular, for any given L ∈ Pic(X[n]), by the projection formula for WL ↪→
X[n], the quantity χ(WL,L|WL

) = χ(X[n],OWL
⊗ L) depends only on the matroid realized by L. This

suggested the possibility of generalizing the map χ(WL,−) to a function whose first argument is a
(not necessarily realizable) matroid. The authors of [LLPP24] carried out this program, defining the
matroid K-ring K(M) of a loopless matroid M, equipped with a surjection K◦(X[n]) ↠ K(M) and
an Euler characteristic map χ(M,−) : K(M) → Z, so that, when L realizes M, there is an isomorphism
K(M) ∼= K◦(WL) identifying the functions χ(M,−) and χ(WL,−). Then, the authors of [EL23] defined
the h∗-vector h∗(M,L) of a loopless matroid M and a line bundle L ∈ Pic(X[n]) via the equality∑

a≥0

χ(M,L⊗a)ta =
h∗
0(M,L) + h∗

1(M,L)t+ · · ·+ h∗
d(M,L)td

(1− t)d+1
,

where d is the degree of the polynomial a 7→ χ(M,L⊗a). When M is realizable and L is the line
bundle associated to a generalized permutohedron, we have explained how Corollary 1.1 implies that
h∗(M,L) is a Macaulay vector. We show this holds more generally, proving [EL23, Conjecture 4.8].

Theorem B. Let M be a loopless matroid on [n], and let P be a generalized permutohedron in Rn. Then, the
h∗-vector h∗(M,LP ) is a Macaulay vector.
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An explicit combinatorial formula for the degree d of the polynomial a 7→ χ(M,L⊗a
P ) is given in

Theorem 4.2. If P is of maximal dimension (n− 1), then d = rank(M)− 1.

A consequence of Theorem B is a new proof of the 20-year-old f -vector conjecture of Speyer [Spe05],
as we now explain. If P is a generalized permutohedron, then the negated polytope −P = {−p : p ∈
P} is as well. Define the invariant ω(M) ∈ Z of a loopless matroid M of rank r by

ω(M) = (−1)r−n+dimP (M)χ(M,L−1
−P (M)).

The ω invariant is the leading coefficient of Speyer’s invariant gM(t) ∈ Z[t], which was defined in
[Spe09, FS12] in an attempt to bound the complexity of polyhedral subdivisions of the base polytope
P (M) of a matroid M into base polytopes of matroids. Such subdivisions had arisen in the study of
Grassmannians and moduli spaces of hyperplane arrangements [Laf03, Kap93, HKT06]; their more
recent appearances are surveyed in [Ard18, Section 4.4]. Speyer conjectured an upper bound on
the number of faces of each dimension of such a subdivision, the titular f -vector. He reduced the
conjecture to showing that the coefficients of gM(t) were of predictable sign (the manifestation in this
context of K-theoretic positivity), and he proved this in [Spe09] for matroids realizable over fields of
characteristic zero. The authors of [FSS24] further reduced the conjecture for general matroids to the
statement of Corollary 1.2 below, which was first proved in [BF24].

Corollary 1.2. For any loopless matroid M, one has ω(M) ≥ 0.

If M is realizable over a field k of characteristic zero and dimP (M) = n− 1, then LP is nef and big,
so this follows immediately from the Kawamata–Viehweg vanishing theorem.

Proof of Corollary 1.2. Because P (M) and −P (M) induce the same partition of [n] in the sense of Sec-
tion 4, Corollary 4.6 implies that the polynomial a 7→ χ(M,L⊗a

−P (M)) has degree d := r− n+dimP (M).
Then (−1)dχ(M,L−1

−P (M)) = h∗
d(M,L−P (M)), which is nonnegative by Theorem B. □

We sketch the proof of the main theorems in the case when LP is ample on X[n]. If one can show
that the wonderful variety WL degenerates to a reduced and Cohen–Macaulay union of torus-invariant
strata in X[n], then the vanishing results in Theorem A follow from Frobenius splitting techniques. In
fact, we produce a collection of K-classes on X[n] such that every subscheme having one of these K-
classes is reduced and Cohen–Macaulay: we call these subschemes “kindred.” We prove that WL is
kindred. Since WL always has some torus-invariant degeneration, which shares its K-class, Theorem A
follows. As we have explained, this also gives Theorem B when M is realizable. In this way, we
avoid the difficult task of explicitly controlling the combinatorics of degenerations of WL. To extend
Theorem B to all matroids, the task remaining is to obtain a kindred subscheme of X[n] whose K-
class is the one appropriate to compute χ(M,−). We construct a union of torus-invariant subvarieties
with the desired property, which we call the “tropical initial degeneration of M,” using the tropical
degeneration formula of Katz [Kat09, Theorem 10.1].

Organization. In Section 2, we define and exhibit properties of kindred subschemes. There we work in
the setting of subschemes of (P1)ℓ. Applications to our main theorems are obtained via the embedding
X[n] ↪→ (P1)(

n
2) and coordinate projections thereof. In Section 3, we construct the tropical initial

degeneration, relate it to the wonderful variety and to matroid Euler characteristics, and prove our
main theorems. In Section 4, we give a formula for the degree of the polynomial a 7→ χ(M,L⊗a

P ).
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In Section 5, we collect examples that support the optimality of Theorem A, and we establish similar
vanishing theorems for close cousins of wonderful varieties.

Previous work. When P is a Minkowski sum of standard simplices, Theorem B was proved in [EL23].
However, this class of polytopes does not include many of the most interesting cases, such as the ones
listed below Corollary 1.1.

In [Liu], Liu extends the techniques of [BF22] to show that, if chark = 0 and P is a Minkowski sum
of matroid polytopes, then Hi(WL,LP ) = 0 for i > 0, proving part of Theorem A(1) in this case.

Corollary 1.2 was also proved in [BF24] by a completely different method. The authors control the
sign of Euler characteristics of the form χ(X[n], [

∧i Q∨
M1

] ⊗ [
∧j Q∨

M2
]) for a pair of matroids M1,M2

on [n], where QM is one of the tautological classes of [BEST23]. It follows from [LLPP24, Proposition
5.3] (see also [BEST23, Corollary 10.6]) that

χ(M1,L−1
−P (M2)

) = χ(M1, [
∧n−rQ∨

M2
]) =

∑
i≥0(−1)iχ(X[n], [

∧iQ∨
M1

]⊗ [
∧n−rQ∨

M2
]).

When M1 = M2 = M, [FS12, Lemma 6.2] gives that χ(X[n], [
∧i Q∨

M] ⊗ [
∧n−r Q∨

M]) = 0 unless i = r,
and so ω(M) = (−1)dimP (M)−nχ(X[n], [

∧r Q∨
M]⊗ [

∧n−r Q∨
M]). Using this formula, the positivity result

[BF24, Theorem D] then implies Corollary 1.2. However, the techniques of [BF24] cannot be used to
prove either Theorem A or Theorem B, nor can the results in this paper be used to deduce the positivity
consequences of [BF24, Theorem D].

Acknowledgments. We thank Jenia Tevelev and Ronnie Cheng for showing us examples similar to
Example 5.1, Louis Esser for helping us understand the geometry of Example 5.2, Andy Berget for
helpful comments on an earlier draft, and Michel Brion for helpful conversations. We thank the Math-
ematischen Forschungsinstitut Oberwolfach for hosting the 2025 Toric Geometry workshop where
this paper began. The first author is supported by US NSF DMS-2246518. The second author received
support from the Engineering and Physical Sciences Research Council [grant number EP/X001229/1],
as well as the Institute for Advanced Study and the Fields Institute for Research in Mathematical
Sciences. The third author is supported by the Charles Simonyi Endowment and the Oswald Veblen
Fund at the Institute for Advanced Study.

2. KINDRED SUBSCHEMES

We begin by introducing a remarkable family of connected components of the Hilbert scheme of a
product of projective lines. Subschemes in these components, which we call kindred subschemes, have
a very close relationship to their degenerations. Kindred subschemes are a special case of subschemes
defined by Cartwright–Sturmfels ideals [CDNG15, CDNG20] (Remark 2.13).

A set is independent in a matroid M if it is a subset of a basis of M.

Definition 2.1. A closed subscheme X of (P1)ℓ is said to be kindred if it is empty, or if there is a matroid
M on [ℓ] such that, for all (a1, . . . , aℓ) ∈ Zℓ, we have

χ(X,O(a1, . . . , aℓ)) =
∑

I independent in M

∏
i∈I

ai.

We call the matroid M appearing in Definition 2.1 the progenitor matroid of X . It is clear that
whether a subscheme X is kindred only depends on the class [OX ] in the Grothendieck group of
coherent sheaves K◦((P1)ℓ). The function (a1, . . . , aℓ) 7→ χ(X,O(a1, . . . , aℓ)) is a polynomial known
as the Snapper polynomial of X , after [Sna59]. It agrees with the Zℓ-graded Hilbert polynomial of any
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ideal I determining X in the homogeneous coordinate ring k[(P1)ℓ] = k[x1, . . . , xℓ, y1, . . . , yℓ], i.e., for
a1, . . . , aℓ sufficiently large, we have

χ(X,O(a1, . . . , aℓ)) = dimk(k[(P1)ℓ]/I)(a1,...,aℓ).

Recall that the fundamental class [Y ] of a subscheme Y of (P1)ℓ is the class in AdimY ((P1)ℓ) given by
summing the classes of the top-dimensional irreducible components of Y , with coefficient equal to the
multiplicity of that component. More generally, if F is a coherent sheaf on (P1)ℓ, then its fundamental
class is the sum of the top-dimensional irreducible components of its support, with coefficient equal to
the rank of the sheaf at the generic point of that component.

For a subset S of [ℓ], let YS = {(x1, . . . , xℓ) : xi = 0 if i ̸∈ S} ⊂ (P1)ℓ. Then {[YS ]}S⊆[ℓ] is a basis for
A∗((P1)ℓ). By the next proposition, an application of the Hirzebruch–Riemann–Roch theorem, we can
recover the fundamental class of a sheaf from its Snapper polynomial.

Proposition 2.2. [Ful98, Example 15.2.16 & Example 15.1.5] Let F be a coherent sheaf on (P1)ℓ whose
support has dimension d and whose fundamental class is

∑
S∈([ℓ]d )

cS [YS ]. Then the polynomial (a1, . . . , aℓ) 7→
χ((P1)ℓ,F(a1, . . . , aℓ)) has degree d, and its degree d part is

∑
S∈([ℓ]d )

cS
∏

i∈S ai.

Applying Proposition 2.2 when F = OX for some kindred X ⊆ (P1)ℓ, we have the following formula.

Corollary 2.3. Let X be a kindred subscheme of (P1)ℓ with progenitor matroid M. Then we have

[X] =
∑

B basis of M

[YB ] ∈ AdimX((P1)ℓ).

Proposition 2.4. Let M be a matroid on [ℓ], and let YM =
⋃

B basis YB . Then YM is a kindred subscheme of
(P1)ℓ with progenitor matroid M.

Proof. This is a special case of [EL23, Proposition 2.14], but we sketch an easy direct proof. The
homogeneous coordinate ring of YM is the quotient of k[x1, . . . , xℓ, y1, . . . , yℓ] by the ideal ⟨

∏
i∈D yi :

D ⊆ [ℓ] not independent in M⟩. The Zℓ-graded Hilbert function of this ring is given by the formula in
Definition 2.1 since, for a ∈ Zℓ

≥0, the set {
∏

i∈[ℓ] x
ai−bi
i ybii : {i : bi > 0} is independent in M} forms a

monomial basis for the degree a component of the quotient ring. Because the Hilbert function agrees
with the Snapper polynomial (i.e., the multigraded Hilbert polynomial) on points of Zℓ which are
sufficiently deep in the positive orthant, this implies the result. □

Proposition 2.5. Let X be a kindred subscheme of (P1)ℓ with progenitor matroid M. Then X degenerates to
YM inside of (P1)ℓ.

Proof. Let B be the ℓ-fold product of the group of 2× 2 lower triangular matrices acting factorwise on
(P1)ℓ, with unique fixed point given by (0, . . . , 0). Then B acts on the Hilbert scheme of (P1)ℓ. Because
B is solvable, by the Borel fixed point theorem, the B-orbit of the point corresponding to X in the
Hilbert scheme has a B-fixed point in its closure. This gives a degeneration of X to a subscheme Z of
(P1)ℓ which is fixed by B.

We have [OX ] = [OZ ] in K◦((P1)ℓ), and therefore [X] = [Z] ∈ AdimX((P1)ℓ). The reduction Zred is a
union of B-fixed subvarieties of (P1)ℓ. The only B-fixed subvarieties of (P1)ℓ are the YS , for various S.
These have linearly independent classes in AdimX((P1)ℓ), so in order to have [X] = [Z], Corollary 2.3
shows that Z must contain YM, where M is the progenitor matroid of X . By Proposition 2.4, YM is
kindred, and so [OYM

] = [OX ] = [OZ ]. In particular, YM = Z. □
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Corollary 2.6. Let X be a kindred subscheme of (P1)ℓ. Then X is Cohen–Macaulay, pure dimensional,
geometrically reduced, and geometrically connected.

Proof. Let M be the progenitor matroid of X . It is clear that YM is pure dimensional, geometrically
reduced, and geometrically connected. Furthermore, it is known that YM is Cohen–Macaulay: the
multihomogeneous coordinate ring of YM is equal to (the extension by extra variables of) the Stanley–
Reisner ring of the matroid independence complex, which is Cohen–Macaulay [PB80, Theorem 3.2.1].
Therefore the same properties are true for X [Sta25, Tag 045U, Tag 02NM, Tag 0C0D, Tag 055J]. □

Corollary 2.7. Let X be a kindred subscheme of (P1)ℓ. Then, for any a1, . . . , aℓ ≥ 0, we have

Hi(X,O(a1, . . . , aℓ)) = 0 for i > 0,

and the restriction map
H0((P1)ℓ,O(a1, . . . , aℓ)) → H0(X,O(a1, . . . , aℓ))

is surjective. For any a1, . . . , aℓ < 0, we have

Hi(X,O(a1, . . . , aℓ)) = 0 for i < dimX.

Proof. By upper semicontinuity [Sta25, Tag 0BDN], it suffices to prove these statements for YM. For
the surjectivity of the restriction map, one applies upper semicontinuity to the kernel of the surjective
map H0((P1)ℓ,O(a1, . . . , aℓ))⊗OX → OX(a1, . . . , aℓ) of vector bundles.

When (P1)ℓ is viewed as a homogeneous space for (GL2)
ℓ, YM is a union of Schubert varieties.

In particular, YM is defined over SpecZ, and the reduction of YM modulo any prime p is compatibly
Frobenius split in (P1)ℓ relative to an ample divisor [BK05, Theorem 2.3.10, Proposition 1.2.1]. The
line bundle O(a1, . . . , aℓ) is defined over the prime field F of k, and we can check the cohomology
vanishing and the surjectivity of the restriction map over F [Sta25, Tag 02KH]. If the characteristic
of k is positive, then the splitting and Cohen–Macaulayness of YM implies the vanishing and the
surjectivity: see [BK05, Theorem 1.4.8, Lemma 1.4.7(ii), and Theorem 1.2.9] as well as [Bri03, Section
4]. If k has characteristic 0, then the desired result follows from upper semicontinuity. □

We will make use of the following standard consequence of the Leray spectral sequence and Serre
vanishing. See, for example, [Hyr99, Lemma 2.1].

Proposition 2.8. Let f : X → Y be a proper morphism, and let L be an ample line bundle on Y . Then
Rif∗OX = 0 for all i > 0 if and only if Hi(X, f∗L⊗n) = 0 for all i > 0 and all n sufficiently large.

Proposition 2.9. Let X be a kindred subscheme of (P1)ℓ, and let p : (P1)ℓ → (P1)m be a coordinate projection.
Then p(X) is a kindred subscheme of (P1)m and Rp∗OX = Op(X).

Proof. We may assume that p is the projection onto the first m coordinates. By Proposition 2.7, the
higher cohomology on X of positive twists of O(1, . . . , 1, 0, . . . , 0) = p∗O(1, . . . , 1) vanishes. By Propo-
sition 2.8, we have Rip∗OX = 0 for i > 0.

We proceed to show that the natural map from Op(X) to p∗OX is an isomorphism. Because the
higher direct images vanish, we have

(1) χ((P1)m, p∗OX ⊗O(a1, . . . , am)) = χ(X,O(a1, . . . , am, 0, . . . , 0))

for any a1, . . . , am. Let M be the progenitor of X , and let N denote the restriction of M to [m], i.e., N
is the matroid whose independent sets are the independent sets of M which are contained in [m]. By

https://stacks.math.columbia.edu/tag/045U
https://stacks.math.columbia.edu/tag/02NM
https://stacks.math.columbia.edu/tag/0C0D
https://stacks.math.columbia.edu/tag/055J
https://stacks.math.columbia.edu/tag/0BDN
https://stacks.math.columbia.edu/tag/02KH
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considering the leading term of the polynomial on the right-hand side of (1), Proposition 2.2 implies
that the fundamental class of p∗OX is

∑
B basis of N[YB ]. Because the support of p∗OX is p(X), this

implies that the fundamental class of p(X) is
∑

B basis of N[YB ].
As in the proof of Proposition 2.5, we can degenerate p(X) to a subscheme Z which contains YN :=⋃

B basis of N YB . Let I be the ideal sheaf of YN in Z. We have

[Op(X)]− [OYN
] = [I] ∈ K◦((P1)m).

On the other hand, because there is an injective map Op(X) → p∗OX we have [Op(X)] = [p∗OX ] −
[p∗OX/Op(X)]. By comparing the Snapper polynomials and using Proposition 2.4, we have that [p∗OX ] =

p∗[OX ] = [OYN
]. We deduce that

−[p∗OX/Op(X)] = [I].

For n sufficiently large, we have χ((P1)m, p∗OX/Op(X) ⊗ O(n, . . . , n)) ≥ 0, with equality if and only
if p∗OX/Op(X) = 0. Similarly, χ((P1)m, I ⊗ O(n, . . . , n)) ≥ 0, with equality if and only if I = 0. We
deduce that p∗OX = Op(X) and OZ = OYN

, so p(X) is kindred. □

Remark 2.10. It is to obtain Proposition 2.9 that we have included the matroid condition in the def-
inition of kindred subschemes. Proposition 2.5 and its corollaries hold true for the broader class of
subschemes whose Snapper polynomial is

∑
I∈S

∏
i∈I ai for any family S ⊆ 2[ℓ] of sets closed under

taking subsets, all of whose maximal elements have the same cardinality: let us call such families S
pure. In the proof of Proposition 2.9, we see that the fundamental class of the projection of X to (P1)J

is a sum over the maxima of the set family {I ∈ S : I ⊆ J}. Requiring this set family to be pure for all
J ⊆ [ℓ] forces S to be the independent set family of a matroid (or empty) [Oxl11, Exercise 1.1.3]. In any
event, the matroid condition loses us no generality for integral subschemes (Proposition 2.11).

We now give examples of kindred subschemes and discuss related results in the literature. The most
important example for us will be Corollary 3.7, to come. Many other examples arise from the following
result of Brion [Bri03] (see also [Per14, §4.4] for an exposition in the context of spherical varieties).

Proposition 2.11. Let X be an integral subvariety of (P1)ℓ whose fundamental class is multiplicity-free, i.e.,
the coefficients in the expansion of [X] in terms of the [YS ] are all either 0 or 1. Then X is kindred.

Proof. By [BH20, Theorem 4.6] or [CCRL+20], the fundamental class of X is equal to the fundamental
class of YM for some matroid M. By [Bri03], X degenerates to a reduced union of the YS . As the
fundamental class is preserved under this degeneration, X degenerates to YM, which is kindred by
Proposition 2.4. The degeneration also preserves the class in K◦((P1)ℓ), so X is kindred. □

Example 2.12. The wonderful variety WL, embedded in (P1)(
n
2) as in Section 1, has a fundamental class

which is multiplicity-free [Li18], and so WL is a kindred subscheme. This also follows directly from
[LLPP24, Corollary 7.5], which computes the Snapper polynomial of WL: see the proof of Corollary 3.7
below for more detail. As a consequence, any subscheme Z of X[n] with [OZ ] = [OWL

] in K◦(X[n])

defines a kindred subscheme of (P1)(
n
2), and in particular is reduced and Cohen–Macaulay.

Many further examples of subvarieties of (P1)ℓ whose fundamental class is multiplicity-free can
be obtained by taking the closure in (P1)ℓ of certain subvarieties of Aℓ. Closures of linear subspaces
[AB16] and of certain determinantal varieties [HL24] are multiplicity-free, and so give examples of
kindred subschemes. A fact central to [BF24] is that if L1 and L2 are linear subspaces of kn such that
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L2 is not contained in any coordinate hyperplane, then the closure of the semi-inverted Hadamard
product {v1 · v−1

2 : v1 ∈ L1, v2 ∈ L2 ∩ (k∗)n} in (P1)n is multiplicity-free.

Remark 2.13. Kindred subschemes of (P1)ℓ are closely related to Cartwright–Sturmfels ideals in the Nℓ-
graded ring k[(P1)ℓ] = k[x1, . . . , xℓ, y1, . . . , yℓ], the homogeneous coordinate ring of (P1)ℓ [CDNG15,
CDNG20]. These are, by definition, homogeneous ideals whose multigraded generic initial ideal is
radical. It is a consequence of Proposition 2.7 and Proposition 2.5 that the saturated ideal in k[(P1)ℓ]

defining a kindred subscheme is a Cartwright–Sturmfels ideal. Conversely, the subscheme of (P1)ℓ

which is defined by a Cartwright–Sturmfels ideal whose multidegree is the bases of a matroid is a
kindred subscheme. However, the K-theoretic nature of the definition of kindred schemes is more
convenient for our purposes.

Remark 2.14. Finally, we remark that in [Bri01] (see also [BF22, Theorem 4.3]), Brion showed that an
integral subvariety of (P1)ℓ whose multidegree is multiplicity-free is normal and, if the characteristic
of k is 0, has rational singularities. This complements Proposition 2.9, as in some cases the singularities
of a kindred subvariety can be resolved using a projection from a kindred subvariety embedded in a
larger product of projective lines. In this manner Proposition 2.9 can be used to replace the invoca-
tions of rational singularities in the collapsing arguments of [BF22], thus allowing the characteristic 0
assumption of that work to be removed.

3. VANISHING THEOREMS

In this section we introduce a subscheme of the permutohedral variety X[n] for each loopless ma-
troid M, the tropical initial degeneration indw M. It depends on the choice of a “sufficiently generic”
weight w. When M is realized by L ⊆ k

n, the subscheme indw M will be a Gröbner degeneration of
WL inside of X[n]. Recall that there is an embedding of X[n] into (P1)(

n
2). We will show that indw M is

a kindred subscheme of (P1)(
n
2), and we will use this to prove Theorems A and B.

Let Σ[n] be the permutohedral fan, the fan of the toric variety X[n], so that cones σ of Σ[n] index closed
boundary strata V (σ) of X[n]. To each loopless matroid M on [n], there is an associated subfan ΣM

of Σ[n] called the Bergman fan of M [AK06]. Concretely, Σ[n] is the rational fan on Zn/Ze[n] whose rays
are generated by the eS for all nonempty proper subsets S ⊂ [n], and in which eS1

, . . . , eSk
lie in a

common cone if and only if, up to reordering, S1 ⊂ · · · ⊂ Sk. The rank rkM(S) of a set S ⊆ [n] in the
matroid M is the size of a largest intersection of S with a basis of M, and a flat of M is a subset of [n]
maximal with respect to its rank. Then ΣM contains exactly the cones of Σ[n] whose ray generators all
correspond to flats of M. The dimension of ΣM is r − 1, where r is the rank of M.

Throughout, choose some w ∈ Qn/Qe[n] which is sufficiently generic, in the sense that for each pair
of cones σ and τ of Σ[n], if the intersection σ ∩ (w + τ) is nonempty, then it is transverse. In particular,
if dimσ + dim τ < n− 1, we require that σ and w + τ are disjoint.

Definition 3.1. For a loopless matroid M of rank r on [n], let indw M be the union of those strata
V (σ) ⊆ X[n] such that σ intersects a maximal cone of w+ΣM, where σ is a cone of Σ[n] of codimension
r − 1. If M has loops, then define indw M to be empty.

Note that indw M is by definition reduced. The symbol ind stands for “initial degeneration”. 1

1We have avoided choosing the symbol “inM” to avert any confusion with the notion of the initial matroid of a valuated
matroid, which we do not use.
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Proposition 3.2. Let L ⊆ k
n be a realization of a loopless matroid M. Then there is a flat degeneration of WL

to indw M inside of X[n]. In particular, [OWL
] = [Oindw M] in K◦(X[n]).

Proof. Note that indw M does not change if we scale w, so we may assume that w lies in Zn/Ze[n], the
cocharacter lattice of the torus in X[n]. In particular, w defines an action of Gm on X[n]. We claim that
the flat limit limt→0 t ·WL is equal to indw M.

In [Kat09, Theorem 10.1], Katz shows that, as w is sufficiently generic, the limit is a union of
torus-invariant strata. He also gives a combinatorial description of the strata which occur, and this
description matches the definition of indw M because ΣM is the tropicalization of PL∩P((k∗)[n]) [Stu02,
§9.3]. In particular, this shows that the reduction of limt→0 t · WL is equal to indw M, so it suffices to
show that this limit is reduced.

By Example 2.12, WL defines a kindred subscheme of (P1)(
n
2). In particular, because Euler char-

acteristics are locally constant in proper flat families, any flat degeneration of WL inside of (P1)(
n
2) is

kindred. Corollary 2.6 then implies that the flat limit is reduced.
It remains to show that [OWL

] = [Oindw M] in K◦(X[n]). For any class a ∈ K◦(X[n]), we have

χ(X[n], a · [OWL
]) = χ(WL, a) = χ(indw M, a) = χ(X[n], a · [Oindw M])

because Euler characteristics are preserved by degeneration. By [AP15, Theorem 1.3], the pairing
K◦(X[n])×K◦(X[n]) → Z given by (a, b) 7→ χ(X[n], ab) is perfect, so [OWL

] = [Oindw M]. □

Remark 3.3. Reducedness of the flat limit implies that all multiplicities in Katz’ formula equal 1. That
is, it is a consequence of the proof that for any codimension r − 1 cone σ of Σ[n], there is at most one
maximal cone of w + ΣM which intersects it, and the tropical intersection multiplicity is 1. This fact
can also be proved using the agreement of stable intersection and matroid intersection in the sense of
Welsh [Spe08, §4] (see also [EHL23, Corollary 1.7]).

Proposition 3.2 implies that Euler characteristic computations on indw M are equal to the analogous
computations on the wonderful variety, and so to the analogous computations in K(M). In order to
prove Theorem B, we will need to relate computations on indw M to computations in K(M) for non-
realizable matroids. Our tool to do this will be valuativity.

For a set P ⊆ Rn, let 1P : Rn → Z be its indicator function. A function valued in an abelian group,
with domain the set of all matroids of rank r on [n], is said to be valuative if it factors through the map
M 7→ 1P (M). Valuative functions form an abelian group under addition.

Proposition 3.4. The assignment M 7→ [Oindw M] ∈ K◦(X[n]) is valuative.

We prepare for the proof with the following lemma.

Lemma 3.5. A cone σ of Σ[n], of any dimension, intersects w +ΣM if and only if V (σ) ⊆ indw M.

Proof. If V (σ) is a component of indw M, then the strata V (τ) contained in V (σ) are those indexed by
cones τ ⊇ σ. Because σ contains a point v of the relative interior of a face F of w + ΣM and F meets σ
transversely, a neighborhood of v within F intersects every such cone τ .

Conversely, suppose σ is a cone of Σ[n] of codimension less than r−1 meeting w+ΣM. By induction
on the dimension, it suffices to find a proper face of σ which meets w + ΣM. By our transversality
assumptions, the intersection A of w+ΣM with the subspace spanR σ equals the support of their stable
intersection. Because w + ΣM is a balanced polyhedral complex when every maximal cone is given
weight 1, the stable intersection A also has positive weights on its facets making it balanced. The
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dimension of A is dimΣM − codimσ > 0. But σ is a strictly convex cone, and a positive-dimensional
balanced complex cannot be contained in a strictly convex cone, so A meets the boundary of σ. □

Proof of Proposition 3.4. Let M be a matroid of rank r on [n]. Let Pr denote the poset of all torus-orbit
closures in X[n] of dimension at most r−1, ordered by inclusion. Then Pr has the intersect-decompose
property of [Knu09] and contains the components of indw M, and we can use [Knu09, Theorem 1] to
find integers cσ(M) such that

[Oindw M] =
∑

V (σ)∈Pr

cσ(M)[OV (σ)].

The computation uses a recurrence, which we restate to be careful about the effect of using a larger
intersect-decompose set than the minimal one. First define

iσ(M) =

1 if V (σ) ⊆ indw M,

0 otherwise.

Now the cσ(M) are defined by the following recursive property:

cσ(M) = iσ(M)−
∑

V (σ′)∈Pr

V (σ′)⊋V (σ)

cσ′(M).

The sum on the right side is empty when dimV (σ) > r − 1. By descending induction on dimV (σ),
if iσ(M) = 0, then cσ(M) = 0. Then considering only those σ for which iσ(M) = 1 yields the Möbius
recurrence as Knutson states it.

By Lemma 3.5, iσ(M) = 1 if and only if σ ∩ (w + ΣM) is nonempty. If σ ∩ (w + ΣM) is nonempty,
then it is the intersection of two tropically convex sets [Ham15, Proposition 2.14], and therefore is
tropically convex itself and hence contractible [DS04, Theorem 2]. Because a polyhedral complex with
a bounded face admits a deformation retract onto its bounded subcomplex (see, e.g., the proof of
[EMPV25, Lemma 3.4]), for a sufficiently large cube C centered at the origin, the intersection σ ∩ (w +

ΣM) deformation retracts to C ∩ σ ∩ (w+ΣM). In particular, we have iσ(M) = χtop(C ∩ σ ∩ (w+ΣM)),
where χtop is the topological Euler characteristic. If A and B are bounded polyhedral sets, then one
may find polyhedral complex structures for A, B, A ∩ B, and A ∪ B, compatible with inclusions,
so χtop(A) + χtop(B) = χtop(A ∪ B) + χtop(A ∩ B). Because polyhedral sets are intersection closed,
[Gro78] then implies that the topological Euler characteristic of a bounded polyhedral set is linear in
its indicator function. Since the assignment M 7→ 1ΣM is valuative [Ham17, Proposition 2.26 & Remark
5.17], [BEST23, Corollary 7.11(ii)], the association M 7→ iσ(M) is therefore valuative. The recursive
formula then implies that the coefficients cσ(M) are also valuative. □

For any loopless matroid M, there is a restriction map from K◦(X[n]) to K(M). In particular, for any
class ξ ∈ K◦(X[n]), we may consider the Euler characteristic χ(M, ξ) of the image of ξ in K(M). When
M is realized by L, this map coincides with the restriction map K◦(X[n]) → K◦(WL) followed by the
identification K◦(WL) ∼= K(M), see [LLPP24, Section 5].

Proposition 3.6. For any class ξ ∈ K◦(X[n]) and any loopless matroid M, we have

χ(M, ξ) = χ(indw M, ξ).

Proof. When M is realizable, this follows from Proposition 3.2. By Proposition 3.4, the function which
assigns a matroid M to χ(indw M, ξ) is valuative. By [LLPP24, Lemma 6.4], the function which assigns
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a matroid M to χ(M, ξ) is valuative. If two valuative functions agree on all realizable matroids, then
they are equal on all matroids [DF10, Theorem 5.4] (see also [BEST23, Lemma 5.9]). □

Corollary 3.7. For every matroid M, the embedding of indw M into (P1)(
n
2) realizes it as a kindred subscheme.

Proof. If M has loops, then indw M is empty, so this is automatic. We may therefore assume that M is
loopless. Let Li,j denote the restriction of the O(1) on the factor of (P1)(

n
2) labeled by {i, j}. In [LLPP24,

Corollary 7.5], the authors show that

χ(M,
⊗
i,j

L⊗ai,j

i,j ) =
∑
S

∏
{i,j}⊂S

ai,j ,

where the sum is over subsets S of
(
[n]
2

)
:= {{i, j} : i, j ∈ [n], i ̸= j} that satisfy the dragon Hall–Rado

condition: for any nonempty T ⊂ S, it holds that rkM(
⋃

{i,j}∈T {i, j}) ≥ |T | + 1. It is known that the

subsets which satisfy the dragon Hall–Rado condition are the bases of a matroid on
(
[n]
2

)
called the

Dilworth truncation of M: see, e.g., [Mas81, §1.1]. Proposition 3.6 implies that the Snapper polynomial
of indw M has the same formula, and so indw M is a kindred subscheme, with the Dilworth truncation
of M as its progenitor matroid. □

Using Corollary 2.6, we deduce the following result from Corollary 3.7.

Corollary 3.8. indw M is Cohen–Macaulay, geometrically connected, and geometrically reduced.

We already have the tools to prove Theorems A and B for ample line bundles on X[n], but we will
need to develop an additional tool to prove the main theorems for nef line bundles. We start with
the following fact, the so-called strong normality of generalized permutohedra. Recall that, by our
definitions, generalized permutohedra are lattice polytopes.

Proposition 3.9 ([Wel76, Theorem 18.6.3]). Let P1, . . . , Pℓ be a collection of generalized permutohedra in Zn.
Every lattice point of the Minkowski sum P1 + · · ·+ Pℓ can be written as p1 + · · ·+ pℓ, with pi ∈ Pi ∩ Zn.

Recall that every nef line bundle on X[n] corresponds to a generalized permutohedron P . As noted
after [EHL23, Proposition 3.10], Proposition 3.9 implies that the map X[n] →

∏ℓ
i=1 P(kPi∩Zn

) induced
by the complete linear series of the line bundle associated to each Pi has image isomorphic to the toric
variety of the normal fan of P1 + · · · + Pℓ. In particular, the image of the map fP : X[n] → P(kP∩Zn

)

is the toric variety XP of the normal fan of P , and when P1, . . . , P(n2)
is the collection of all segments

conv{ei, ej}, we recover the defining embedding X[n] ↪→ (P1)(
n
2) of the introduction.

Proposition 3.10. Let P be a generalized permutohedron, and let fP : X[n] → XP be the corresponding map.

Then fP is “locally a coordinate projection from (P1)(
n
2),” in the following sense. There is an open cover of XP

by open sets {Uσ} such that each Uσ admits an open embedding into (P1)ℓ for some ℓ. Setting Yσ to be the
closure of Uσ in (P1)ℓ, we have the following commutative diagram

X[n] f−1
P (Uσ) X[n] (P1)(

n
2)

XP Uσ Yσ (P1)ℓ,

fP p

where the map from X[n] to (P1)(
n
2) is the defining embedding, and p is a coordinate projection.
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Proof. Let σ be a maximal cone of the normal fan of P , and let Uσ be the corresponding open subset of
XP . Let T1, . . . , Tℓ be the directions of the edges leaving the vertex of P corresponding to σ. Let Q be
the Minkowski sum of the simplices corresponding to T1, . . . , Tℓ, where the simplex corresponding to
an edge direction ei − ej is conv{ei, ej}. Note that Q is a generalized permutohedron. Let Yσ be the
toric variety corresponding to the normal fan of Q. Then σ is also a cone of the fan of Yσ , so Uσ can be
identified with an open subset of Yσ . It follows from Proposition 3.9 that there is an embedding of Yσ

into (P1)ℓ induced by T1, . . . , Tℓ. As the embedding of X[n] into (P1)(
n
2) is the map induced by taking

all
(
n
2

)
of the simplices conv{ei, ej}, this gives the desired diagram. □

Corollary 3.11. Let P be a generalized permutohedron, and let fP : X[n] → XP be the corresponding map.
Then, for any matroid M, the natural map OfP (indw M) → RfP∗Oindw M is an isomorphism, and fP (indw M)

is Cohen–Macaulay. If M is realized by L, then the natural map OfP (WL) → RfP∗OWL
is an isomorphism,

and fP (WL) is Cohen–Macaulay.

Proof. Let Uσ be an element of the open cover constructed in Proposition 3.10, which is equipped with
a locally closed embedding Uσ ↪→ (P1)ℓ. By Proposition 3.7, indw M is a kindred subscheme of (P1)(

n
2).

By Proposition 2.9, p(indw M) is a kindred subscheme of (P1)ℓ, and the natural map from Op(indw M) to
Rp∗Oindw M is an isomorphism. By Corollary 2.6, p(indw M) is Cohen–Macaulay, so Uσ ∩ p(indw M) is
Cohen–Macaulay. As being Cohen–Macaulay is a local property and fP (indw M) is covered by open
sets of the form Uσ ∩ p(indw M), this implies that fP (indw M) is Cohen–Macaulay. Similarly, that the
natural map OfP (indw M) → RfP∗Oindw M is an isomorphism is a local property, so this holds as well.
When M is realized by L, since WL is kindred (Example 2.12), an identical argument shows that the
natural map OfP (WL) → RfP∗OWL

is an isomorphism and that fP (WL) is Cohen–Macaulay. □

Proposition 3.12. Let P be a generalized permutohedron, and let fP : X[n] → XP be the corresponding map.
Then Hi(indw M,L⊗a

P ) = 0 unless a ≥ 0 and i = 0, or a < 0 and i = dim fP (indw M). For any a, the
restriction map from H0(X[n],L⊗a

P ) → H0(indw M,L⊗a
P ) is surjective.

Proof. The toric variety XP is equipped with an ample line bundle O(1) corresponding to the polytope
P ; this line bundle pulls back to LP under fP . By Corollary 3.11 and the projection formula, the
natural map from Hi(fP (indw M),O(a)) to Hi(indw M,L⊗a

P ) is an isomorphism, so it suffices to show
the desired vanishing and surjectivity of global sections for Hi(fP (indw M),O(a)).

Note that fP (indw M) is a union of torus-invariant subvarieties in the toric variety XP . As such, it is
defined over SpecZ. By upper semicontinuity, it suffices to show the desired vanishing and surjectivity
of global sections after base changing fP (indw M) to a field of positive characteristic. Over any field
of positive characteristic, fP (indw M) is a compatibly split subscheme of XP with respect to a certain
Frobenius splitting of XP [Pay09, Proposition 3.2], see also [BK05, Proposition 1.2.1]. As in the proof
of Proposition 2.7, the vanishing and surjectivity of global sections then follows from [BK05, Theorem
1.2.8, Theorem 1.2.9], as fP (indw M) is Cohen–Macaulay by Corollary 3.11. □

Proof of Theorem A. Note that (3) was proved in Corollary 3.11. For parts (1) and (2), we use the degen-
eration of WL to indw M constructed in Proposition 3.2; these then follow from upper semicontinuity
and Proposition 3.12. □

Proof of Theorem B. By Proposition 3.6, χ(M,L⊗a
P ) = χ(indw M,L⊗a

P ). As Hi(indw M,L⊗a
P ) = 0 for any

a ≥ 0 and i > 0, we see that χ(indw M,L⊗a
P ) = dimH0(indw M,L⊗a

P ) and in particular, the right-hand
side is a polynomial in a of some degree d. Using Proposition 3.9 and the results in Proposition 3.12, we
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see that the ring
⊕

a≥0 H
0(indw M,L⊗a

P ) is Cohen–Macaulay and generated in degree 1. As described
in the introduction, this implies that if we write∑

a≥0

dimH0(indw M,L⊗a
P )ta =

h∗
0 + h∗

1t+ · · ·+ h∗
dt

d

(1− t)d+1
,

then (h∗
0, . . . , h

∗
d) is a Macaulay vector. The result follows. □

4. DIMENSIONS OF IMAGES

Theorem A states that the cohomology of a negative tensor power of a line bundle LP on a won-
derful variety vanishes except possibly in degree equal to the dimension of fP (WL), where fP is the
map to projective space induced by LP . In Theorem 4.2 below, we give an explicit combinatorial
formula for that dimension. Theorem 4.2 is stated in terms of indw M, but if L realizes M, then WL

degenerates to indw M by Proposition 3.2, and so they have the same class in the Chow groups of X[n].
This implies that dim fP (WL) = dim fP (indw M) for any generalized permutohedron P since, if A is an
ample divisor on X[n], then dimWL − dim fP (WL) is the least i such that fP∗(A

i ⌢ [WL]) is nonzero,
and similarly for indw M because it is equidimensional.

For a loopless matroid M, we begin by showing that dim fP (indw M) is equal to the degree of the
Snapper polynomial χ(M,L⊗a

P ), which is used to define the h∗ vector, and is also equal to a quantity
derived from the Chow ring A•(M) of M. This will be used to deduce Theorem 4.2. For a rank r loopless
matroid M, let

∫
M

: Ar−1(M) → Z be the degree map as defined in [AHK18, Section 5].

Proposition 4.1. Let M be a loopless matroid on [n], and let P be a generalized permutohedron in Rn. Then the
following quantities are equal:

(1) The degree of the polynomial a 7→ χ(M,L⊗a
P ).

(2) The dimension of fP (indw M).
(3) The largest d such that c1(LP )

d is nonzero in A•(M), i.e., the numerical dimension of c1(LP ) in A•(M).

Proof. Note that the line bundle O(1) on P(kP∩Zn

) pulls back to LP via fP . By Proposition 3.6 and
Corollary 3.11, we have χ(M,L⊗a

P ) = χ(indw M,L⊗a
P ) = χ(fP (indw M),O(a)). The line bundle O(1)

is ample on fP (indw M), so its Snapper polynomial has degree equal to the dimension of fP (indw M),
proving that the first quantity is equal to the second quantity.

For the third quantity, we first note from [AHK18, Section 5] that A•(M) is equipped with a sur-
jection A•(X[n]) → A•(M), such that, for any ξ ∈ Ar−1(X[n]), we have

∫
M
(ξ) = ξ ⌢ [ΣM]. Here

[ΣM] ∈ Ar−1(X[n]) is the Chow homology class called the Bergman class of M, which is the Minkowski
weight corresponding to ΣM as a balanced fan.

Let d be the numerical dimension of c1(LP ). For 0 ≤ k ≤ d, Poincaré duality for A(M) [AHK18,
Theorem 6.19] shows that there is some xk ∈ Ar−1−k(X[n]) such that

∫
M
xk · c1(LP )

k ̸= 0. As the ample
cone is full dimensional and A•(M) is generated in degree 1, we may take xk = Ar−1−k for some
ample A ∈ A1(X[n]) and each 0 ≤ k ≤ d. Because fP ∗([indw M] ·Ar−1−k) is effective and O(1) is ample,
we see that fP ∗(A

r−1−k ⌢ [indw M]) is nonzero if and only if c1(O(1))k ⌢ fP ∗(A
r−1−k ⌢ [indw M])

is nonzero. The latter is equal to Ar−1−k · c1(LP )
k ⌢ [indw M] by the projection formula, which in

turn is equal to
∫
M
Ar−1−k · c1(LP )

k because the fundamental class of indw M in A•(X[n]) is equal to
the Bergman class [ΣM] by Proposition 3.6 and the Hirzebruch–Riemann–Roch theorem, used like it
is in Proposition 2.2. Therefore r − 1 − d is the smallest number such that fP ∗(A

r−1−d ⌢ [indw M]) is
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nonzero, and so r−1−d = dim indw M−dim fP (indw M) since indw M is equidimensional of dimension
r − 1. Rearranging implies the result. □

We can now give a combinatorial formula for the quantities in Proposition 4.1. This formula will
imply that the numerical dimension of c1(LP ) in A•(M) only depends on the lineality space of the
normal fan of P . A generalized permutohedron P in Rn induces a partition [n] = S1 ⊔ · · · ⊔ Sℓ, where
the sets are the equivalence classes induced by the equivalence relation generated by setting i ∼ j if
there is an edge of direction ei − ej in P . The parts of the partition induced by a matroid polytope
P (M) are usually called the connected components of M.

Theorem 4.2. Let M be a loopless matroid on [n], and let P be a generalized permutohedron with induced
partition [n] = S1 ⊔ · · · ⊔ Sℓ. Then the numerical dimension of c1(LP ) in A•(M) is the minimum over
partitions [n] = T1 ⊔ · · · ⊔ Tk coarsening [n] = S1 ⊔ · · · ⊔ Sℓ of

∑k
i=1(rkM(Ti)− 1).

We will need a preparatory lemma. For a set S ⊆ [n], write ∆S for the convex hull of {ei : i ∈ S},
which is a generalized permutohedron, and let hS = c1(L∆S

).

Lemma 4.3. Let [n] = S1 ⊔ · · · ⊔ Sℓ be a partition, and let Q =
∑ℓ

i=1

∑
S⊆Si

∆S . Let d be the minimum over
partitions [n] = T1⊔· · ·⊔Tk coarsening [n] = S1⊔· · ·⊔Sℓ of

∑k
i=1(rkM(Ti)−1). Then

∫
M
c1(LQ)

dhr−1−d
[n] >

0, and the numerical dimension of c1(LQ) is d.

Proposition 4.4. [BES24, Theorem 5.2.4] For a multiset {J1, . . . , Jr−1} of subsets of [n] and a loopless ma-
troid M on [n], then

∫
M
hJ1

· · ·hJr−1
is equal to 1 if {J1, . . . , Jr−1} satisfies the dragon Hall–Rado condition:

rkM

(⋃
i∈I

Ji

)
≥ |I|+ 1 for all nonempty I ⊆ [r − 1],

and is 0 otherwise.

Proof of Lemma 4.3. To prove that
∫
M
c1(LQ)

dhr−1−d
[n] > 0, it suffices to check that there is some multiset

{Si1 , . . . , Sid} that satisfies the dragon Hall–Rado condition after adding r − 1− d copies of [n]. Let ai
be the multiplicity of Si in such a family. This holds for (ai) ∈ Nℓ if and only if∑

i∈I

ai ≤ rkM

(⋃
i∈I

Si

)
− 1

for every nonempty I ⊆ [ℓ]. By [Edm70, Theorem 8] the nonnegative integer vectors (ai) satisfying
these bounds are the lattice points of a polymatroid in Edmonds’ sense. The maximum attained by∑ℓ

i=1 ai is given by the evaluation of its rank function at [ℓ], which, from the description in [Edm70,
Theorem 8], is exactly d. It follows from [LLPP24, Corollary 7.5], which gives an explicit formula for the
Snapper polynomial χ(M,

⊗
S L⊗aS

∆S
) in terms of the dragon Hall–Rado condition, that the degree of the

polynomial a 7→ χ(M,L⊗a
Q ) is d, and so the numerical dimension of c1(LQ) is d by Proposition 4.1. □

As the last item of preparation we recall a result implicit in the proof of [EL23, Proposition 4.11].

Proposition 4.5. Let D1 and D2 be the restrictions of nef classes from A1(X[n]) to A1(M), where M has rank r.
Let E be the restriction of an effective class in A1(X[n]), and assume that D2 +E is the restriction of a nef class
from A1(X[n]). Then, for each 0 ≤ a ≤ r − 1,∫

M

Da
1D

r−1−a
2 ≤

∫
M

Da
1(D2 + E)r−1−a.
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Proof of Theorem 4.2. Let Q be the Minkowski sum
∑ℓ

i=1

∑
S⊆Si

∆S , and let d and e be the numerical
dimensions of c1(LP ) and c1(LQ), respectively. By Lemma 4.3, it suffices to show that d = e.

As Q is the product of permutohedra, one from each RSi , the image of X[n] under fQ is XS1
× · · · ×

XSℓ
. The partition [n] = S1 ⊔ · · · ⊔ Sℓ has the property that P is a product P1 × · · · × Pℓ of generalized

permutohedra Pi ⊂ RSi , each of maximal dimension |Si| − 1 [AA23, Section 5.1]. Thus, the map fP

factors through fQ, and so dim fP (indw M) ≤ dim fQ(indw M), i.e., d ≤ e.
The generalized permutohedron P defines a nef and big line bundle on XS1

× · · · × XSℓ
. In

particular, by [Laz04, Corollary 2.2.7], we can write mc1(LP ) = c1(LQ) + E for some m > 0, where
E is the pullback of an effective divisor from XS1

× · · · × XSℓ
(and so is effective). By Lemma 4.3,∫

M
c1(LQ)

ehr−1−e
[n] > 0. By Proposition 4.5, we have

0 <

∫
M

c1(LQ)
ehr−1−e

[n] ≤
∫
M

(c1(LQ) + E)ehr−1−e
[n] = me

∫
M

c1(LP )
ehr−1−e

[n] .

In particular, c1(LP )
e ̸= 0, so e ≤ d. □

We record a case in which the formula of Theorem 4.2 is particularly easy to evaluate.

Corollary 4.6. If M is a matroid of rank r on [n] and P a generalized permutohedron such that the induced
partition S1 ⊔ · · · ⊔ Sℓ of P coarsens the induced partition of P (M) (into connected components), then the
numerical dimension of c1(LP ) equals r − ℓ = r − n+ dimP .

Proof. The rank function rkM is additive on unions of connected components [Oxl11, Fact 4.2.13]. Any
partition T1 ⊔ · · · ⊔ Tk coarsening the induced partition of P also coarsens the partition into connected
components of M, and therefore

k∑
i=1

(rkM(Ti)− 1) = rkM([n])− k = r − k

which is minimized by maximizing k, i.e., taking T• and S• identical with k = ℓ. □

While the Snapper polynomial of LP on a matroid is valuative, we caution that the h∗ vector is not
valuative because of the varying powers of 1 − t that depend on the dimension, as computed in this
section. Explicitly, let M be the rank 2 uniform matroid on [4] (i.e., with all sets of size 2 as bases), let
M1 and M2 be rank 2 matroids on [4] with unique non-basis {1, 2} and {3, 4}, respectively, and let M12

be the rank 2 matroid on [4] with both of these as non-bases. One can verify that with P = P (M12), the
h∗ vectors do not respect the valuative relation 1P (M) = 1P (M1) + 1P (M2) − 1P (M12).

5. DISCUSSION AND EXAMPLES

In this section, we give some examples of nef divisors which do not satisfy the conclusion of
Theorem A and Theorem B, and we discuss a few extensions of the main theorems.

5.1. Examples. In the Hodge theory of matroids [AHK18] and more generally in tropical Hodge
theory [ADH23], a positivity property known as the “Kähler package” is established for the set of
strictly convex divisor classes [AHK18, Definition 4.1 & 4.2] (see also [ADH23, Definition 5.1]), which
contains, in general strictly, the pullbacks of ample divisors on the permutohedral variety. In contrast,
the following example shows that the conclusion of Theorem B may fail for the line bundle of a “strictly
convex” divisor class.
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Example 5.1. For n ≥ 2, let [n, n] := {1, . . . , n, 1, . . . , n}, and define L = C3 ↪→ C[n,n] by (x, y, z) 7→
(x − z, x − 2z, . . . , x − nz, y − z, y − 2z, . . . , y − nz). The corresponding hyperplane arrangement on
PL = P2 consists of two families of parallel lines {ℓi := V (x − iz)}i∈[n] and {ℓj := V (y − jz)}j∈[n].
The wonderful variety WL is the blow-up of n2 + 2 points consisting of [0 : 1 : 0] =

⋂
i∈[n] ℓi, [1 : 0 :

0] =
⋂

j∈[n] ℓj , and ℓi ∩ ℓj for every pair (i, j). Let x[n], x[n], and xi,j respectively denote the exceptional
divisors, and let xi be the strict transform of ℓi for i ∈ [n, n]. Denote by ∂WL the set of divisors
{xi,j}i∈[n],j∈[n] ∪ {x[n], x[n]} ∪ {xi}i∈[n,n]. For a divisor D on WL, one can translate [ADH23, Definition
5.1] to the statement that D is “strictly convex” if and only if D is R-linearly equivalent to a positive
linear combination of ∂WL and the intersection product D.E is positive for all E ∈ ∂WL.

Let α denote the pullback of the hyperplane class along the blow-down WL → P2, and define a
divisor class D ∈ A1(WL) by

D := (n+ 2)α− x[n] − x[n] −
∑

i∈[n],j∈[n]

xi,j .

Since α =
∑

i∈[n] xi,k + x[n] =
∑

i∈[n] xk,i + x[n] in A1(WL) for any fixed k ∈ [n], one verifies that D is
R-linearly equivalent to a positive linear combination of the divisors in ∂WL. Moreover, one verifies
that D.E = 1 for all E ∈ ∂WL, so D is “strictly convex.” By Riemann–Roch for surfaces, one computes

χ(WL,OWL
(aD)) =

D.D

2
a2 − D.KWL

2
a+ χ(WL,OWL

) = (2n+ 1)a2 − (n+ 1)(n− 4)

2
a+ 1.

From the relation χ(WL,OWL
(aD)) = h∗

0

(
a+2
2

)
+ h∗

1

(
a+1
2

)
+ h∗

2

(
a
2

)
, we find that

(h∗
0, h

∗
1, h

∗
2) =

(
1,

−n2 + 7n+ 2

2
,
(n+ 1)n

2

)
in this case. In particular, the h∗-vector is not a Macaulay vector for n ≥ 6: n = 6 gives (1, 4, 21), n = 7

gives (1, 1, 28), and n ≥ 8 gives h∗
1 < 0. One can verify directly using submodular functions that the

divisor class D is indeed not a pullback of a nef divisor on the permutohedral variety when n > 3.

The next example shows that the conclusion of Theorem B may fail for a line bundle even if there is
a tensor power that is isomorphic to LP for some generalized permutohedron P .

Example 5.2. Let k be a field of characteristic 2, and let L ⊆ k
7 be a 3-dimensional subspace whose

intersections with the coordinate hyperplanes of k7 are, for some choice of coordinates on L, the 7

planes defined over F2. The matroid realized by L is known as the Fano matroid. Then WL is obtained
by blowing up the 7 F2-rational points of P2. Let D be the anti-canonical divisor of WL, so D =

O(3) ⊗ O(−E1 − · · · − E7), where the Ei are the exceptional divisors. The line bundle O(2D) is the
restriction of the line bundle L−∆[7]

on X[7] corresponding to the divisor class usually denoted by β.
However, O(D) is not the restriction of a nef line bundle from X[7]. That is, there is no integer-

valued submodular function rk : 2[7] → Z taking value 0 at the empty set and singletons, −1 at the
three-element flats of the Fano matroid (the triples of coordinates of P(k7) vanishing at F2-rational
points of PL), and −3 at [7]. We sketch a verification. First, rk takes value at most −2 on sets of size 5,
because these are unions of two three-element flats. The assumptions imply rk is nonincreasing, so
rk(S) ∈ {0,−1} when |S| = 2. If rk(S) = −1, submodularity forces that rk([7] \ S) = −2 and, for any
T ⊆ [7], that rk(T ) = rk(T ∩ S) + rk(T \ S). When T is a three-element flat meeting S in one element,
this shows rk(T \S) = −1. Applying submodularity to two of these differences and one three-element
flat disjoint from S gives the contradiction rk([7] \ S) ≤ −3. Otherwise rk(S) = 0 whenever |S| = 2.
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Then applying submodularity to a set of size 5 and two three-element flats that meet it in two elements
implies the contradiction rk([7]) ≤ −4.

Let x, y, z be coordinates on P2. The dimension of the space of sections H0(WL,O(D)) is 3, and the
sections a = xy(x + y), b = xz(x + z), c = yz(y + z) form a basis for H0(WL,O(D)). The sections
define a map π : WL → P2, which is generically 2 to 1. Let d be the section xyz(x + y)(x + z)(y + z)

of O(2D). Then H0(WL,O(2D)) is generated by Sym2 H0(WL,O(D)) and d. The complete linear
system of H0(WL,O(2D)) defines a map f from WL to P6, whose image is the variety usually called
the reciprocal plane [PS06], and this map factors through P(1, 1, 1, 2). This map contracts the strict
transforms of the F2-rational lines on P2 to obtain 7A1 surface singularities. As A1 surface singularities
are rational and Gorenstein, we see that Rf∗OWL

= Of(WL).
Viewing f(WL) as a hypersurface in P(1, 1, 1, 2), we see that the section ring is k[a, b, c, d]/(d2 −

abc(a+ b+ c)), which is Gorenstein. This describes f(WL) as a double cover of P2, branched along the
quartic abc(a+ b+ c) = 0. We see that π∗OWL

= OP2 ⊕OP2(−2) and Riπ∗OWL
= 0 for i > 0, and that

the h∗ vector of O(D) is (1, 0, 1). This is not a Macaulay vector.

The following example shows that Theorem A(1) does not extend to restrictions to WL of globally
generated vector bundles on X[n].

Example 5.3. In [BEST23], the authors introduced a vector bundle QL on X[n] associated to a linear
subspace L of kn. This bundle QL is globally generated, and it is equipped with a section that
transversely cuts out WL [BEST23, Theorem 7.10], and so the restriction of QL to WL is identified with
the normal bundle of WL in X[n]. As such, H0(WL,QL) is identified with the tangent space to [OWL

]

in the Hilbert scheme of X[n], and H1(WL,QL) is the obstruction space to deforming WL inside of X[n]

[FGI+05, Proposition 6.5.2]. Let k = C, and let M be the matroid of rank 3 on [12] appearing in [CL23,
Theorem 4.7]. This matroid has the property that GrM, the locally closed subset of Gr(3, 12) which con-
sists of realizations of M, is a 12-dimensional scheme with 2 singular points, which have tangent spaces
of dimension 13. One can show that if L is a realization of M, then an open neighborhood of [OWL

] in
the Hilbert scheme of X[12] is isomorphic to an open neighborhood of GrM containing the point [L]. In
particular, if L corresponds to one of the smooth points of GrM, then dimH0(WL,QL) = 12, but if L
corresponds to one of the singular points of GrM, then dimH0(WL,QL) = 13 and dimH1(WL,QL) > 0.

5.2. Vanishing theorems for other varieties. We now explain how Theorem A can be used to deduce
vanishing theorems for some variations on wonderful varieties. Given a loopless matroid M, a building
set G is a subset of the lattice of flats of M which satisfies some combinatorial conditions, given in [FK04,
Definition 4.4]. Recall that ∆S denotes the convex hull of {ei : i ∈ S}. Set

PG =
∑

S : clM(S)∈G

∆S ,

where the sum denotes Minkowski sum and clM sends a set S to the smallest flat containing it. Note
that PG is a generalized permutohedron. The wonderful variety of G, denoted WL,G , is the image of WL

under the map from X[n] to XPG . If G contains [n], the combinatorial conditions on the building set G
guarantee that WL,G is smooth and can be described as an iterated blow-up of PL [dCP95, Section 4.1].

By Theorem A(3) and the projection formula, if L is any line bundle on WL,G , then the cohomology
does not change when we pull back L along the map from WL to WL,G . In particular, Theorem A
implies the following result.
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Theorem 5.4. Let L ⊆ k
n be a linear subspace which is not contained in any coordinate hyperplane, and let G

be a building set on the lattice of flats of the matroid M. Let L be the restriction of a nef line bundle on XPG to
WL,G of numerical dimension d. Then Hi(WL,G ,L⊗a) = 0 unless either a ≥ 0 and i = 0, or a < 0 and i = d,
the restriction map H0(XPG ,L⊗a) → H0(WL,G ,L⊗a) is surjective, and the ring

⊕
a≥0 H

0(WL,G ,L⊗a) is
Cohen–Macaulay and generated in degree 1.

In particular, Theorem 5.4 proves vanishing theorems for line bundles on M0,n [dCP95, Section 4.2]
and wonderful compactifications of subspace arrangements (see [CHL+22]).

In [BHM+22], the authors introduced the augmented wonderful variety W aug
L of a linear subspace

L ⊆ k
n. This variety is constructed as an iterated blow-up of the projective completion P(L ⊕ k),

and it can also be defined as the closure of L in the stellahedral toric variety XStn , a certain toric
compactification of kn. We use Theorem A to deduce the following vanishing theorem for W aug

L .

Theorem 5.5. Let L ⊆ k
n be a linear subspace, and let L be the restriction of a nef line bundle from XStn to

W aug
L of numerical dimension d. Then Hi(W aug

L ,L⊗a) = 0 unless either a ≥ 0 and i = 0, or a < 0 and i = d,
the restriction map H0(XStn ,L⊗a) → H0(W aug

L ,L⊗a) is surjective, and the ring
⊕

a≥0 H
0(W aug

L ,L⊗a) is
Cohen–Macaulay and generated in degree 1.

Proof. By replacing kn with the smallest coordinate subspace containing L, we can reduce to the case
when L is not contained in any coordinate hyperplane. As described in [BHM+22, Remark 4.1], W aug

L

arises as a stage in the iterated blow-up construction of the wonderful variety of L⊕ k ⊆ k
[n]∪{0}. Set

P =
∑
S∋0

∆S ⊂ R[n]∪{0},

where the sum denotes Minkowski sum. Then the stellahedral toric variety XStn is isomorphic to XP .
Let f denote the map from X[n+1] to XP , so W aug

L is isomorphic to f(WL⊕k). The result then follows
from Theorem A by pulling back to WL⊕k. □

One can similarly deduce an analogue of Theorem B for augmented K-rings of matroids [LLPP24].
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