ABSTRACT. We establish a connection between the algebraic geometry of the type B permutohedral toric variety and the combinatorics of delta-matroids. Using this connection, we compute the volume and lattice point counts of type B generalized permutohedra. Applying tropical Hodge theory to a new framework of “tautological classes of delta-matroids,” modeled after certain vector bundles associated to realizable delta-matroids, we establish the log-concavity of a Tutte-like invariant for a broad family of delta-matroids that includes all realizable delta-matroids. Our results include new log-concavity statements for all (ordinary) matroids as special cases.

CONTENTS

1. Introduction 1
2. Polytope algebras of delta-matroids 7
3. The exceptional Hirzebruch–Riemann–Roch-type theorem 17
4. The Chow cohomology ring of X_{B_n} 24
5. Tutte-like invariants of delta-matroids 28
6. Representability and enveloping matroids 31
7. Vector bundles and K-classes 36
8. Log-concavity 44
References 49

1. INTRODUCTION

For a nonnegative integer n, let $[n] = \{1, \ldots, n\}$. For a subset $S \subseteq [n]$, let $e_S = \sum_{i \in S} e_i \in \mathbb{R}^n$ be the sum of the standard basis vectors indexed by S. If $n \geq 1$, the A_{n-1} permutohedral fan $\Sigma_{A_{n-1}}$ is the complete fan in \mathbb{R}^n whose maximal cones are the chambers of the arrangement of hyperplanes

$$H_{e_i - e_j} = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_i - x_j = 0\} \text{ for all } 1 \leq i < j \leq n.$$

A polytope $P \subset \mathbb{R}^n$ is an A_{n-1} generalized permutohedron if its normal fan coarsens the fan $\Sigma_{A_{n-1}}$. The polyhedral properties of A_{n-1} generalized permutohedra and the algebraic geometry of the toric variety $X_{A_{n-1}}$, associated to $\Sigma_{A_{n-1}}$ (as a fan in $\mathbb{R}^n/\mathbb{R}(1, \ldots, 1)$) have been well studied as a way to illuminate the structure of several combinatorial objects [Pos09, AA23], including graphs, posets, and, notably in recent years, matroids.
Definition 1.1. A matroid M on $[n]$ is a nonempty collection B of subsets of $[n]$, called the bases of M, such that the polytope

$$P(M) = \text{the convex hull of } \{e_B : B \in B\} \subset [0,1]^n,$$

has all edges parallel translates of $e_i - e_j$ for various $i, j \in [n]$, or, equivalently, such that $P(M)$ is an A_{n-1} generalized permutohedron with all vertices lying in $\{0,1\}^n$.

Recently, an interpretation of matroids as elements in the Chow cohomology ring of $X_{A_{n-1}}$ has led to fruitful developments in matroid theory [HK12, AHK18, BST20, LdMRS20]. Conversely, this interpretation allows matroid theory to inform the geometry of $X_{A_{n-1}}$ [Ham17, EHL23]. Many of these developments have recently been unified, recovered, and extended under the new framework of “tautological classes of matroids” [BEST23], modeled after certain torus-equivariant vector bundles on $X_{A_{n-1}}$.

Meanwhile, the fan $\Sigma_{A_{n-1}}$ generalizes to the fan Σ_{Φ} of the Coxeter arrangement of an arbitrary crystallographic root system Φ, the toric variety $X_{A_{n-1}}$ generalizes to the toric variety X_{Φ} of Σ_{Φ}, and the combinatorial objects such as graphs, posets, and matroids generalize appropriately to their Coxeter analogues (see [ACEP20, §4] and references therein). For instance, in the theory of Coxeter matroids [BGW03], matroids in the usual sense are exactly the type A minuscule Coxeter matroids. Several works [Pro90, DL94, Ste94, Kly95] have studied the Chow cohomology ring of X_{Φ}. Missing in these previous works is an interaction between Coxeter matroids and the Chow cohomology ring of X_{Φ} that generalizes the interaction between matroids and the Chow cohomology ring of $X_{A_{n-1}}$.

We establish here such an interaction when Φ is a root system of type B, noting that the type B minuscule Coxeter matroids are exactly delta-matroids (Definition 1.3). This interaction interfaces particularly well with the framework of “tautological classes of delta-matroids” we develop in Section 7, which is modeled after toric vector bundles associated to maximal isotropic subspaces that realize delta-matroids. Some barriers to establishing a uniform treatment for arbitrary Coxeter types can be found in Remark 3.6.

1.1. Main combinatorial consequences.

Definition 1.2. Let $n \geq 0$. The B_n permutohedral fan Σ_{B_n} is the complete fan in \mathbb{R}^n whose maximal cones are the chambers of the arrangement of hyperplanes

$$H_{e_i \pm e_j} = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_i \pm x_j = 0\} \quad \text{for all } i \neq j \in [n],$$

$$H_{e_i} = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_i = 0\} \quad \text{for all } i \in [n].$$

The fan Σ_{B_n} is the normal fan of the type B_n permutohedron Π_{B_n}, also called the signed permutohedron, which is the convex hull of $\{w \cdot (n, \ldots, 1) \in \mathbb{R}^n : w \in S_n^B\}$, where S_n^B is the signed permutation group (see §2.1). A polytope $P \subset \mathbb{R}^n$ is a B_n generalized permutohedron if its normal fan Σ_P coarsens Σ_{B_n}, or, equivalently, if each edge of P is parallel to $e_i + e_j$, $e_i - e_j$, or e_i for various $i, j \in [n]$. B_n generalized permutohedra are also known as bisubmodular polytopes, see [Fuj17, Theorem 1].
A celebrated result of Postnikov [Pos09] gives a formula for the volumes and lattice point enumerators of A_{n-1} generalized permutohedra in terms of transversals of subsets S_1, \ldots, S_k of $[n]$, i.e., subsets $\tau \subseteq [n]$ such that there exist a bijection $j : \{1, \ldots, k\} \rightarrow \tau$ with $j(i) \in S_i$ for all $i \in \{1, \ldots, k\}$. We give a formula for the volumes and lattice point enumerators of B_n generalized permutohedra as follows.

Let $[n] = \{1, \ldots, n\}$, and let $[n, \pi] = [n] \cup [\pi]$, which is endowed with the obvious involution (\cdot). For $S \subseteq [n, \pi]$, we denote $c_S = \sum_{i \in S} e_i$, where $e_j := -e_j$ for $j \in [n]$. Define the set AdS of admissible subsets of $[n, \pi]$ to be

$$\text{AdS} = \{ S \subseteq [n, \pi] \text{ such that } \{i, \bar{i}\} \not\subseteq S \text{ for all } i \in [n] \},$$

and define $\text{AdS}_n = \{ S \in \text{AdS} : |S| = n \}$ to be the set of maximal admissible subsets. A signed transversal of S_1, \ldots, S_n is an admissible subset $\tau \in \text{AdS}_n$ such that there exists a bijection $j : \{1, \ldots, n\} \rightarrow \tau$ with $j(i) \in S_i$ for all $i = 1, \ldots, n$. For an admissible subset $S \in \text{AdS}$, let

$$\Delta^0_S = \text{the simplex which is the convex hull of } \{e_i : i \in S\} \cup \{0\} \text{ in } \mathbb{R}^n.$$

Theorem A. Let P be a lattice B_n generalized permutohedron (i.e., P has vertices in \mathbb{Z}^n).

(a) There exists a unique set of integers $\{c_S \in \mathbb{Z} : S \in \text{AdS} \setminus \{\emptyset\}\}$ such that the signed Minkowski sum $\sum_{S \in \text{AdS} \setminus \{\emptyset\}} c_S \Delta^0_S$ equals P. Hence we may write $P = P(\{c_S\})$.

(b) For any sequence (S_1, \ldots, S_n) of nonempty admissible subsets of $[n, \pi]$, one has that

$$\text{mixed volume of } \{\Delta^0_{S_1}, \ldots, \Delta^0_{S_n}\} = \|\{\text{signed transversals of } S_1, \ldots, S_n\}\|.$$

In particular, normalizing the volume of the standard simplex $\Delta^0_{[n]}$ to be 1, one has

$$\text{Vol} \left(P(\{c_S\}) \right) = \sum_{(S_1, \ldots, S_n)} \|\{\text{signed transversals of } S_1, \ldots, S_n\}\| \cdot c_{S_1} c_{S_2} \cdots c_{S_n},$$

where the sum is over all sequences (S_1, \ldots, S_n) of nonempty admissible subsets.

(c) Let Ψ be the linear operator on polynomials that replaces each monomial $x_1^{d_1} \cdots x_m^{d_m}$ in a polynomial $f(x_1, \ldots, x_m)$ by $\prod_{i=1}^m (x_i - d_i)$, where $\square = [0, 1]^n$ is the standard unit cube in \mathbb{R}^n. Then, we have

$$\# \text{ lattice points of } \left(P(\{c_S\}) - \square \right) = \Psi \left(\text{Vol} \left(P(\{c_S\}) \right) \right),$$

where $P(\{c_S\}) - \square$ denotes the polytope $P(\{c'_S\})$ with $c'_S = c_S - 1$ if $S = \{i\} \subseteq [n]$ and $c'_S = c_S$ otherwise. Here, the volume and lattice point counts are considered as polynomials in the $\{c_S\}$.

The statements (a), (b), and (c) generalize to type B the classical type A results [ABD10, Proposition 2.4], [Pos09, Theorem 9.3], and [Pos09, Theorem 11.3], respectively. Hence, Theorem A fully answers [ACEP20, Question 9.3] for type B. The statement (a) was also shown in [Bas21] via a study of Tits algebras, and a different set of polytopes satisfying the property in (a) was obtained in [PPR23] via a study of shard polytopes. Neither work gives a formula for the volume or lattice point enumerator. We will deduce Theorem A via our study of delta-matroids.
Definition 1.3. A **delta-matroid** D on ground set $[n, \pi]$ is a nonempty collection $F \subseteq \text{AdS}_n$ of admissible subsets of $[n, \pi]$ of cardinality n, called the **feasible sets** of D, such that the polytope

$$P(D) = \text{the convex hull of } \{e_B : B \in F\} \subset [0, 1]^n$$

has all edges parallel translates of $e_i + e_j, e_i - e_j$, or e_i for various $i, j \in [n]$, or, equivalently, such that $P(D)$ is a B_n generalized permutohedron with all vertices lying in $\{0, 1\}^n$. For $i \in [n]$, we say that i is a **loop**, resp. **coloop**, of D if no, resp. every, feasible set contains i.

We often identify a delta-matroid D with its polytope $P(D)$.

Delta-matroids were introduced in [Bou87] by weakening the basis exchange axiom for matroids, to allow cases where not all bases have the same cardinality. (A basis of D is the intersection of a feasible set with $[n]$.) Several combinatorial settings that give rise to matroids have generalizations to delta-matroids. As one example, a bipartite graph yields a transversal matroid whose bases are the spanning trees. Given an arbitrary graph, the sets of vertices incident to matchings of any size are the bases of a delta-matroid [Bou89]. As another, a connected graph yields a graphic matroid whose bases are the spanning trees. Given a graph embedded on a surface, the set of spanning “quasi-trees” are the bases of a delta-matroid [CMNR19a, CMNR19b]; see Example 6.5. There is a theory of linear representability for delta-matroids as well: see Section 6.2. For the equivalence of the definition of delta-matroids in the works cited above and the one given here, see [BGW03, Ch. 4].

A matroid M on $[n]$ with set of bases B defines a delta-matroid D in two different ways: first, by its base polytope $P(M)$, and, second, by its independence polytope

$$IP(M) = \text{the convex hull of } (e_I : I \subseteq [n] \text{ such that } I \subseteq B \text{ for some } B \in B) \subset [0, 1]^n,$$

whose edges are all of the form e_i, or $e_i - e_j$. We will frequently use $P(M)$ and $IP(M)$ to refer to the delta-matroids obtained from M as above.

We introduce a new invariant of delta-matroids defined by a recursive relation similar to the one satisfied by Tutte polynomials of matroids. See Definition 5.1 for the deletion $D \setminus i$, contraction D/i, and projection $D(i)$ of a delta-matroid D.

Definition 1.4. For a delta-matroid D on $[n, \pi]$ with feasible sets F, the **U-polynomial** $U_D(u, v)$ is the unique bivariate polynomial satisfying the properties:

- **(Base case)** If $n = 0$, then $U_D(u, v) = 1$.
- **(Recursive relation)** If $n \geq 1$ and $i \in [n]$, then

$$U_D(u, v) = \begin{cases}
U_{D \setminus i}(u, v) + U_{D/i}(u, v) + uU_{D(i)}(u, v) & \text{if } i \text{ is neither a loop nor a coloop} \\
(u + v + 1) \cdot U_{D \setminus i}(u, v) & \text{if } i \text{ is a loop or a coloop.}
\end{cases}$$

Proposition 5.2 verifies that this recursive definition is well-defined. Specializing $U_D(u, v)$ at $u = 0$, one obtains the **interface polynomial** $\text{Int}_D(v)$, introduced in [ABS04] for graphs and generalized to delta-matroids in [BH14]. See [Mor17] for a survey on interlace polynomials.\(^1\) The invariant U_D

\(^1\)In our terms the “interlace polynomial” defined in [ABS04] equals $\text{Int}_D(v - 1)$. Our definition agrees with [Mor17, Definition 28] and the polynomial denoted q_1 in [BH14].
also gives rise to two invariants of (ordinary) matroids. Let T_M denote the Tutte polynomial of M. One computes, as done in Examples 5.5 and 5.6, that

$$U_{P(M)}(u, v) = \sum_{T \subseteq S \subseteq [n]} u^{|S - T|} v^{\text{corank}_M(S) + \text{nullity}_M(T)},$$

so in particular $\text{Int}_{P(M)}(v) = T_M(v + 1, v + 1)$, and

$$U_{IP(M)}(u, v) = (u + 1)^{n - \text{rank}(M)} T_M \left(u + 2, \frac{u + v + 1}{u + 1} \right).$$

We establish a log-concavity property for U-polynomials of delta-matroids which have an enveloping matroid (Definition 6.6), a condition necessary for applying tools from the tropical Hodge theory developed in [ADH23]. Such delta-matroids include $P(M)$ and $IP(M)$ when M is a matroid (Proposition 6.11), and include realizable delta-matroids (Proposition 6.9), in particular the adjacency delta-matroids of graphs (Example 6.4) and delta-matroids from graphs embedded on surfaces (Example 6.5). We say that the coefficients of a homogeneous polynomial f of degree d form a log-concave unbroken array if for any $1 \leq i < j \leq n$ and any monomial x^m of degree $d' \leq d$, the coefficients of $\{x^i x^{d - d' - k} x^m\}$ form a nonnegative log-concave sequence with no internal zeros.

Theorem B. Let D be a delta-matroid which has an enveloping matroid. Then the polynomials

$$(1.1) \quad (y + q)^n U_D \left(\frac{x}{y + q}, \frac{y - q}{y + q} \right)$$

and

$$(1.2) \quad (y + w)^n U_D \left(\frac{2z + x}{y + w}, \frac{y - z}{y + w} \right)$$

have a log-concave unbroken array of coefficients. In fact, they are denormalized Lorentzian polynomials in the sense of [BH20, BLP23].

In fact, we obtain that (1.1) is denormalized Lorentzian by showing that a specialization of a multivariable version of the U-polynomial is Lorentzian, which gives stronger log-concavity results. See Theorem 8.1. Setting $x = 0$ and $q = 1$ in (1.1) implies that the transformation $(y + 1)^n \text{Int}_D \left(\frac{y + 1}{y + 1} \right)$ of the interlace polynomial has nonnegative log-concave coefficients with no internal zeros, and hence has unimodal coefficients. We note that the interlace polynomial of a realizable delta-matroid can have non-unimodal coefficients (Example 8.5); see Remark 8.4 for a history of conjectures about unimodality for the interlace polynomial. Theorem B and Theorem 8.1 also yield new log-concavity results for (ordinary) matroids. For instance, Theorem 8.1 implies that the coefficients of $U_D(u, 0)$ are log-concave after multiplying the coefficient of u^k by $k!$, and in particular are strictly log-concave. Taking $D = P(M)$ for a matroid M, this implies that if we set

$$a_k = |\{T \subseteq S \subseteq [n]: T \text{ independent in } M \text{ and } S \text{ spanning in } M, |S| - |T| = k\}|,$$

then $a_k^2 \geq \frac{k + 1}{k} a_{k-1} a_{k+1}$. See Corollary 8.2 for more implications of Theorem B. See Theorems 7.15 and 7.14 for the algebro-geometric results underlying the formulas (1.1) and (1.2) respectively, and see §8 for the derivation of log-concavity from these formulas using tropical Hodge theory.

Conjecture 1.5. The hypothesis that D has an enveloping matroid can be removed in Theorem B.
We do not know an easy way to check if a given delta-matroid has an enveloping matroid, so it is difficult to test Conjecture 1.5. We have checked Conjecture 1.5 for all delta-matroids on at most 5 elements, which includes some delta-matroids which lack enveloping matroids: see Example 6.12.

1.2. Underlying geometry. We obtain Theorems A and B by establishing a new connection between the algebraic geometry of the \(B_n \) permutohedral fan \(\Sigma_{B_n} \) and the combinatorics of delta-matroids. The fan \(\Sigma_{B_n} \), as a rational fan over \(\mathbb{Z}^n \), defines a smooth projective toric variety \(X_{B_n} \) which we call the \(B_n \)-permutohedral variety. We follow the conventions in [Ful93, CLS11] for toric varieties and polyhedra, and we work over an algebraically closed field \(k \). The toric variety \(X_{B_n} \) is equipped with two well-studied rings, the Chow cohomology ring \(A^*(X_{B_n}) \) and the Grothendieck ring of vector bundles \(K(X_{B_n}) \).

We construct an isomorphism between the rings \(K(X_{B_n}) \) and \(A^*(X_{B_n}) \), different from the classical Hirzebruch–Riemann–Roch theorem. Recall that the Hirzebruch–Riemann–Roch theorem states that for an arbitrary smooth projective variety \(X \), the Chern character map \(ch: K(X) \otimes \mathbb{Q} \xrightarrow{\sim} A^*(X) \otimes \mathbb{Q} \) is an isomorphism such that

\[
\chi([\mathcal{E}]) = \int_X ch([\mathcal{E}]) \cdot Td(X) \quad \text{for all } [\mathcal{E}] \in K(X),
\]

where \(\chi: K(X) \to \mathbb{Z} \) is the sheaf Euler characteristic map, \(\int_X \) is the degree map, and \(Td(X) \in A^*(X) \otimes \mathbb{Q} \) is the Todd class of \(X \).

To state our exceptional Hirzebruch–Riemann–Roch-type theorem, we need the following definitions. Note that the product fan \((\Sigma_{B_1})^n \), which is the fan induced by the arrangement of coordinate hyperplanes in \(\mathbb{R}^n \), is a coarsening of \(\Sigma_{B_n} \). Hence, since the toric variety of \(\Sigma_{B_1} \) is \(\mathbb{P}^1 \), we have a birational toric morphism \(X_{B_n} \to (\mathbb{P}^1)^n \). Let \(\boxtimes O(1) \) be the vector bundle on \(X_{B_n} \) obtained as the direct sum of the pullbacks of \(O_{\mathbb{P}^1}(1) \) from each \(\mathbb{P}^1 \) factor in the product \((\mathbb{P}^1)^n\).

Theorem C. There exists a ring isomorphism \(\phi^B : K(X_{B_n}) \to A^*(X_{B_n}) \) such that

\[
\chi([\mathcal{E}]) = \int_{X_{B_n}} \phi^B([\mathcal{E}]) \cdot c(\boxtimes O(1)) \quad \text{for all } [\mathcal{E}] \in K(X_{B_n}),
\]

where \(c(\boxtimes O(1)) = c_0(\boxtimes O(1)) + \cdots + c_n(\boxtimes O(1)) \) denotes total Chern class of \(\boxtimes O(1) \).

We define the map \(\phi^B \) and prove Theorem C in §3. We note that the map \(\phi^B \) in Theorem C differs from \(ch \) and is an isomorphism integrally, and the class \(c(\boxtimes O(1)) \) differs from the Todd class of \(X_{B_n} \).

The isomorphism \(\phi^B \) here is closely related to the type \(A \) exceptional Hirzebruch–Riemann–Roch isomorphisms that appeared in [BEST23] and [EHL23] (see §3.3).

The combinatorial utility of Theorem C is mediated by our Theorem D that describes a basis of the ring \(K(X_{B_n}) \) in terms of Schubert delta-matroids (Proposition-Definition 2.7), which correspond to the Bruhat cells of a type \(B \) generalized flag variety (Example 6.3). Recall that there is a standard correspondence between polytopes and base-point-free line bundles on toric varieties [CLS11, §6.2].

Theorem D. The classes of line bundles on \(X_{B_n} \) corresponding to the polytopes of Schubert delta-matroids without coloops form a basis for \(K(X_{B_n}) \).
Theorem D is proved in Section 2. By combining Theorem C with Theorem D, we construct in Corollary 4.5 a graded basis for $A^*(X_{B_n})$ indexed by coloop-free Schubert delta-matroids. By considering the basis elements in $A^1(X_{B_n})$, we deduce statement (a) of Theorem A. The rest of Theorem A is deduced from Theorem C in §4.2. Theorem B is proved by constructing torus-equivariant nef vector bundles on X_{B_n} which are related to delta-matroids; see §7.2 and §7.3. The proof of Theorem B invokes Theorem C in §7.4 to compute certain intersection numbers. Their log-concavity properties are established using tropical Hodge theory in §8.

Acknowledgments. We thank Steven Noble for pointing out Example 6.12. We thank the referee for their helpful comments. The first author is partially supported by the US National Science Foundation (DMS-2001854). The third author is supported by an NDSEG fellowship.

2. POLYTOPE ALGEBRAS OF DELTA-MATROIDS

In this section, we prove Theorem D, which describes $K(X_{B_n})$ in terms of delta-matroids. Section 2.1 sets up preliminaries on the fan Σ_{B_n} and signed permutation group S_{B_n}. The first step of the proof of Theorem D is that $K(X_{B_n})$ is isomorphic to a combinatorially defined ring, the polytope algebra $\mathcal{I}(\Sigma_{B_n})$ of indicator functions of lattice B_n generalized permutohedra modulo translation, introduced in Section 2.2. This is a special case of the folklore statement that $K(\Sigma)$ is isomorphic to a polytope algebra for an arbitrary smooth projective fan Σ, proven precisely in [EHL23, Appendix A]. The isomorphism sends the class $[1(P)]$ of the indicator function of a B_n generalized permutohedron P to the K-class of the corresponding line bundle.

Section 2.3 introduces Schubert delta-matroids. Section 2.4 contains the bulk of the proof of Theorem D, and Section 2.5 assembles it. The proof proceeds in three main steps. Using polyhedral properties special to the unit cube $[0,1]^n$, we show that the intersection of a lattice B_n generalized permutohedron with the cube is a delta-matroid polytope (Proposition 2.12); tiling by translates of this cube, we conclude that $\mathcal{I}(\Sigma_{B_n})$ is generated by classes of delta-matroid polytopes. Intersecting the cube with the dual of a cone of Σ_{B_n} gives a Schubert delta-matroid polytope (Corollary 2.16), which up to translation may be taken to be coloop-free; using the Brianchon–Gram theorem, these intersections by themselves generate $\mathcal{I}(\Sigma_{B_n})$ (Theorem 2.17). The last step is to show that Schubert delta-matroid polytopes satisfy no linear relations (Proposition 2.19 and the sequel).

2.1. The fan Σ_{B_n} and the signed permutation group S_n^B. Let n be a nonnegative integer. Recall that the B_n permutohedral fan Σ_{B_n} was defined to be the complete fan in \mathbb{R}^n whose maximal cones are the chambers of the type B arrangement of hyperplanes, the union of all hyperplanes of the form $\{x_i \pm x_j = 0\}$ and $\{x_i = 0\}$.

Definition 2.1. The Weyl reflection group corresponding to the real hyperplane arrangement defining Σ_{B_n} is the signed permutation group S_n^B, which is the subgroup

$$
S_n^B = \{ w \in S[n,\bar{n}] : w(i) = \bar{w}(\bar{i}) \text{ for all } i \in [n,\bar{n}] \} \subset S[n,\bar{n}],
$$

where $S[n,\bar{n}]$ denotes the symmetric group on $[n,\bar{n}]$.

A permutation σ of $[n]$ can be extended to a signed permutation of $[n,\bar{n}]$ by setting $\sigma(i) = \bar{\sigma(i)}$. In this way, the permutation group S_n is naturally a parabolic subgroup of S_n^B, viewed as the
stabilizer of \([n] \subset [n, \bar{n}]\). Then \(\mathcal{G}_n^B\) is a semidirect product
\[
\mathcal{G}_n^B = \mathcal{G}_n \rtimes \{\pm 1\}^n,
\]
where \(\{\pm 1\}^n \leq \mathcal{G}_n^B\) is the sign group such that the \(i\)th copy of \(\{\pm 1\}\) is the subgroup generated by the transposition \((i, \bar{i})\). We denote the map to the set of left cosets of \(\mathcal{G}_n\) by
\[
(e_1, \ldots, e_n) : \mathcal{G}_n \to \{\pm 1\}^n,
\]
which can also be described by
\[
\epsilon_i(w) = \begin{cases}
1 & \text{if } i \in w([n]) \\
-1 & \text{if } i \notin w([n]).
\end{cases}
\]

Recall that we have defined \(e_i = -e_i \in \mathbb{R}^n\) for \(i \in [n]\). We next fix notation for cones of \(\Sigma_{B_n}\).

Proposition 2.2. The maximal cones of \(\Sigma_{B_n}\) are given by
\[
C_w = \text{cone}\{e_{w(1)}, \ldots, e_{w(1)} + \cdots + e_{w(n)}\}
\]
for each \(w \in \mathcal{G}_n^B\). The cone \(C_w\) is the unique maximal cone containing \(w \cdot (n, \ldots, 1)\). The dual cones are given by
\[
C_w^\vee = \text{cone}\{e_{w(1)} - e_{w(2)} - e_{w(3)} - \cdots - e_{w(n-1)}\}.
\]

We describe here the various (left) actions of \(\mathcal{G}_n^B\) we will consider.

- \(\mathcal{G}_n^B\) acts on \(\mathbb{R}^n\) by \(w \cdot e_i = e_{w(i)}\). This is the geometric definition of the Weyl group as the set of isometries preserving the type \(B\) hyperplane arrangement.
- \(\mathcal{G}_n^B\) acts on the set of maximal cones of \(\Sigma_{B_n}\) through its action on \(\mathbb{R}^n\) by \(w \cdot C_w' = C_{ww'}\).
- \(\mathcal{G}_n^B\) acts on the set of delta-matroids \(D\) through the action on the ground set \([n, \bar{n}]\).
- \(\mathcal{G}_n^B\) acts on the set of delta-matroid polytopes \(P(D)\) through its action on the set of delta-matroids. This is not induced by the above \(\mathcal{G}_n^B\)-action on \(\mathbb{R}^n\) (which does not preserve the cube \([0, 1]^n\) containing all delta-matroid polytopes), but rather the \(\mathcal{G}_n^B\)-action on \(\mathbb{R}^n\) conjugated by translation by \((-\frac{1}{2}, \ldots, -\frac{1}{2})\). Hence \(\mathcal{G}_n\) acts in the usual way by permuting coordinates, but the \(i\)th copy of \(\{\pm 1\}\) in the sign group acts by reflection in the \(x_i = \frac{1}{2}\) hyperplane.

Remark 2.3. The orbit of a delta-matroid under \(\mathcal{G}_n \leq \mathcal{G}_n^B\) consists of all isomorphic delta-matroids in the sense usual in the delta-matroid literature. Its orbit under \(\{\pm 1\}^n \leq \mathcal{G}_n^B\) are called its partial duals [Chm09]. So its \(\mathcal{G}_n^B\)-orbit consists of all partial duals of isomorphic delta-matroids.

2.2. The polytope algebra.

We collect some facts about McMullen’s polytope algebra; see [EHL23, Appendix A] for a survey and references. For a polyhedron \(P \subseteq \mathbb{R}^n\), possibly unbounded, let \(1(P) : \mathbb{R}^n \to \mathbb{Z}\) be its indicator function, defined so that \(1(P)(x) = 1\) if \(x \in P\) and 0 if not. Let \(\mathcal{P}\) be a collection of polyhedra in \(\mathbb{R}^n\).

Definition 2.4. The indicator group \(\mathbb{I}(\mathcal{P})\) is the group of functions from \(\mathbb{R}^n\) to \(\mathbb{Z}\) generated by the indicator functions \(1(P)\) for \(P \in \mathcal{P}\). A function \(f : \mathcal{P} \to G\) valued in an abelian group \(G\) is called strongly valuative if it factors through the map \(1 : \mathcal{P} \to \mathbb{I}(\mathcal{P})\).
Let $\mathbb{Z}^n + \mathcal{P} = \{ m + P : m \in \mathbb{Z}^n, P \in \mathcal{P} \}$ be the set of lattice translates of polyhedra in \mathcal{P}.

Definition 2.5. The translation-invariant indicator group $\mathbb{I}(\mathcal{P})$ is the quotient

$$\mathbb{I}(\mathcal{P}) = \mathbb{I}(\mathbb{Z}^n + \mathcal{P})/(1(m + P) - 1(P) : m \in \mathbb{Z}^n, P \in \mathcal{P}).$$

We write $[f]$ for the class of a function $f \in \mathbb{I}(\mathbb{Z}^n + \mathcal{P})$ in this quotient. For a polyhedron $P \in \mathcal{P}$, we often write $[P]$ for the class $[1(P)]$.

Suppose now that \mathcal{P} is the set $\mathcal{P}_{\Sigma, \Sigma}$ of lattice deformations of a smooth projective fan Σ in \mathbb{R}^n, that is, $\mathcal{P}_{\Sigma, \Sigma} = \{ P \subseteq \mathbb{R}^n \text{ a lattice polytope whose normal fan coarsens } \Sigma \}$. In this case, the group $\mathbb{I}(\mathcal{P}_{\Sigma, \Sigma})$ is isomorphic to the subalgebra of McMullen’s polytope algebra spanned by polytopes in $\mathcal{P}_{\Sigma, \Sigma}$ [EHL23, Proposition A.6] (see also [McM09]). In particular, $\mathbb{I}(\mathcal{P}_{\Sigma, \Sigma})$ acquires the structure of a unital commutative ring [McM89, Lemma 6], with the product induced by $[P] \cdot [Q] = [P + Q]$.

The polytope algebra $\mathbb{I}(\mathcal{P}_{\Sigma, \Sigma})$ relates to the geometry of the smooth projective toric variety X_Σ of the fan Σ as follows. The standard correspondence between polyhedra and divisors on toric varieties [CLS11, §6.2] (see also [ACEP20, §2.4]) gives a bijection between polytopes $P \in \mathcal{P}_{\Sigma, \Sigma}$ and base-point-free torus-invariant divisors D_P on X_Σ. Let $O_{X_\Sigma}(D_P)$ denote the corresponding line bundle. We then have the following folklore isomorphism.

Theorem 2.6. [EHL23, Theorem A.10] (cf. [Mor93, Theorem 8]). The assignment $[P] \mapsto [O_{X_\Sigma}(D_P)]$ defines an isomorphism of rings $\mathbb{I}(\mathcal{P}_{\Sigma, \Sigma}) \sim K(X_\Sigma)$.

We now specialize to the B_n permutohedral fan. Let

$$\text{GP}_{\Sigma, B_n} = \mathcal{P}_{\Sigma, B_n}$$

be the set of B_n generalized permutohedra that are lattice polytopes. Then

$$\text{DMat}_n = \text{the set of all delta-matroids on } [n, \pi]$$

is identified with the subset of GP_{Σ, B_n} consisting of polytopes with vertices in $\{0, 1\}^n$.

2.3. Schubert delta-matroids

We now describe a special family of delta-matroids that we will use to provide bases for $\mathbb{I}(\text{GP}_{\Sigma, B_n})$ and $\mathbb{I}(\text{GP}_{\Sigma, B_n})$. By identifying $w \in \mathcal{S}_n^\Sigma / \mathcal{S}_n$ with $w \cdot [n] \in \AdS_n$, the Bruhat order provides a partial order on \AdS_n, namely the (hyperoctahedral) Gale order of [BGW03, §3.1.2], given as follows. Endow $[n, \pi]$ with the total order

$$\pi < \cdots < \overline{\pi} < 1 < \cdots < n.$$

Then, the Gale order on \AdS_n is the corresponding dominance order, which is described in two equivalent ways:

- Given $S, S' \in \AdS_n$, we have $S \leq S'$ if and only if $|S \cap U| \leq |S' \cap U|$ for every upper segment U of the order (2.1).
- In terms of elementwise inequalities, if $S = \{i_1, \ldots, i_n\}$ and $S' = \{j_1, \ldots, j_n\}$ with $i_1 < \cdots < i_n$ and $j_1 < \cdots < j_n$, then $S \leq S'$ if and only if $i_k \leq j_k$ for all k.

Proof. All equivalences are easy to verify directly, so we omit the proof.

For \(S \in \text{AdS}_n \), the standard Schubert delta-matroid polytope \(P(\Omega_S) \) is the independence polytope of a type \(A \) Schubert matroid in the following way. The standard Schubert matroid \(\Omega^A_T \) of a subset \(T \subseteq [n] \) is the matroid on \([n]\) whose set of bases is

\[
\Omega^A_T = \{ B \subseteq [n] : |B| = |T| \text{ and } B \leq T \text{ in the dominance order} \}
\]

where the dominance order is taken with respect to the ground set ordering \(1 < \cdots < n \).

Lemma 2.9. For \(S, S' \in \text{AdS}_n \), then the following are equivalent.

1. \(S \leq S' \) in the Gale order;
2. \(|S \cap \{i, \ldots, n\}| \leq |S' \cap \{i, \ldots, n\}| \) for all \(1 \leq i \leq n \); and
3. There exists \(B \subseteq [n] \) with \(|B| = |S' \cap [n]| \) such that \(S \cap [n] \subseteq B \leq S' \cap [n] \), where the inequality is taken in the dominance order.

Proof. All equivalences are easy to verify directly, so we omit the proof.

A Schubert matroid is a \(\mathcal{S}_n \)-image of a standard Schubert matroid. From the equivalence of the first and third parts of Lemma 2.9, we see that \(P(\Omega_S) = IP(\Omega^A_{S \cap [n]}) \), and so the subset

\[
\text{SchDMat}_n = \text{the set of all Schubert delta-matroids on } [n, \pi]\n\]

of \(\text{DMat}_n \) is identified with the set of \(\mathcal{S}_n^B \)-images of independence polytopes of Schubert matroids on \([n]\). The name “Schubert (delta-)matroid” reflects a relationship with Schubert cells explained in Example 6.3.

2.4. Intersecting with unit cubes. We record here some key properties concerning how lattice \(B_n \) generalized permutohedra intersect with unit cubes. We will use them to prove Theorem D and some related isomorphisms in the next subsection.

The natural level of generality of our first proposition, Proposition 2.12, is not only lattice \(B_n \) generalized permutohedra but also their unbounded analogues. A polyhedron \(P \subseteq \mathbb{R}^n \) is \textbf{lattice} (over \(\mathbb{Z}^n \)) if the affine span \(\text{aff}(F) \) of any face \(F \) of \(P \) contains a coset of a subgroup of \(\mathbb{Z}^n \) of rank \(\dim F \). If \(P \) is bounded, i.e., \(P \) is a polytope, this is equivalent to the vertices of \(P \) being lattice points, because the differences between vertices of \(F \) generate the subgroup sought for any face \(F \).
Lemma 2.10. Let $P \subset \mathbb{R}^n$ be a (closed convex) polyhedron and $u : \mathbb{R}^n \to \mathbb{R}$ a linear functional. If $P^+ = P \cap \{x \in \mathbb{R}^n : x_1 \geq 0\}$ is nonempty, then u is bounded below on P^+ if and only if there exists $r \geq 0$ such that $u - rx_1$ is bounded below on P.

Proof. Suppose u is bounded below on P^+. If u attains its minimum over points $x \in P^+$ at a point with $x_1 > 0$, then $r = 0$ suffices. Otherwise take

$$r = \limsup_{y \to 0^+} \frac{1}{y} \left(\min \{u(x) : x \in P, x_1 = 0\} - \min \{u(x') : x' \in P, x'_1 = y\} \right).$$

The limit superior exists because finitely many faces on the boundary of P^+ contain a minimizer x', and for each either y is bounded away from 0 or the face also contains a minimizer x and the quantity inside is constant. The converse is clear because $u \geq u - rx_1$ on P^+. \hfill \square

Lemma 2.11. Let σ be a cone of Σ_{B_n}, and let u lie in the relative interior of σ. Then both the set of cones of Σ_{B_n} which meet $\text{cone}\{u, e_1\}$ and the order in which $u + \lambda e_1$ meets these cones as $\lambda \geq 0$ increases are functions of σ, independent of u.

In lieu of a proof of Lemma 2.11 we describe the cones arising. This is easier in the language of total preorders. Arbitrary cones of Σ_{B_n} are in bijection with total preorders \leq on $[n, \bar{n}]$ such that for $i, j \in [n, \bar{n}]$, $i \leq j$ if (and only if) $j \leq i$, via the map

$$\sigma \mapsto C_{\leq} = \text{cone}\left\{ \sum_{j \leq i} e_j : i \in [n, \bar{n}] \right\}.$$

In Lemma 2.11, if $\sigma = C_{\leq}$, then the cones whose relative interiors meet $\text{cone}\{u, e_1\}$ are the C_{\leq} for all $\sigma \leq$ such that \leq and \leq have the same restriction to $[n, \bar{n}] \setminus \{1, \bar{1}\}$, and for all $i \in [n, \bar{n}]$, if $1 \leq i$ then $1 \leq i$.

Proposition 2.12. Let P be a lattice polyhedron, possibly unbounded, whose normal fan coarsens a subfan of Σ_{B_n}. If $m \in \mathbb{Z}^n$ and $P \cap (m + [0, 1]^n)$ is nonempty, then $P \cap (m + [0, 1]^n) \in \mathcal{GP}_{Z, B_n}$.

The above result is also proved in [Fuj17, FP94], at least when P is a lattice polytope, using the theory of bisubmodular functions. We include a direct proof. The counterpart for type A generalized permutohedra follows from [Sch03, (44.70)] on intersections with coordinate half-spaces, which implies that Theorem 2.17 below also holds for type A.

Proof. By translating we may assume that $m = 0$. The cube $\square = [0, 1]^n$ is an intersection of coordinate half-spaces. So we reduce to considering the intersection of P with a coordinate half-space H^+, say $\{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_1 \geq 0\}$, and showing that if $P \cap H^+$ is nonempty, then it is a lattice polyhedron and has normal fan coarsening a subfan of Σ_{B_n}. Together with the observation that $P \cap \square$ is bounded because \square is, this proves the proposition.

First, we show that $P \cap H^+$ is lattice. Note that for any face G of $P \cap H^+$, there is a face F of P such that either

1. $G = F \cap H^+$ and $\dim G = \dim F$, or
2. $G = F \cap H$ and $\dim G = \dim F - 1$.

In the former case, \(\text{aff}(G) = \text{aff}(F)\). In the latter case, fix a cone of \(\Sigma_{B_n}\) maximal among those normal to \(F\). This cone has the form

\[
\text{cone}\{e_w(1) + e_w(2) + \cdots + e_w(i_k) : k = 1, \ldots, m\}
\]

for some \(w \in \Theta_n^B\) and \(\{i_1, \ldots, i_m\} \subseteq [n]\) by Proposition 2.2. Thus

\[
\begin{align*}
\text{aff}(F) &= \{x \in \mathbb{R}^n : x_{w(1)} + \cdots + x_{w(i_k)} = a_{i_k} \text{ for all } k = 1, \ldots, m\}, \\
&= \{x \in \mathbb{R}^n : x_{w(i_k-1)+1} + \cdots + x_{w(i_k)} = a_{i_k} - a_{i_k-1} \text{ for all } k = 1, \ldots, m\}
\end{align*}
\]

(2.2)

where the \(a_i\) are integers because \(P\) is lattice. The lattice points in \(\text{aff}(G) = \text{aff}(F) \cap H\) are those with \(x_1 = 0\), which form a coset of a subgroup of corank 1 among the lattice points in \(\text{aff}(F)\) because \(x_1\) appears in at most one equation in (2.2). We have thus shown that \(P \cap H^+\) is lattice.

Now we prove that the normal fan of \(P \cap H^+\) coarsens a subfan of \(\Sigma_{B_n}\). Write \(\text{face}_u Q\) for the face of a polytope \(Q\) on which a linear functional \(u : \mathbb{R}^n \rightarrow \mathbb{R}\) attains its minimum; set \(\text{face}_u Q = \emptyset\) by convention if no minimum is attained. The assumption on \(P\) is that for each cone \(\sigma\) of \(\Sigma_{B_n}\) with relative interior \(\sigma^\circ\), it holds that \(\text{face}_u P = \text{face}_v P\) for all \(u, v \in \sigma^\circ\). Our claim is that the same is true of \(P \cap H^+\).

Fix a cone \(\sigma\) of \(\Sigma_{B_n}\) and \(u, v \in \sigma^\circ\). By Lemma 2.10, \(\text{face}_u(P \cap H^+) = \emptyset\) if and only if \(u - rx_1\) lies outside the normal fan of \(P\) for all \(r \geq 0\), where \(x_1\) is the first coordinate functional, and likewise for \(v\). By Lemma 2.11, whether this happens depends only on \(\sigma\), not on \(u\) or \(v\). So it remains to handle the case \(\text{face}_u(P \cap H^+) \neq \emptyset\). If \(\text{face}_u P\) is not disjoint from \(H^+\), we are done, since in this case

\[
\text{face}_u(P \cap H^+) = (\text{face}_u P) \cap H^+ = (\text{face}_v P) \cap H^+ = \text{face}_v(P \cap H^+).
\]

If they are disjoint, let \(r \in \mathbb{R}\) be minimal such that \(F := \text{face}_{u-rx_1} P\) intersects \(H^+\), where \(x_1\) is the first coordinate functional; some such \(r\) exists by our earlier invocation of Lemma 2.10. Note that \(r > 0\), so \(u\) is a positive combination of \(x_1\) and \(u - rx_1\). Since \(\text{face}_{x_1}(P \cap H^+) = P \cap H\) and \(\text{face}_{u-rx_1}(P \cap H^+) = F \cap H^+\) intersect in their common face \(F \cap H\), this implies \(\text{face}_u(P \cap H^+) = F \cap H\). Again by Lemma 2.11, the faces of the form \(\text{face}_{u-rx_1} P\), and their order they appear in as \(r\) varies, depend only on \(\sigma\), so we have \(\text{face}_v(P \cap H^+) = F \cap H\) also.

Let

\[
C = -C^\vee_{1d} = \text{cone}\{-e_1, e_1 - e_2, \ldots, e_{n-1} - e_n\} = \{x \in \mathbb{R}^n : \sum_{i=k}^{n} x_i \leq 0 \text{ for } k \in [n]\}.
\]

This is the type \(B_n\) negative root cone for the choice of positive roots corresponding to our Gale order [BGW03, §3.2.2].

Lemma 2.13. Let \(m \in \{0, 1\}^n\) and let \(S \in \text{AdS}_n\) be the size \(n\) admissible set such that \(m\) is the indicator vector of \(S \cap [n]\). Then \(P(\Omega_S) = (m + C) \cap [0, 1]^n\).

Proof. The half-space description of \(m + C\) is

\[
m + C = \{x \in \mathbb{R}^n : \sum_{i=k}^{n} x_i \leq \sum_{i=k}^{n} m_i \text{ for } k \in [n]\}.
\]

(2.3)
By the equivalence of the first and second parts of Lemma 2.9, we see that \(x \in (m + C) \cap \{0, 1\}^n \) if and only if, for the admissible set \(S' \in \text{AdS}_n \), such that \(x \) is the indicator vector of \(S' \cap \{a\} \), we have \(S' \leq S \) in the Gale order. Therefore \((m + C) \cap \{0, 1\}^n \) and \(\Omega_S \) contain the same set of lattice points. Since \(C \) is the dual of a cone of \(\Sigma_{B_n} \), Proposition 2.12 applies and shows that \((m + C) \cap \{0, 1\}^n\) is a lattice polytope. But \(\Omega_S \) is also a lattice polytope, so they are equal.

Proposition 2.14. Let \(m \in \mathbb{Z}^n \). If the intersection \((m + C) \cap \{0, 1\}^n\) is nonempty, then it is a standard Schubert delta-matroid polytope.

Proof. Assume that \((m + C) \cap \{0, 1\}^n\) is nonempty. We construct a sequence \(m^0 = m, m^1, \ldots \) of integer vectors so that

\[
(m^j + C) \cap \{0, 1\}^n = (m + C) \cap \{0, 1\}^n.
\]

One of the \(m^j \) will lie in \(\{0, 1\}^n \), whereupon the proposition follows from Lemma 2.13.

Denote the generators of \(C \), the negative simple roots, by \(\alpha_1 = -e_1 \) and \(\alpha_i = e_{i-1} - e_i \) for \(i = 2, \ldots, n \). An arbitrary lattice point of \(m^j + C \) has the form \(x = m^j + \sum_{i=1}^n a_i \alpha_i \) for nonnegative integers \(a_i \). If \(m^j_i > 1 \) then we let \(m^{j+1} = m^j + (m^j_i - 1) \alpha_i \). In this case \(x_i \leq 1 \) only if \(a_i > m^j_i - 1 \), so \(m^j + C \) and \(m + (m^j - 1) \alpha \) have the same intersection with \(\{0, 1\}^n \) and (2.4) holds. Similarly, if \(m^j_i < 0 \), then we let \(m^{j+1} = m^j + (-m^j_i) \alpha_{i+1} \), and (2.4) holds because \(x_i \geq 0 \) only if \(a_{i+1} > -m_i \) (note that \(i < n \) in this case, which follows from \((m + C) \cap \{0, 1\}^n\) being nonempty).

The sequence \((\sum_{i=1}^n i m^j_i)_{j \geq 0} \) is decreasing by construction, and bounded below by 0, because if \(\sum_{i=1}^n i m^j_i < 0 \) the functional \(\sum_{i=1}^n i x_i \) takes negative values on \(m^j + C \) and nonnegative values on \(\{0, 1\}^n \), implying \((m^j + C) \cap \{0, 1\}^n = \emptyset \). So it is finite, i.e., the case \(m \in \{0, 1\} \) happens after finitely many steps.

Corollary 2.15. The set \(\text{SchDMat}_n \) is closed under nonempty intersections with faces of \(\{0, 1\}^n \).

Proof. By the \(\mathbb{G}_n^B \) symmetry and iteration, it’s enough to prove that if \(P = \pi(D) \) for \(D \) a standard Schubert delta-matroid and \(F \) is a facet of \(\{0, 1\}^n \), then \(\pi(F) = \text{SchDMat}_n \). Write \(P = (m + C) \cap \{0, 1\}^n \) as in Proposition 2.14, and \(F = H \cap \{0, 1\}^n \) for a hyperplane \(H = \{ x \in \mathbb{R}^n : x_i = s \} \) where \(i \in [n] \) and \(s \in \{0, 1\} \). Then \(P \cap F = (m + C) \cap H \cap \{0, 1\}^n \). Let \(\pi : H \to \mathbb{R}^{n-1} \) be the map omitting the \(i \)th coordinate. Using (2.3) and its counterpart for \(B_{n-1} \), one can check that \((m + C) \cap H \) is identified by \(\pi \) with a translate of the cone \(-C_{id}' \) which is dual to a cone in \(\Sigma_{B_{n-1}} \). Therefore \(\pi \) takes \(P \cap F \) to a type \(B_{n-1} \) standard Schubert delta-matroid polytope. This implies that \(P \cap F \) is a Schubert delta-matroid polytope, as follows. In the case \(H = \{ x \in \mathbb{R}^n : x_n = 0 \} \), if \((P \cap F) = P(\Omega_S) \) for \(S \) a maximal admissible subset of \([n-1]\), then \(P \cap F = P(\Omega_{S\cup(\pi)}) \) by Lemma 2.13. The other possible choices of \(H \) are \(\mathbb{G}_n^B \) images of this one, so in general \(P \cap F \) is a \(\mathbb{G}_n^B \) image of \(P(\Omega_{S\cup(\pi)}) \).

Corollary 2.16. Let \(\square' \) be a face of \(\{0, 1\}^n \), and \(\sigma \) be a cone of \(\Sigma_{B_n} \). For \(m \in \mathbb{Z}^n \), if the intersection \((m + \sigma^\vee) \cap \square' \) is nonempty, then it is in \(\text{SchDMat}_n \).

Proof. If \(\sigma \) is a maximal cone of \(\Sigma_{B_n} \), then \(\sigma^\vee \) is a Weyl image of the cone \(C = -C_{id}' \) above, and the result follows from Proposition 2.14 and Corollary 2.15.

For an arbitrary cone \(\sigma \), we reduce to the preceding case. The cone \(\sigma \) is a face of a maximal cone \(\tau \) of \(\Sigma_{B_n} \), so \(\sigma^\vee \) is a tangent cone of \(\tau^\vee \), that is, \(\sigma^\vee = -F + \tau^\vee \) for a face \(F \subset \tau^\vee \). Now for
$m' \in -F \cap \mathbb{Z}^n$, we have

$$\sigma' \supseteq (-F \cap (m' + F)) + \tau' = m' + \tau'.$$

If m' is chosen deep enough in the interior of $-F$, the defining halfspaces of $m + m' + \tau'$ will all contain \square', so $m + \sigma'$ and $m + m' + \tau'$ will have the same intersection with \square'. □

2.5. Bases from Schubert delta-matroids. We are now ready to prove the following intermediate step for the proof of Theorem D.

Theorem 2.17. One has

$$\mathbb{I}(\mathbb{Z}^n + \text{SchDMat}_n) = \mathbb{I}(\mathbb{Z}^n + \text{DMat}_n) = \mathbb{I}(\text{GP}_{\mathbb{Z}, B_n}).$$

Proof. Let $P \subset \mathbb{R}^n$ be a lattice B_n generalized permutohedron. We will write $1(P)$ as a sum of indicator functions of lattice translates of Schubert delta-matroid polytopes. This will prove that $\mathbb{I}(\text{GP}_{\mathbb{Z}, B_n}) \subset \mathbb{I}(\mathbb{Z}^n + \text{SchDMat}_n)$, and the left-to-right inclusions in the theorem are clear.

Recall the signed permutohedron Π_{B_n}. By the Brianchon–Gram theorem applied to $P + \varepsilon \Pi_{B_n}$ in the pointwise limit $\varepsilon \to 0^+$, we have

$$1(P) = \sum_{\sigma \in \Sigma_{B_n}} (-1)^{\text{codim} \sigma} 1(P + \sigma').$$

Note that $P + \sigma'$ is a lattice translate of σ'.

Tile \mathbb{R}^n by lattice translates of Boolean cubes $[0, 1]^n$. Let \mathcal{C} be the set of all such cubes that meet P, together with their common internal faces, so that we have an inclusion-exclusion relation

$$1\left(\bigcup_{F \in \mathcal{C}} F\right) = \sum_{F \in \mathcal{C}} (-1)^{\text{codim}(F)} 1(F).$$

Then

$$1(P) = \sum_{F \in \mathcal{C}} (-1)^{\text{codim}(F)} 1(P \cap F) = \sum_{F \in \mathcal{C}} \sum_{\sigma \in \Sigma_{B_n}} (-1)^{\text{codim}(F) + \text{codim}(\sigma)} 1((P + \sigma') \cap F).$$

By Corollary 2.16, the right hand side is in $\mathbb{I}(\mathbb{Z}^n + \text{SchDMat}_n)$. □

We remark that the second equality of the theorem could have been proved using the tiling by Boolean cubes and Proposition 2.12 without invoking the Brianchon–Gram theorem.

Corollary 2.18. One has

$$\mathbb{I}(\text{SchDMat}_n) = \mathbb{I}(\text{DMat}_n) = \mathbb{I}(\text{GP}_{\mathbb{Z}, B_n}).$$

Proof. What is left to prove after Theorem 2.17 is that the three groups of relations are equal. These are generated by $1(m + P) - 1(P)$ where $m \in \mathbb{Z}^n$ and $P \in \text{SchDMat}_n$, DMat_n, and $\text{GP}_{\mathbb{Z}, B_n}$ respectively. If $P \in \text{GP}_{\mathbb{Z}, B_n}$, then another use of Theorem 2.17 gives us a finite expression

$$1(m + P) - 1(P) = \sum_{Q \in \text{SchDMat}_n, v \in \mathbb{Z}^n} a_{Q,v} (1(m + v + Q) - 1(v + Q))$$

$$= \sum_{Q \in \text{SchDMat}_n, v \in \mathbb{Z}^n} a_{Q,v} ((1(m + v + Q) - 1(Q)) - (1(v + Q) - 1(Q))).$$

So the relations for $\mathbb{I}(\text{GP}_{\mathbb{Z}, B_n})$ are also relations for $\mathbb{I}(\text{SchDMat}_n)$, and the other containments are obvious. □
We prepare for the proof of Theorem D by proving the analogous fact for \(\mathcal{I}(\text{DMat}_n) \).

Proposition 2.19. The set \(\{ 1(P) : P \in \text{SchDMat}_n \} \) is a basis for \(\mathcal{I}(\text{DMat}_n) \).

Proof. The first equality in Theorem 2.17 implies that every \(1(P) \) for \(P \) a delta-matroid polytope can be expressed as a linear combination of indicator functions of Schubert delta-matroid polytopes. Here we note that a lattice translate of a Schubert delta-matroid polytope \(P(D) \), provided it is contained in the unit cube, is again a Schubert delta-matroid polytope because it is a \(\mathcal{S}_n^B \)-image of \(P(D) \).

For linear independence, suppose we have a nontrivial relation

\[
\sum_{i=1}^{k} a_i 1(P_i) = 0 \quad \text{with } k \geq 1 \text{ and } a_1, \ldots, a_k \neq 0
\]

where \(P_1, \ldots, P_k \) are Schubert delta-matroids. By Proposition 2.14, there exists \(w \in \mathcal{S}_n^B \) and \(m \in \mathbb{Z}^n \) such that \(P_1 = \{0, 1\}^n \cap (m + w \cdot C) \). Without loss of generality, we may assume that \(P_i \) does not contain \(P_1 \) for all \(i > 1 \). In particular, no \(P_i \) for \(i > 1 \) is contained in \(m + w \cdot C \). Now, [ESS21, Theorem 2.3] implies that the assignment

\[
P \mapsto \begin{cases}
1 & \text{if } P \subseteq m + w \cdot C \text{ and } P \cap m \neq \emptyset \\
0 & \text{otherwise}
\end{cases}
\]

defines a strongly valuative function on \(\text{GP}_{\mathbb{Z}^n, B_n} \). Applying this function to both sides of the relation \(\sum_{i=1}^{k} a_i 1(P_i) = 0 \) then yields \(a_1 = 0 \), a contradiction. \(\square \)

We are ready to prove Theorem D. Converted to a statement about polyhedra by using Theorem 2.6, the theorem asserts that a basis of \(\mathcal{I}(\text{GP}_{\mathbb{Z}^n, B_n}) \) is

\[
\text{SchDMat}_n^{\text{clf}} := \{ D \in \text{SchDMat}_n : D \text{ has no coloops} \}.
\]

The superscript \(^{\text{clf}} \) stands for “coloop-free.” We verify that, among the polytopes of the delta-matroids in \(\text{SchDMat}_n^{\text{clf}} \), there is exactly one translate of any Schubert delta-matroid polytope. For any \(D \in \text{SchDMat} \), changing any coloops \(D \) may have to loops gives a translate in \(\text{SchDMat}_n^{\text{clf}} \). If for two delta-matroids \(D \) and \(D' \) we have \(P(D') = m + P(D) \) for some \(m \in \mathbb{Z}^n \), then \(m \in \{-1, 0, 1\}^n \); if for some \(i \) we have \(m_i = 1 \), then \(P(D') \subseteq \{ x \in \mathbb{R}^n : x_i = 1 \} \) and \(P(D) \subseteq \{ x \in \mathbb{R}^n : x_i = 0 \} \), and if \(m_1 = -1 \) then these containments hold vice versa, so not both \(D \) and \(D' \) are coloop-free.

Our method for proving Theorem D can also be used to deduce the counterpart of the theorem in type \(A \), i.e., that coloop-free Schubert matroids are a basis for the translation-invariant polytope algebra of lattice type \(A \) generalized permutohedra. Another proof of the type \(A \) theorem can be assembled from [BEST23, Theorem D] and the analogous theorem for the cohomology ring in type \(A \) appearing in [Ham17].

Proof of Theorem D. Theorem 2.17 shows that \(\{ [P] : P \in \text{SchDMat}_n^{\text{clf}} \} \) generates \(\mathcal{I}(\text{SchDMat}_n) \). So we must prove linear independence.
We first show translates of coloop-free Schubert delta-matroids are linearly independent in \(\mathbb{I}(\mathbb{Z}^n + \text{SchDMat}_n) \). Suppose we are given a finite relation
\[
\sum_{P \in \text{SchDMat}_n^{\text{elf}}, m \in \mathbb{Z}^n} a_{P,m} 1(m + P) = 0.
\]
Let \(V \subseteq \mathbb{Z}^n \) be the set of vectors \(v \) such that, for some \((P, m) \) with \(a_{P,m} \neq 0 \), \(m + P \) intersects the translate \([0, 1]^n + v\) of the half-open cube. Our objective is to prove \(V \) empty. Suppose otherwise, and let \(v \in V \) be lexicographically minimum. Restricting our relation to the closed cube \(v + [0, 1]^n \) gives
\[
\sum_{P \in \text{SchDMat}_n^{\text{elf}}, m \in \mathbb{Z}^n} a_{P,m} 1((m + P) \cap (v + [0, 1]^n)) = 0.
\]
If \((m + P) \cap (v + [0, 1]^n)\) is nonempty, then it has the form \(v + Q \) for some \(Q \in \text{SchDMat}_n \) by Corollary 2.15. Letting
\[
J(Q) = \{(P, m) : (m + P) \cap (v + [0, 1]^n) = v + Q\},
\]
we collect identical translates:
\[
\sum_{Q \in \text{SchDMat}_n} \left(\sum_{(P,m) \in J(Q)} a_{P,m} \right) 1(v + Q) = 0.
\]
By Proposition 2.19, every inner sum is zero. For any \(Q \in \text{SchDMat}_n^{\text{elf}} \), minimality of \(v \) implies that the only possibly nonzero summand in this inner sum is the one indexed by \((P, m) = (Q, v) \), so \(a_{Q,v} = 0 \). But this contradicts \(v \in V \).

Now, a linear dependence in \(\mathbb{I}(\Gamma(P_{\mathbb{Z}, B_n})) \),
\[
\sum_{P \in \text{SchDMat}_n^{\text{elf}}} a_P [1(P)] = 0,
\]
lifts to \(\mathbb{I}(\Gamma(P_{\mathbb{Z}, B_n})) \) as a relation
\[
\sum_{P \in \text{SchDMat}_n^{\text{elf}}} a_P 1(P) + \sum_{Q, m \in \mathbb{Z}^n \setminus \{0\}} b_{Q,m} (1(m + Q) - 1(Q)) = 0
\]
over some family of lattice \(B_n \), generalized permutohedra, where finitely many \(b_{Q,m} \) are nonzero. Applying Theorem 2.17 to these \(Q \), this can be rewritten
\[
\sum_{P \in \text{SchDMat}_n^{\text{elf}}} a_P 1(P) + \sum_{P \in \text{SchDMat}_n, m \neq 0} c_{P,m} (1(m + P) - 1(P)) = 0.
\]
Every \(P \in \text{SchDMat}_n \) has a lattice translate \(P' \in \text{SchDMat}_n^{\text{elf}} \), and we can use the relation \(1(m + Q) - 1(Q) = (1(m + Q) - 1(Q')) - (1(Q) - 1(Q')) \) for any polytopes \(Q, Q' \) to rewrite the second sum:
\[
\sum_{P \in \text{SchDMat}_n^{\text{elf}}} a_P 1(P) + \sum_{P' \in \text{SchDMat}_n^{\text{elf}}, m \neq 0} d_{P',m} (1(m + P') - 1(P')) = 0.
\]
The earlier lifted linear independence statement implies that each polytope in the above sum has a zero coefficient, i.e., \(d_{P,m} = 0 \) for all \(m \neq 0 \) and \(a_P - \sum_{m \neq 0} d_{P,m} = 0 \). Therefore \(a_P = 0 \) for all \(P \in \text{SchDMat}_n^{\text{elf}} \). \(\square \)
3. The exceptional Hirzebruch–Riemann–Roch-type theorem

We prove Theorem C, relating the Grothendieck ring of vector bundles $K(X_{B_n})$ to the Chow cohomology $A^\bullet(X_{B_n})$, in two parts. In §3.2, we establish the isomorphism $\phi^B: K(X_{B_n}) \to A^\bullet(X_{B_n})$ via localization methods in torus-equivariant geometry. Then, in §3.3, we establish the formula involving the sheaf Euler characteristic by relating the isomorphism ϕ^B to a similar isomorphism for stellahedral varieties established in [EHL23].

3.1. K-rings and Chow rings of X_{B_n}. Let $T = S^T_{B_n}$ be the torus embedded in X_{B_n}, and let $K_T(X_{B_n})$ be the T-equivariant-K-ring of X_{B_n}, which is the Grothendieck ring of T-equivariant vector bundles on X_{B_n}, and let $A_T^\bullet(X_{B_n})$ be the T-equivariant Chow ring in the sense of [EG98]. We describe the equivariant and non-equivariant K and Chow rings of X_{B_n}. We will make use of descriptions of $K_T(X_{B_n})$ and $A_T^\bullet(X_{B_n})$ coming from equivariant localization. See [EHL23, Section 2] for a review of equivariant localization.

We first set up some notation. To describe the adjacent maximal cones in Σ_{B_n}, we use the following special involutions in $S^B_{B_n}$:

- $\tau_{i,i+1} = (i, i + 1)(\overline{i}, \overline{i+1})$ for $1 \leq i \leq n - 1$, and
- $\tau_n = (n, \overline{n})$.

Then C_w is adjacent to $C_{w'}$ exactly if $w = w'\tau_{i,i+1}$ for some i, in which case the common facet normal is $\pm(e_{w(i)} - e_{w(i+1)})$, or $w = w'\tau_n$, in which case the common facet normal is $\pm e_{w(n)}$. Recall that $K_T(pt) = Z[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ and $A_T^\bullet(pt) = Z[t_1, \ldots, t_n]$. Let $T_1 = T_1^{-1}$ and $t_i = -t_i$ for $i \in [n]$.

Theorem 3.1. [VV03, Pay06] The following hold.

1. The injective localization map $K_T(X_{B_n}) \to K_T(X_{B_n}^T) = \bigoplus_{w \in S^B_{B_n}} K_T(pt)$ identifies $K_T(X_{B_n})$ with the set of collections of elements $(f_w)_{w \in S^B_{B_n}} \in \bigoplus_{w \in S^B_{B_n}} Z[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ such that
 - if $w\tau_{i,i+1} = w'$ for $1 \leq i \leq n - 1$, then $f_w \equiv f_{w'} \mod 1 - T_w(i)T_{w(i+1)}^{-1}$, and
 - if $w\tau_n = w'$ then $f_w \equiv f_{w'} \mod 1 - T_w(n)$.

 The diagonal embedding of $Z[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ into $\bigoplus_{w \in S^B_{B_n}} K_T(pt)$ identifies $Z[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ with a subring of $K_T(X_{B_n})$, and the K-ring $K(X_{B_n})$ is given by

 \[K(X_{B_n}) = K_T(X_{B_n})/(T_1 - 1, \ldots, T_n - 1). \]

2. The injective localization map $A_T^\bullet(X_{B_n}) \to A_T^\bullet(X_{B_n}^T) = \bigoplus_{w \in S^B_{B_n}} A_T^\bullet(pt)$ identifies $A_T^\bullet(X_{B_n})$ with the set of collections of elements $(f_w)_{w \in S^B_{B_n}} \in \bigoplus_{w \in S^B_{B_n}} Z[t_1, \ldots, t_n]$ such that
 - if $w\tau_{i,i+1} = w'$ for $1 \leq i \leq n - 1$, then $f_w \equiv f_{w'} \mod t_w(i) - t_{w(i+1)}$, and
 - if $w\tau_n = w'$ then $f_w \equiv f_{w'} \mod t_w(n)$.

 The diagonal embedding of $Z[t_1, \ldots, t_n]$ into $\bigoplus_{w \in S^B_{B_n}} A_T^\bullet(pt)$ identifies $Z[t_1, \ldots, t_n]$ with a subring of $A_T^\bullet(X_{B_n})$, and the Chow ring $A_T^\bullet(X_{B_n})$ is given by

 \[A_T^\bullet(X_{B_n}) = A_T^\bullet(X_{B_n})/(t_1, \ldots, t_n). \]

There is an action of $S^B_{B_n}$ by automorphisms on X_{B_n}, so we functorially obtain an action of $S^B_{B_n}$ on $K(X_{B_n})$ and $A_T^\bullet(X_{B_n})$. We now describe $S^B_{B_n}$-actions on $K_T(X_{B_n})$ and $A_T^\bullet(X_{B_n})$, the latter being the type B_n case of Tymoczko’s dot action [Tym08]. To do so, we prepare with some generalities on
maps between torus-equivariant K-rings for actions of potentially different tori. For $i = 1, 2$, let T_i be a torus and X_i a smooth projective T_i-variety. Suppose we have a map of tori $\varphi : T_1 \to T_2$ and a map $\varphi : X_1 \to X_2$ with the commuting diagram

$$
\begin{array}{ccc}
T_1 \times X_1 & \xrightarrow{\varphi \times \varphi} & T_2 \times X_2 \\
\downarrow & & \downarrow \\
X_1 & \xrightarrow{\varphi} & X_2,
\end{array}
$$

where the two vertical maps are the torus actions. Then, by treating X_2 as a T_1-variety via φ, we have the induced maps

$$
(3.1) \quad K_{T_2}(X_2) \to K_{T_1}(X_2) \xrightarrow{\varphi^*} K_{T_1}(X_1)
$$

where the first map is the “forgetful map” and the second map is the pullback map. We similarly have induced maps of equivariant Chow rings.

In our situation, we will have $T_1 = T_2 = T$ and $X_1 = X_2 = X_{B_n}$ in the following way. An element $w \in \mathcal{G}^B_n$ acts on \mathbb{R}^n by $e_i \mapsto e_{w(i)}$. We consider \mathbb{R}^n as the real vector space $\text{Cochar}(T) \otimes \mathbb{R}$ that contains the fan Σ_{B_n}. This \mathcal{G}^B_n-action defines an automorphism $\varphi_w : T \to T$ given by $T_i \mapsto T_{w(i)}$. Since the \mathcal{G}^B_n-action maps Σ_{B_n} isomorphically onto itself, the map φ_w extends to an automorphism $\varphi_w : X_{B_n} \to X_{B_n}$. The map φ_w is not a T-equivariant map, but it fits into the commuting diagram

$$
\begin{array}{ccc}
T \times X_{B_n} & \xrightarrow{\varphi_w \times \varphi_w} & T \times X_{B_n} \\
\downarrow & & \downarrow \\
X_{B_n} & \xrightarrow{\varphi_w} & X_{B_n},
\end{array}
$$

Hence, we have the maps

$$
\psi_w : K_T(X_{B_n}) \to K_T(X_{B_n}) \xrightarrow{\varphi_w} K_T(X_{B_n})
$$

as in (3.1), and similarly for $A^*_T(X_{B_n})$. The assignments $w \mapsto \psi_{w^{-1}}$ give a \mathcal{G}^B_n-action descending to the usual \mathcal{G}^B_n-action on $K(X_{B_n})$ and $A^*(X_{B_n})$. In terms of the localization description of $K_T(X_{B_n})$ and $A^*_T(X_{B_n})$ in Theorem 3.1, the action has the following explicit description:

1. An element $w \in \mathcal{G}^B_n$ acts on $f \in K_T(X_{B_n})$ by $(w \cdot f)_w = f_{w^{-1}}(T_{w(1)}, \ldots, T_{w(n)})$.
2. An element $w \in \mathcal{G}^B_n$ acts on $f \in A^*_T(X_{B_n})$ by $(w \cdot f)_w = f_{w^{-1}}(t_{w(1)}, \ldots, t_{w(n)})$.

3.2. The exceptional isomorphism. Recall the map $\epsilon : \mathcal{G}^B_n \to \{ \pm 1 \}^n$ from Section 2.1.

Theorem 3.2. There is an injective ring map

$$
\phi^B_T : K_T(X_{B_n}) \to A^*_T(X_{B_n})[1/(1 \pm t_i)] := A^*_T(X_{B_n})[\{ \frac{1}{1-t_i}, \frac{1}{1+t_i} \}_{1 \leq i \leq n}]
$$

obtained by

$$(\phi^B_T(f))_w(t_1, \ldots, t_n) = f_w(h_{\epsilon(w)}(t_1), \ldots, h_{\epsilon(w)}(t_n))$$

where

$$
h_{\epsilon}(t) = (1 + \epsilon t)^\epsilon := \begin{cases}
1 + t & \epsilon = +1 \\
\frac{1}{1+t} & \epsilon = -1.
\end{cases}
$$
This equivariant map ϕ^B_T descends to a non-equivariant isomorphism $\phi^B \colon K(\mathcal{X}_{B_n}) \xrightarrow{\sim} A^*(\mathcal{X}_{B_n})$. Finally, ϕ^B and ϕ^B_T are \mathfrak{S}_n^B-equivariant in the sense that they intertwine the above \mathfrak{S}_n^B-actions:

$$\phi^B_T(w \cdot f) = w \cdot \phi^B_T(f), \text{ and } \phi^B(w \cdot f) = w \cdot \phi^B(f).$$

Proof. We first check that ϕ^B_T is \mathfrak{S}_n^B-equivariant. For $f \in K_T(\mathcal{X}_{B_n})$, we have that

$$\omega \cdot (\phi^B_T(w \cdot f)) = w' \cdot (\phi^B_T(f)),$$

which are equal. We now check the congruence conditions. First, we check for $w' = w \tau_{i+1}$ that

$$(\phi^B_T(f))w \equiv (\phi^B_T(f))w' \mod t_{w(i)} - t_{w(i+1)}.$$

By \mathfrak{S}_n^B-equivariance, this is equivalent to

$$(\phi^B_T(w^{-1} \cdot f))_{\tau_i} \equiv (\phi^B_T(w^{-1} \cdot f))_{\tau_{i+1}} \mod t_{i} - t_{i+1},$$

which by definition of ϕ^B_T, and the fact that $\epsilon_j(id) = \epsilon_j(\tau_{i+1}) = 1$ for all j, is equivalent to

$$(w^{-1} \cdot f)_{\tau_i} (t_1 + 1, \ldots, t_{n + 1}) \equiv (w^{-1} \cdot f)_{\tau_{i+1}} (t_1 + 1, \ldots, t_{n + 1}) \mod t_{i} - t_{i+1}.$$

Since $w^{-1} \cdot f \in K_T(\mathcal{X}_{B_n})$, we have $$(w^{-1} \cdot f)_{\tau_i} (T_1, \ldots, T_n) \equiv (w^{-1} \cdot f)_{\tau_{i+1}} (T_1, \ldots, T_n) \mod 1 - T_{i}^{-1} T_{i+1},$$ and the result follows from replacing T_j with $t_j + 1$ for all j. Now, we check for $w' = w \tau_n$ that

$$(\phi^B_T(f))w \equiv (\phi^B_T(f))w' \mod t_{w(n)}.$$

Indeed, this similarly follows from the fact that $w \cdot f \in K_T(\mathcal{X}_{B_n})$ and the compatibility

$$(w^{-1} \cdot f)_{\tau_n} (T_1, \ldots, T_n) \equiv (w^{-1} \cdot f)_{\tau_n} (T_1, \ldots, T_n) \mod T_n - 1.$$

As we now know that ϕ^B_T is well-defined, from the defining formula it is trivial to check that it is an injective ring map.

We now check that the map ϕ^B_T descends non-equivariantly to a map $\phi^B \colon K(\mathcal{X}_{B_n}) \rightarrow A^*(\mathcal{X}_{B_n})$. Note that under the map $A^*_T(\mathcal{X}_{B_n}) \rightarrow A^*(\mathcal{X}_{B_n})$ we have $1 \pm t_i \rightarrow 1$, so there is an induced map $A^*_T(\mathcal{X}_{B_n})[\frac{1}{1 + T_i}] \rightarrow A^*(\mathcal{X}_{B_n})$. To obtain the map ϕ^B, we have to show that under the composite $K_T(\mathcal{X}_{B_n}) \rightarrow A^*_T(\mathcal{X}_{B_n})[\frac{1}{1 + T_i}] \rightarrow A^*(\mathcal{X}_{B_n})$, the ideal $(T_1 - 1, \ldots, T_n - 1)$ gets mapped to 0. Indeed, $\phi^B_T(T_i - 1) = t_i \cdot r_i$ where $(r_i)_{w}$ is 1 if $\epsilon_i(w) = 1$ and $\frac{1}{1 + T_i}$ if $\epsilon_i(w) = -1$. Therefore $\phi^B_T(T_i - 1)$ is zero under the map $A^*_T(\mathcal{X}_{B_n})[\frac{1}{1 + T_i}] \rightarrow A^*(\mathcal{X}_{B_n})$ because t_i maps to 0.

The \mathfrak{S}_n^B-equivariance of ϕ^B follows immediately from the \mathfrak{S}_n^B-equivariance of ϕ^B_T, so it remains to check that ϕ^B is an isomorphism. For this, we identify the image of ϕ^B_T. Note that $\phi^B_K(\mathcal{X}_{B_n})$ lies in the subring $R \subset A^*_T(\mathcal{X}_{B_n})[\frac{1}{1 + T_i}]$ consisting of those g where g_w lies in the ring $K_T(pt)[\frac{1}{1 + T_1}, \ldots, \frac{1}{1 + T_n}]$ for all w. Define

$$h^{-1}_\epsilon(T) = \epsilon(T^* - 1) = \begin{cases} T - 1 & \epsilon = +1 \\ 1 - T^{-1} & \epsilon = -1. \end{cases}$$

It is easy to see that for $g \in R$ we have $g_w(h^{-1}_{\epsilon_1(w)}(t_1), \ldots, h^{-1}_{\epsilon_n(w)}(t_n)) \in K_T(pt)$ for all w, and, arguing as before, we see that $w \mapsto g_w(h^{-1}_{\epsilon_1(w)}(t_1), \ldots, h^{-1}_{\epsilon_n(w)}(t_n))$
gives a preimage of g under ϕ_B^1. Hence $\phi_B^1: K_T(X_{B_n}) \to R$ is an isomorphism. Now, note that the r_i constructed above has the property that $r_i \in R^\times$, so the ideal $(T_1 - 1, \ldots, T_n - 1) \subset K_T(X_{B_n})$ maps under ϕ_B^1 to the ideal $(t_1, \ldots, t_n) \subset R$. Hence because

$$A_T(X_{B_n}) \subset R \subset A_T(X_{B_n}) \left[\frac{1}{1 \pm t_i} \right]$$

and $\frac{1}{t_i}$ gets sent to 1 after quotienting by (t_1, \ldots, t_n), we conclude that ϕ^B induces an isomorphism

$$K(X_{B_n}) \cong R/(t_1, \ldots, t_n) = A_T(X_{B_n})/\left(t_1, \ldots, t_n \right) = A^\bullet(X_{B_n}).$$

3.3. Stellahedral geometry. We show that the isomorphism ϕ_B of Theorem 3.2 satisfies

$$\chi([\mathcal{E}]) = \int_{X_{B_n}} \phi_B([\mathcal{E}]) \cdot c(\mathbb{O}(1))$$

for any $[\mathcal{E}] \in K(X_{B_n})$, thereby completing the proof of Theorem C. While one can prove this via the Atiyah-Bott localization formula, as in [BEST23], we present a more geometric proof that explains how our result relates to a previous exceptional Hirzebruch–Riemann–Roch-type theorem given in [EHL23] for stellahedral varieties. Note that $(\Sigma_{B_1})^n$ is a fan in \mathbb{R}^n whose cones are

$$\text{Cone}(e_i : i \in S) \quad \text{for } S \text{ an admissible subset of } [n, \bar{n}].$$

Definition 3.3. The **stellahedral fan** Σ_{St_n} is a fan in \mathbb{R}^n obtained from $(\Sigma_{B_1})^n$ by iteratively performing stellar subdivisions on all faces of the nonpositive orthant $\text{Cone}(e_i : i \in [\bar{n}])$ starting with the maximal face.

Note that the B_n permutohedral fan Σ_{B_n} is obtained by performing such iterated stellar subdivisions on all the orthants. In other words, the fan Σ_{B_n} is the common refinement of the 2^n different “copies” of the stellahedral fan: For each admissible subset $\tau \in \text{AdS}_n$, we have the “copy” of the stellahedral fan obtained from $(\Sigma_{B_1})^n$ by performing the iterated stellar subdivision on the orthant $\text{Cone}(e_i : i \in \tau)$. See Figure 1 for an illustration when $n = 2$.

![Figure 1](image_url)

Figure 1. The fans $(\Sigma_{B_1})^2$ (left), Σ_{St_2} (middle), and Σ_{B_2} (right)

The **stellahedral variety** X_{St_n} is the toric variety associated to the fan Σ_{St_n}. Since the fans Σ_{B_n}, Σ_{St_n}, and $(\Sigma_{B_1})^n$ form a sequential coarsening, we have a natural sequence of maps $X_{B_n} \to X_{St_n} \to (\mathbb{P}^1)^n$ of toric varieties. The map $X_{B_n} \to X_{St_n}$ is also considered in [CDH+23]. Recall that $\mathbb{O}(1)$ denotes the vector bundle on X_{B_n} that is the direct sum of the pullbacks of $\mathcal{O}_{\mathbb{P}^1}(1)$ from
each \mathbb{P}^1 factor in $(\mathbb{P}^1)^n$. We reuse the notation $\mathcal{O}(1)$ for the similar vector bundle pulled back only to X_{St_n}.

Stellahedral varieties play a central role in the proof the top-heavy conjecture and the nonnegativity of Kazhdan-Lusztig polynomials of matroids [BHM+22, BHM+]. The connection between stellahedral varieties and matroids was further developed in [EHL23]. In our case, we will need the following exceptional Hirzebruch–Riemann–Roch-type theorem for stellahedral varieties.

Theorem 3.4. [EHL23, Theorem 1.9 & Theorem 6.1] There is an isomorphism $\phi_T: K_T(X_{St_n}) \to A^*_n(X_{St_n}[1/(1 - t_i)])$ defined by

$$f_T(T_1, \ldots, T_n) \mapsto f_T\left(\frac{1}{1-t_1}, \ldots, \frac{1}{1-t_n}\right)$$

where $f_T(T_1, \ldots, T_n) \in \mathbb{Z}[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ is the localization value of a K-class $f \in K_T(X_{St_n})$ at a T-fixed point x of X_{St_n}. It descends to an isomorphism $\chi: K(X_{St_n}) \to A^*(X_{St_n})$ which satisfies

$$\chi([E]) = \int_{X_{St_n}} \phi([E]) \cdot c(\mathcal{O}(1)) \quad \text{for any } [E] \in K(X_{St_n}).$$

The isomorphism ϕ_B of Theorem 3.2 is an extension of this isomorphism ϕ as follows.

Lemma 3.5. Let $p: X_{B_n} \to X_{St_n}$ be the toric morphism described above. The following diagram commutes:

$$
\begin{array}{ccc}
K(X_{St_n}) & \xrightarrow{\phi} & A^*(X_{St_n}) \\
\downarrow{p^*} & & \downarrow{p^*} \\
K(X_{B_n}) & \xrightarrow{\phi_B} & A^*(X_{B_n}).
\end{array}
$$

Proof. For a matroid M on $[n]$, its independence polytope $IP(M)$ is a deformation of Σ_{St_n} and hence defines a class $[IP(M)]$ in the polytope algebra $\tilde{\mathbb{P}}(\mathbb{P}_{\mathbb{Z}, \Sigma_{St_n}})$ [EHL23, Example 3.15]. Moreover, the set $\{[IP(M)] : M \text{ a matroid on } [n]\}$ spans $\tilde{\mathbb{P}}(\mathbb{P}_{\mathbb{Z}, \Sigma_{St_n}})$ as an abelian group [EHL23, Proposition 7.4], which is isomorphic to $K(X_{St_n})$ via Theorem 2.6. Hence, it suffices to show the commutativity of the diagram on the spanning set $\{[IP(M)] : M \text{ a matroid on } [n]\}$. Now, for $i \in [n]$ and any maximal cone σ of Σ_{B_n} containing e_i, the T-equivariant localization value of $[IP(M)]$ at σ is a Laurent polynomial in the variables T_j for $j \neq i$, because the vertex of $IP(M)$ minimizing the standard pairing with a vector in the interior of σ has zero as its ith coordinate. By the descriptions of the maps ϕ_T and ϕ_B, this implies that $p^*\phi_T([IP(M)]) = \phi_B([IP(M)])$ for any matroid M on $[n]$. \qed

We caution that the torus-equivariant analogue of the above diagram does not commute. We can now finish the proof of Theorem C.

Proof of Theorem C. We have shown that ϕ_B is an isomorphism in Theorem 3.2. It remains to show the Hirzebruch–Riemann–Roch-type formula

$$\chi([E]) = \int_{X_{St_n}} \phi_B([E]) \cdot c(\mathcal{O}(1)) \quad \text{for any } [E] \in K(X_{B_n}).$$

Theorem D implies that $K(X_{B_n})$ is generated as an abelian group by Weyl images of independence polytopes of matroids. Hence, it suffices to check the Hirzebruch–Riemann–Roch-type formula
for Weyl images of independence polytopes of matroids. Moreover, by Weyl-equivariance of ϕ^B, it suffices to check this for independence polytopes of matroids. Then this follows from the projection formula, Theorem 3.4, and Lemma 3.5.

Remark 3.6. There are two obstructions to establishing analogues of Theorems C and D for arbitrary root systems. First, Propositions 2.12 and 2.14 about intersections with the unit cube, which were essential to our proof of Theorem D, no longer hold when the unit cube is replaced by (minuscule) weight polytopes of types other than A and B, for instance in type D. See [ESS21, Remark 3.15]. Second, the useful feature of Σ_{B_n} in the construction of the map ϕ^B in Theorem 3.2 and in the proof of Theorem C is that Σ_{B_n} can be viewed as a common refinement of 2^n “copies” of the stellahedral fan Σ_{Sl_n}. For arbitrary crystallographic root systems Φ, we do not know whether $K(X_\Phi)$ and $A^*(X_\Phi)$ are integrally isomorphic.

In Section 7.4, we will make use of the following “dual” version of ϕ^B. For a variety X, define the ring involution $D_K: K(X) \to K(X)$ by $[E] \mapsto [E^\vee]$ and the ring involution $D_A: A^*(X) \to A^*(X)$ by multiplication by $(-1)^d$ in degree d. Define the “dual” isomorphism $\zeta^B: K(X_{B_n}) \to A^*(X_{B_n})$ by $D_A \circ \phi^B \circ D_K$. Similarly define ζ^B. The isomorphism ζ^B satisfies the following Hirzebruch–Riemann–Roch-type formula. To state it, let $\gamma \in A^1(X_{B_n})$ be the divisor class on X_{B_n} corresponding to the n-dimensional cross polytope $\hat{\diamond} = \text{Conv}(e_i : i \in [n, \pi]) \subset \mathbb{R}^n$.

Proposition 3.7. For any $[E] \in K(X_{B_n})$, one has

$$\chi([E]) = \int_{X_{B_n}} \zeta^B([E]) \cdot c(O)(-1) \cdot (1 + \gamma + \cdots + \gamma^n).$$

Proof. A primitive vector in a ray of Σ_{B_n} is e_S for some nonempty admissible subset S of $[n, \pi]$. We note that the minimum of the standard pairing $\langle x, e_S \rangle$ for $x \in \hat{\diamond}$ is -1. Under the standard correspondence between polytopes and base-point-free divisors on toric varieties that we have been using, this means that γ is the sum of all boundary divisors on X_{B_n}. In other words, by [CLS11, Theorem 8.1.6], the line bundle $O(-\gamma)$ is the canonical bundle of X_{B_n}. Applying Serre duality along with $\phi^B = D_A \circ \zeta^B \circ D_K$ to Theorem C, we have that

$$\chi([E]) = (-1)^n \chi([O(-\gamma)] \cdot D_K([E]))$$

$$= (-1)^n \int_{X_{B_n}} \phi^B([O(-\gamma)] \cdot D_K([E])) \cdot c(O)(1))$$

$$= (-1)^n \int_{X_{B_n}} D_A(\zeta^B([O(\gamma)] \cdot [E]) \cdot c(O)(1))$$

$$= \int_{X_{B_n}} \zeta^B([O(\gamma)]) \cdot \zeta^B([E]) \cdot c(O)(-1)).$$

It suffices now to show that $\zeta^B([O(\gamma)]) = 1 + \gamma + \cdots + \gamma^n$. For this, we compute using torus-equivariant localization. For $w \in E_n^\vee$ such that $\text{face}_w \hat{\diamond} = -e_i$, for any $v \in C_w$, we have that $[O(\gamma)]_w = T_i$. For such w, we must have that $i \in w([n])$, so this maps to $1/(1 - t_i)$ under ζ^B. If $\text{face}_w \hat{\diamond} = e_{1v}$, $[O(\gamma)]_w = T_i^{-1}$, and we must have $i \not\in w([n])$, so this maps to $1/(1 + t_i)$ under ζ^B. We thus see that $\zeta^B([O(\gamma)]) = c(O(-\gamma))^{-1} = 1 + \gamma + \cdots + \gamma^n$, as desired. \qed
We now introduce a set of equivariant K-classes that is inspired by [BEST23, Definition 10.4]. Say that a class $[\mathcal{E}] \in K_T(X_{B_n})$ has “nice Chern roots” if, on the maximal cone corresponding to $w \in \mathcal{G}_2^B$, we have $[\mathcal{E}]_w = a_{w,0} + \sum_{i \in w([n])} a_{w,i}T_i^{-1} - \sum_{i \notin w([n])} a_{w,i}T_i$.

We first define some notation. For $[\mathcal{E}] \in K_T(X_{B_n})$, let $c^T([\mathcal{E}], u) = c^T_0([\mathcal{E}]) + c^T_1([\mathcal{E}])u + \cdots \in A^*_T(X_{B_n})[[u]]$ be the equivariant Chern polynomial. The equivariant Segre power series $s^T([\mathcal{E}], u) = s^T_0([\mathcal{E}]) + s^T_1([\mathcal{E}])u + \cdots \in A^*_T(X_{B_n})[[u]]$ is defined by $s^T([\mathcal{E}], u) := c^T([\mathcal{E}], u)^{-1}$. Recall that the map that assigns a vector bundle \mathcal{E} to its rank extends to a map $\text{rk}: K(X_{B_n}) \to \mathbb{Z}$. If we write $[\mathcal{E}]_w = \sum_{i=1}^{k_w} a_{w,i}T^{m_{w,i}}$, then, with u a formal variable, we have that

$$\sum_{j=0}^{\infty} \Lambda^j[\mathcal{E}]_wu^j = \prod_{i=1}^{k_w} (1 + T^{m_{w,i}}u)^{a_{w,i}}, \quad \text{and} \quad \sum_{j=0}^{\infty} \text{Sym}^j[\mathcal{E}]_wu^j = \prod_{i=1}^{k_w} \left(\frac{1}{1 - T^{m_{w,i}}u} \right)^{a_{w,i}}.$$

Proposition 3.8. If $[\mathcal{E}]$ has nice Chern roots, then

$$\sum_{i \geq 0} \zeta^B_T(\Lambda^i[\mathcal{E}])u^i = (u + 1)^{\text{rk}([\mathcal{E}])} c^T(\mathcal{E}, \frac{u}{u+1}),$$

$$\sum_{i \geq 0} \phi^B_T(\Lambda^i[\mathcal{E}])u^i = (u + 1)^{\text{rk}([\mathcal{E}])} s^T(\mathcal{E})^\vee c^T(\mathcal{E}^\vee, \frac{1}{u+1}),$$

$$\sum_{i \geq 0} \zeta^B_T(\text{Sym}^i[\mathcal{E}])u^i = \frac{1}{(1-u)^{\text{rk}([\mathcal{E}])}} s^T([\mathcal{E}]^\vee, \frac{u}{u-1}),$$

$$\sum_{i \geq 0} \phi^B_T(\text{Sym}^i[\mathcal{E}])u^i = \frac{c^T([\mathcal{E}]^\vee)}{(1-u)^{\text{rk}([\mathcal{E}])}} s^T([\mathcal{E}]^\vee, \frac{1}{1-u}).$$

Proof. We prove the formulas involving ϕ^B; the formulas involving ζ^B are similar. Consider a maximal cone corresponding to $w \in \mathcal{G}_2^B$, and write

$$[\mathcal{E}]_w = a_{w,0} + \sum_{i \in w([n])} a_{w,i}T_i^{-1} - \sum_{i \notin w([n])} a_{w,i}T_i.$$

Then

$$\sum_{i \geq 0} \phi^B_T(\Lambda^i[\mathcal{E}])u^i = (u + 1)^{a_{w,0}} \prod_{i \notin w([n])} (1 + \phi^B_T(T_i^{-1})u)^{a_{w,i}} \prod_{i \in w([n])} (1 + \phi^B_T(T_i)u)^{a_{w,i}}$$

$$= (u + 1)^{a_{w,0}} \prod_{i \in w([n])} (1 + (1 + t_i)^{-1}u)^{a_{w,i}} \prod_{i \notin w([n])} (1 + (1 + t_i)^{-1}u)^{a_{w,i}}$$

$$= (u + 1)^{\text{rk}([\mathcal{E}])} \prod_{i \in w([n])} (1 + t_i)^{-a_{w,i}} \left(1 + \frac{t_i}{u+1} \right) \prod_{i \notin w([n])} (1 - t_i)^{-a_{w,i}} \left(1 - \frac{t_i}{u+1} \right)$$

$$= (u + 1)^{\text{rk}([\mathcal{E}])} s^T([\mathcal{E}]^\vee)_w c^T([\mathcal{E}]^\vee, \frac{1}{u+1}).$$
Similarly, we compute
\[
\sum_{j \geq 0} \phi^B_T (\text{Sym}^j [\mathcal{E}]) u^j = \frac{1}{(1 - u)^{n-\omega}} \prod_{i \in \omega([n])} \left(1 - \frac{1}{1 - \phi^B_T (T_i) u}\right)^{\omega_i} \prod_{i \notin \omega([n])} \left(1 - \frac{1}{1 - (1 - t_i)^{-1} u}\right)^{\omega_i}
= \frac{1}{(1 - u)^{\text{rk}([\mathcal{E}]^\vee)}} \prod_{i \in \omega([n])} \left(1 + \frac{1 + t_i}{1 - t_i (1 - u)}\right)^{\omega_i} \prod_{i \notin \omega([n])} \frac{1 - t_i}{1 - t_i (1 - u)}
= \frac{c^T ([\mathcal{E}]^\vee)}{(1 - u)^{\text{rk}([\mathcal{E}]^\vee)}} S^T \left([\mathcal{E}]^\vee, \frac{1}{1 - u}\right).
\]

4. The Chow cohomology ring of \(X_B\)

In this section, we first combine Theorems C and D to obtain a basis for the Chow cohomology ring \(A^*(X_B)\). We then prove Theorem A by using the Hirzebruch–Riemann–Roch-type formula that \(\phi^B_T\) satisfies.

4.1. A Schubert basis. We now describe the structure of the Chow cohomology ring \(A^*(X_B)\) in terms of “augmented Bergman classes” of matroids. Let \(M\) be a matroid of rank \(r\) on \([n]\). The augmented Bergman fan of \(M\) is a subfan \(\Sigma_M\) of the stellahedral fan \(\Sigma_{St_n}\) obtained by gluing together the order complex of lattice of flats and the independence complex of \(M\); for a precise definition see [BHM+22, Definition 2.4]. Assigning weight 1 to each of its maximal cones defines a Minkowski weight \([\Sigma_M]\), called the augmented Bergman class of \(M\), which can be considered as an element in \(A^{n-r}(X_{St_n})\). Augmented Bergman classes are nef Chow classes, and they span extremal rays of the cone of nef classes in \(A^{n-r}(X_{St_n})\) [BHM+22, Proposition 2.8].

We will consider the pullbacks of augmented Bergman classes to \(X_B\) under the morphism \(p: X_B \to X_{St_n}\) described in Section 3.3. These pullbacks continue to span extremal rays of the cone of nef classes in \(A^*(X_B)\). We will also refer to these pulled back classes as augmented Bergman classes. For a matroid \(M\), let \(M^\perp\) be the dual matroid. Only two properties of augmented Bergman classes will be used in the rest of the paper:

1. For any matroid \(M\), the class \([\Sigma_M]\) is nonzero.
2. When \(M\) has rank \(n-1\), the class \([\Sigma_M]\) is the first Chern class of the line bundle corresponding to the simplex \(IP(M^\perp)\).

We now introduce some terminology. Say that a delta-matroid \(D\) with feasible sets \(\mathcal{F}\) is standard cornered if, whenever \(B \in \mathcal{F}\) and \(i \in B \cap [n]\), then \(B \setminus \{i\} \cup \{\bar{i}\} \in \mathcal{F}\). For example, delta-matroids of the form \(IP(M)\) are standard cornered. In fact this is the only example.

Lemma 4.1. Any standard cornered delta-matroid is of the form \(IP(M)\) for a matroid \(M\).

Proof. We show the matroid independent set axioms for \(\mathcal{I} = \{B \cap [n] : B \in \mathcal{F}\}\). By assumption, \(\mathcal{I}\) is a nonempty family of sets closed under taking subsets, so we must prove the independent set augmentation axiom. Let \(A, B \in \mathcal{F}\) with \(|A \cap [n]| < |B \cap [n]|\). Let \(F\) be the smallest face of \([0, 1]^n\) containing \(a = e_{A \cap [n]}\) and \(b = e_{B \cap [n]}\). We have that \(P(D) \cap F\) is a delta-matroid polytope. Let \(C\) be the vertex cone of \(a\) in \(P(D) \cap F\) (with the apex of \(C\) at the origin). Then \(C\) contains \(b - a\) and is
generated by type \(B_n \) roots. Because \(b - a \) has strictly positive sum of coordinates, \(C \) must have a generator with strictly positive sum of coordinates, either \(e_i \) or \(e_i + e_j \) for some \(i, j \in [n] \). So either \(a + e_i \) or \(a + e_i + e_j \) lies in \(P(D) \cap F \); because \(D \) is standard cornered, the latter case implies the former one. By the choice of \(F \), the element \(i \) lies in \(B \setminus A \), and hence \((A \cap [n]) \cup \{i\} \in \mathcal{I} \).

Say that a delta-matroid \(C \) is **cornered** if there is \(w \in \mathfrak{S}^n_2 \) such that \(w \cdot C \) is standard cornered. We now develop some properties of cornered delta-matroids.

Lemma 4.2. Let \(M \) be a matroid of rank \(r \) on \([n] \). Then the degree \(i \) part of \(\phi^B([IP(M)]) \) vanishes for \(i > r \), is equal to \([\Sigma_M] \) in degree \(r \), and is 1 in degree 0.

Proof. That \(\phi: K(X_{St_n}) \to A^*(X_{St_n}) \) has this property follows from [EHL23, Lemma 5.9]. Then the result follows from Lemma 3.5.

Lemma 4.3. Let \(M_1, M_2 \) be matroids on \([n] \), and suppose that \(w_1 \cdot [IP(M_1)] = w_2 \cdot [IP(M_2)] \) for some \(w_1, w_2 \in \mathfrak{S}^n_2 \). Then the rank of \(M_1 \) is equal to the rank of \(M_2 \), and \(w_1 \cdot [\Sigma_{M_1}] = w_2 \cdot [\Sigma_{M_2}] \).

Proof. By the \(\mathfrak{S}^n_2 \)-equivariance of \(\phi^B \), we must have that \(w_1 \cdot [\Sigma_{M_1}] = w_2 \cdot [\Sigma_{M_2}] \). Lemma 4.2 identifies the rank of \(M \) as the degree of the top nonzero piece of \(\phi^B([IP(M)]) \).

In particular, if \(C = w \cdot IP(M) \) is a cornered delta-matroid, then we define the **cornered rank** \(\text{rk}_{\text{cor}}(C) \) as the rank of \(M \), which is independent of the choice of \(M \) and \(w \), and we define

\[
[\Sigma_C] := w \cdot [\Sigma_M].
\]

Note that \([\Sigma_{IP(M')}] = [\Sigma_M] \). The following is an immediate consequence of Lemma 4.2.

Lemma 4.4. Let \(C \) be a cornered delta-matroid. Then the degree \(i \) part of \(\phi^B([C]) \) vanishes for \(i > \text{rk}_{\text{cor}}(C) \), is equal to \([\Sigma_C] \) in degree \(\text{rk}_{\text{cor}}(C) \), and is 1 in degree 0.

Now we construct our basis for \(A^*(X_{B_n}) \), noting that Schubert delta-matroids are cornered.

Corollary 4.5. For any \(0 \leq r \leq n \),

\[
\{ [\Sigma_C] : C \in \text{SchDMat}_n^\text{eff} \text{ and } \text{rk}_{\text{cor}}(C) = r \}
\]

is a basis for \(A^r(X_{B_n}) \).

Proof. Endow \(K(X_{B_n}) \) with a grading by declaring the \(r \)-th graded piece to be generated by the elements \(\{ [P(C)] : C \in \text{SchDMat}_n^\text{eff}, \text{rk}_{\text{cor}}(C) = r \} \); this is well-defined by Theorem D. Combining Theorem D with Theorem C, we have that \(\{ \phi^B([P(C)]) : C \in \text{SchDMat}_n^\text{eff} \} \) is a basis of \(A^*(X_{B_n}) \). By Lemma 4.4, \(\phi^B \) is lower-triangular with respect to the gradings on \(K(X_{B_n}) \) and \(A^*(X_{B_n}) \) and the degree \(r \) part of \(\phi^B([C]) \) is \([\Sigma_C] \), so we conclude. \(\Box \)

Setting \(r = 1 \) in the corollary yields Theorem A(a) as follows.

Proof of Theorem A(a). The polytope of a delta-matroid in \(\text{SchDMat}_n^\text{eff} \) of cornered rank 1 is a translate of a simplex \(\Delta^0_S \) for \(S \in \text{AdS} \setminus \{ \emptyset \} \), and vice versa. Namely, \(P(\Omega(\pi_1 \setminus \{1\}) \cup \{1\}) = \Delta^0_1 \) and if \(D = w \cdot \Omega(\pi_\emptyset \setminus \{7\} \cup \{4\}) \), then \(P(D) = w \cdot P(\Omega(\pi_\emptyset \setminus \{7\} \cup \{1\}) \) differs from \(\Delta^0_w \cdot 1 \) only by the translations that distinguish the \(\mathfrak{S}^n_2 \)-action on delta-matroid polytopes from the \(\mathfrak{S}^n_2 \)-action on
\(\mathbb{R}^n \) in Section 2.1. No two simplices \(\Delta_0^0 \) are translations of each other except for the pairs of line segments \(\{ \Delta_0^0, \Delta_0^0 \} \). Hence, setting \(r = 1 \) in Corollary 4.5, we have that the set

\[
\{ \text{the divisor class associated to} \; \Delta_0^0 : S \in \text{AdS} \setminus \{ \emptyset \} \text{ and } S \neq \{ i \} \text{ for } i \in [n] \}
\]

is a basis of \(A_1^0(X_{B_n}) \). Thus, up to translation by a vector in \(\mathbb{Z}^n \), every \(B_n \) generalized permutohedron is a signed Minkowski sum of the simplices \(\Delta_0^0 \) in the displayed set. Since \(\Delta_0^0 = \Delta_0^0 - e_i \), reinserting the segments \(\Delta_0^0 \) into the set accounts for the translations.

Remark 4.6. The \(h \)-vector of the Coxeter complex \(\Sigma_{\Phi} \) of a root system \(\Phi \), or, equivalently, the sequence of dimensions of the graded pieces of \(A^*(X_\Phi) \), is equal to the vector of \(\Phi \)-Eulerian numbers \([\text{Bjö84, Bre94}]\), which are defined in terms of the descents of elements in the Coxeter group associated to \(\Phi \). Concretely, in type \(B \) the set of descents of an element \(w \in \Sigma_{\Phi}^B \) is

\[
\text{des}(w) = \{ i \in [n] : w(i-1) > w(i) \},
\]

where we define \(w(0) = 0 \) to fit into the total order as \(\pi < \cdots < 1 < 0 < 1 < \cdots < n \). The \(r \)-th \(B_n \) Eulerian number is then

\[
h_r(B_n) := |\{ w \in \Sigma_{\Phi}^B : \text{des}(w) = r \} |.
\]

In particular, Corollary 4.5 implies that the \(B_n \) Eulerian numbers count the coloop-free Schubert delta-matroids of cornered rank \(r \). An analogous statement for type \(A \) was shown in \[\text{Ham17}\]. In neither type \(A \) nor type \(B \) do we know of a natural bijection between the set of Weyl group elements with a fixed number of descents and the corresponding set of coloop-free Schubert (delta-)matroids.

4.2. Volumes and lattice point enumerators. We now compute volumes and lattice counts of \(B_n \) generalized permutohedra by using Theorem C. We will use the following observation throughout. For an admissible subset \(S \in \text{AdS} \), let \(h_S \) be the divisor class on \(X_{B_n} \), associated to the simplex \(\Delta_0^0 \). Because simplices are Weyl images of the independence polytopes of standard Schubert matroids of cornered rank 1, Lemma 4.4 implies that \(\phi^B(\Delta_0^0) = 1 + h_S \).

Proof of Theorem A(b). For a sequence \((S_1, \ldots, S_n) \) of \(n \) admissible subsets, standard results in toric geometry \([\text{Ful93, §5.4}]\) imply that the mixed volume of the corresponding simplices is the intersection product \(\int_{X_{B_n}} h_{S_1} \cdots h_{S_n} \), which is equal to

\[
\int_{X_{B_n}} (1 + h_{S_1}) \cdots (1 + h_{S_n}) = \int_{X_{B_n}} \phi^B([\Delta_0^0] \cdots [\Delta_0^0]) = \int_{X_{B_n}} \phi^B([\Delta_0^0] + \cdots + [\Delta_0^0]).
\]

Let \(P \) be the Minkowski sum \(\Delta_0^0 + \cdots + \Delta_0^0 \). By construction, the polytope \(P \) is “saturated towards the origin” in the following sense: For any subset \(S \subseteq [n] \), let \(\text{Orth}_S = \mathbb{R}_{\geq 0}^S \times \mathbb{R}_{\leq 0}^{[n] \setminus S} \). If \(u \in P \cap \text{Orth}_S \), then any \(v \in \text{Orth}_S \) such that \(u - v \in \text{Orth}_S \) is also in \(P \). We tile \(\mathbb{R}^n \) by lattice translates of the unit cube \(\square = [0, 1]^n \), and express

\[
[P] = \left(\sum_{m \in \mathbb{Z}^n} [P \cap (m + \square)] \right) + \text{a linear combination of } \{ [P \cap (m + F)] : m \in \mathbb{Z}^n, F \text{ a proper face of } \square \}
\]

Every intersection \(P \cap (m + \square) \) or \(P \cap (m + F) \) in the expression is a translate of a delta-matroid polytope by Proposition 2.12. Because \(P \) is saturated towards the origin, these delta-matroid polytopes
are cornered by Lemma 4.1. For such a delta-matroid C, by Lemma 4.4 we have $\int_{X_B} \phi^B([P(C)]) = 0$ when $P(C) \neq \Box$. When $P(C) = \Box$ we have
\[\int_{X_B} \phi^B([\Box]) = \int_{X_B} \phi^B([\Delta^0_{\{1\}}] \cdots [\Delta^0_{\{n\}}]) = \int_{X_B} (1 + h_{\{1\}}) \cdots (1 + h_{\{n\}}) = 1. \]
We have thus reduced to counting the number of m such that $P \cap (m + \Box) = m + \Box$. This happens only when $m + \Box$ contains the origin, since each simplex is contained in the cross-polytope Δ, so $P \subset n\Delta$, and every integral translate of \Box contained in $n\Delta$ contains the origin. In other words, we are counting the set of cardinality-n admissible subsets $\tau \in \text{AdS}_n$ such that $e_\tau \in P$. This set, by the construction of P, is in bijection with the set of signed transversals of (S_1, \ldots, S_n). □

Proof of Theorem A(c). Denote by $\text{AdS}^{\neq}[n]$ the subset $\{S \in \text{AdS} : |S| > 1 \text{ or } S = \{i\} \subset [n]\}$ of admissible subsets of $[n]$. Note that the divisor class on X_B corresponding to the cube $\Box = [0, 1]^n$ is $h_{\{1\}} + \cdots + h_{\{n\}}$. By standard results in toric geometry [Ful93, §3.5], the quantity
\[\# \text{ lattice points of } (P(\{c_S\}) - \Box) \]
is computed by the Euler characteristic
\[\chi \left(\sum_{S \in \text{AdS}^{\neq}[n]} c_S \Delta^0_S + \sum_{i \in [n]} (c_i - 1) \Delta^0_{\{i\}} \right). \]
Noting that $c(\boxplus \Omega(1)) = \prod_{i \in [n]} (1 + h_{\{i\}})$, we apply Theorem C to obtain
\[
\chi \left(\sum_{S \in \text{AdS}^{\neq}[n]} c_S \Delta^0_S + \sum_{i \in [n]} (c_i - 1) \Delta^0_{\{i\}} \right) = \\
\int_{X_B} \prod_{S \in \text{AdS}^{\neq}[n]} \phi^B([\Delta^0_S])^{c_S} \cdot \prod_{i \in [n]} \phi^B([\Delta^0_{\{i\}}])^{c_i - 1} \cdot c(\boxplus \Omega(1)) \]
\[
\int_{X_B} \prod_{S \in \text{AdS}^{\neq}[n]} (1 + h_S)^{c_S} \cdot \prod_{i \in [n]} (1 + h_{\{i\}})^{c_i} \]
\[
\int_{X_B} \prod_{S \in \text{AdS} \setminus \emptyset} \left(\sum_{k=0}^n \binom{c_S}{k} h_S^k \right) \]
\[
= \Psi \left(\text{Vol} \left(\sum_{S \in \text{AdS} \setminus \emptyset} c_S \Delta^0_S \right) \right),
\]
as desired. □

Finally, we note that the mixed volume computation above can be generalized to arbitrary cornered delta-matroids as follows.
Theorem 4.7. Let C_1, \ldots, C_k be cornered delta-matroids with $\sum \text{rk}_{\text{cor}}(C_i) = n$, and write $C_i = w_i \cdot IP(M_i)$. Then we have

$$\int_{X_{B_n}} [\Sigma_{C_1}] \cdots [\Sigma_{C_k}] = \left\{ \tau \in \text{AdS}_n \middle| \tau \text{ a signed transversal of } (w_1 \cdot B_1, \ldots, w_k \cdot B_k) \right\}.$$

Proof. The argument is similar to the proof of Theorem A(b), so we sketch only the main steps. By Theorem C and Lemma 4.4, we have

$$\int_{X_{B_n}} [\Sigma_{C_1}] \cdots [\Sigma_{C_k}] = |\{m \in \mathbb{Z}^n : C_1 + \cdots + C_k \supseteq (m + \square)\}|$$

where $\square = [0, 1]^n$. Write $w_i IP(M_i)$ for the image of the polytope $IP(M_i)$ under the isometry associated to w_i for the standard geometric action of \mathfrak{g}_{B_n} on \mathbb{R}^n. Then $P(C_1) + \cdots + P(C_k)$ is an integral translate of $P = w_1 IP(M_1) + \cdots + w_k IP(M_k)$, so we may equivalently compute $|\{m \in \mathbb{Z}^n : P \supseteq (m + \square)\}|$. Because $w_i IP(M_i) \subseteq \text{rk}_{\text{cor}}(C_i) \cdot 0$ for the cross-polytope $\cdot 0$, we have $P \subseteq (\sum \text{rk}_{\text{cor}}(C_i)) \cdot 0 = n \cdot 0$. Hence for $P \supseteq (m + \square)$, we must have that $n \cdot 0 \supseteq m + \square$ so $m + \square$ contains the origin. Hence, we are counting the number of $\tau \in \text{AdS}_n$ such that $e_{\tau} \in P$. The desired formula follows. \qed

Corollary 4.8. For a matroid M of rank r and admissible subsets $S_1, \ldots, S_r \in \text{AdS}$, we have

$$\int_{X_{B_n}} [\Sigma_{M}] \cdot h_{S_1} \cdots h_{S_r} = \left\{ \tau \in \text{AdS}_n \middle| \tau \text{ a signed transversal of } (S_1, \ldots, S_r, B, \ldots, B) \right\}.$$

5. Tutte-like invariants of delta-matroids

We first recall some combinatorial operations on delta-matroids. In the context of multi-matroids, these operations can be found in [Bou97].

Definition 5.1. Let D be a delta-matroid on $[n, \tilde{n}]$, and let $i \in [n]$. We define three delta-matroids on $[n, \tilde{n}] \setminus \{i, \tilde{i}\}$ obtained from D as follows:

1. If i is not a loop, the contraction D/i is the delta-matroid with feasible sets $B \setminus i$ for B a feasible set of D containing i.
2. If i is not a coloop, the deletion $D \setminus i$ is the delta-matroid with feasible sets $B \setminus \tilde{i}$ for B a feasible set of D containing \tilde{i}.
3. We define the projection $D(i)$ as the delta-matroid with feasible sets $B \setminus \{i, \tilde{i}\}$ for B a feasible set of D.
4. If i is a loop (resp. coloop), we define $D/i = D\setminus i$ (resp. $D\setminus i = D/i$), so that $D/i = D\setminus i = D(i)$.

If i is not a loop (resp. a coloop), then $P(D/i)$ (resp. $P(D \setminus i)$) is obtained by intersecting $P(D)$ with the hyperplane $x_i = 0$ (resp. $x_i = 1$). We obtain $P(D(i))$ by taking the orthogonal projection of $P(D)$ onto $x_i = 0$. Therefore projections commute with each other and commute with deletion and contraction. For $I \subseteq [n]$, we write $D(I)$ for the delta-matroid obtained by successively projecting along each $i \in I$, and similarly define D/I and $D \setminus I$.
In the introduction, we defined the U-polynomial $U_D(u, v)$ and its specialization, the interlace polynomial $\text{Int}_D(v) = U_D(0, v)$, via a recursion involving deletion, contraction, and projection, similar to the deletion-contraction recursion for the Tutte polynomial of a matroid. Like the Tutte polynomial of a matroid, the U-polynomial and the interlace polynomial also admit a non-recursive formula in the following way. For a delta-matroid D with feasible sets \mathcal{F} and $S \in \text{AdS}_n$, let

$$d_D(S) = \frac{1}{2} \min_{B \in \mathcal{F}} |B \triangle S|,$$

the lattice distance between $e_{S \cap [n]}$ and $P(D)$.

Proposition 5.2. For a delta-matroid D on $[n, m]$, define polynomials $\text{Int}'_D(v)$ and $U'_D(u, v)$ by

$$\text{Int}'_D(v) = \sum_{S \in \text{AdS}_n} u^{d_D(S)}, \text{ and } U'_D(u, v) = \sum_{i \subseteq [n]} u^{[i]} \text{Int}'_D(i)(v).$$

Then $U'_D(u, v)$ satisfies the recursion for $U_D(u, v)$ in Definition 1.4. In particular, $U'_D = U_D$ and $\text{Int}'_D = \text{Int}_D$, and the recursive definition of U_D is independent of the element $i \in [n]$ chosen.

Proof. We first show that $\text{Int}'_D(v)$ satisfies the recursive property in Definition 1.4 with $u = 0$. Then [BH14, Theorem 30] states that if $i \in [n]$ is neither a loop nor coloop, then $\text{Int}'_D(v) = \text{Int}'_{D/i}(v) + \text{Int}'_{B_i}(v)$, and that if every element is a loop or a coloop, then $\text{Int}'_D(v) = (1 + v)^n$. If i is a loop or a coloop of D, then it continues to be so in D/J and $D \setminus J$ for $J \subseteq [n]$ not containing i. Thus, we conclude that Int'_D satisfies the desired recursive relation, and hence that $\text{Int}'_D = \text{Int}_D$.

For the U-polynomial, we have that

$$U'_D(u, v) = uU'_D(i)(u, v) + \sum_{J \not\ni i} u^{[J]} \text{Int}'_D(J)(v).$$

If i neither a loop nor coloop of D, then i is neither a loop nor coloop of $D(J)$ for any J not containing i. The defining recursion for the interlace polynomial gives that

$$\sum_{J \not\ni i} u^{[J]} \text{Int}'_D(J)(v) = \sum_{J \not\ni i} u^{[J]} \left(\text{Int}'_{D(J)/i}(v) + \text{Int}'_{D(J)\setminus i}(v)\right) = U'_D(i)(u, v) + U'_D(J\setminus i)(u, v).$$

Combining these yields $U'_D(u, v) = U'_D(i)(u, v) + U'_D(J\setminus i)(u, v) + uU'_D(i)(u, v)$ if i is not a loop or coloop of D. If i is a loop or a coloop of D, then it continues to be so in $D(J)$ for $J \subseteq [n]$ not containing i. Hence, if i is a loop or a coloop, we have

$$U'_D(u, v) = \sum_{J \not\ni i} u^{[J]+1} \text{Int}'_{D(J\setminus i)}(v) + u^{[J]} \text{Int}'_D(J)(v) = \sum_{J \not\ni i} u^{[J]} \left(u \text{Int}'_{D(J\setminus i)}(v) + (v + 1) \text{Int}'_{D(J\setminus i)}(v)\right),$$

and hence $U'_D(u, v) = (u + v + 1)U'_D(u, v)$. \hfill \square

Given two delta-matroids D_1, D_2 on disjoint ground sets, let $D_1 \times D_2$ be the delta-matroid on the union of the ground sets whose feasible sets are $B_1 \sqcup B_2$ for B_i feasible in D_i. Observe that $d_{D_1}(S_1)d_{D_2}(S_2) = d_{D_1 \times D_2}(S_1 \sqcup S_2)$ and that projections commute with products, so Proposition 5.2 implies the following.

Corollary 5.3. For two delta-matroids D_1 and D_2 on disjoint ground sets, we have

$$U_{D_1 \times D_2}(u, v) = U_{D_1}(u, v)U_{D_2}(u, v).$$

We also note the following property of U_D for future use.
Lemma 5.4. We have that
\[\sum_{I \subseteq [n]} a^{|I|}U_D(I)(u, v) = U_D(u + a, v). \]

Proof. We claim that, if \(i \) is not a loop or coloop, then
\[\sum_{i \in I \subseteq [n]} a^{|I|}U_D(I)(u, v) = U_D(i)(u + a, v) + U_D\setminus i(u + a, v) + (u + a)U_D(i)(u + a, v). \]

We induct on the size of the ground set. Note that
\[\sum_{i \in I \subseteq [n]} a^{|I|}U_D(I)(u, v) = a \cdot \sum_{J \subset [n] \setminus i} a^{|J|}U_D(i,J) = a \cdot U_D(i)(u + a, v), \]
and
\[\sum_{i \notin I \subseteq [n]} a^{|I|}U_D(I)(u, v) = \sum_{i \notin J \subset [n]} a^{|J|}(U_D(i,J)(u, v) + U_D\setminus i,J(u, v) + uU_D(i,J)(u, v)) \]
\[= U_D\setminus i(u + a, v) + U_D\setminus i(u + a, v) + uU_D(i)(u + a, v). \]

Summing these gives the claim. When \(i \) is a loop or coloop, it follows from the multiplicativity of the \(U \)-polynomial (Corollary 5.3) that the left-hand side satisfies the expected product formula. This shows that the left-hand side satisfies the defining recursion of the right-hand side. \(\square \)

We now compute the \(U \)-polynomials of delta-matroids arising from matroids.

Example 5.5. We compute \(U_D \) for \(D = IP(M) \), where \(M \) is a matroid on \([n]\) of rank \(r \). An element \(i \in [n] \) is a loop of \(D \) if \(i \) is a loop of \(M \), and \(i \) is never a coloop of \(D \). Then \(D(i) \) and \(D/i \) are both \(IP(M/i) \), and \(D \setminus i \) is \(IP(M \setminus i) \). Hence, \(U_{IP(M)} \) is a Tutte–Grothendieck invariant, which implies that
\[U_{IP(M)}(u, v) = (u + 1)^{n-r}M \left(T_M \left(u + 2, \frac{u + v + 1}{u + 1} \right) \right). \]

Example 5.6. We compute \(U_{PM} \) for a matroid \(M \) on \([n]\). Let \(\text{corank}_M(S) = r_M([n]) - r_M(S) \) be the corank and \(\text{nullity}_M(S) = |S| - r_M(S) \) the nullity of a subset \(S \) in \(M \). Then we claim that
\[U_{PM}(u, v) = \sum_{T \subseteq S \subseteq [n]} u^{|S-T|v} \text{corank}_M(S) + \text{nullity}_M(T). \]

Let \(I \subseteq [n] \), and fix some \(S \subseteq [n] \setminus I \). Then \(d_{PM(I)}(S) = \min_{S \subseteq S' \subseteq S \cup I} d_{PM}(S') \), and
\[d_{PM}(S') = \text{corank}_M(S') + \text{nullity}_M(S') \]
\[= (\text{corank}_M|_{S \cup I}(S') + \text{corank}_M(S \cup I)) + (\text{nullity}_M|_{S \cup I}(S') + \text{nullity}_M(S)). \]

The summand \(\text{corank}_M|_{S \cup I}(S') + \text{nullity}_M|_{S \cup I}(S') \) achieves its minimum value 0 when \(S' \) is a basis of the minor \(M|_{S \cup I}/S \). The other summand is the constant \(\text{corank}_M(S \cup I) + \text{nullity}_M(S) \). The claim then follows from Proposition 5.2.

It would be interesting to compute the \(U \)-polynomial of other families of delta-matroids such as those arising from graphs and ribbon graphs (see Examples 6.4 and 6.5). Theorem B applies to these delta-matroids, and therefore gives log-concavity results.
We conclude this section by recording a multivariable version of the U-polynomial in the variables u_1, \ldots, u_n, v. Because this multivariable version will arise naturally in our intersection computations on X_{B_n}, it will be useful for proving log-concavity results. For $I \subseteq [n]$, set $u^I = \prod_{i \in I} u_i$. Following the formula in Proposition 5.2, we define

$$U_D(u_1, \ldots, u_n, v) := \sum_{I \subseteq [n]} u^I \text{Int}_D(I)(v).$$

Note that we recover the usual U-polynomial by setting $u = u_1 = \cdots = u_n$.

6. REPRESENTABILITY AND ENVELOPING MATROIDS

We now discuss representability of delta-matroids and prepare for the construction of vector bundles associated to realizations of delta-matroids in Section 7.

6.1. Torus-orbit closures. We will discuss representability of delta-matroids using polytopes and torus-orbit closures. Let us prepare with generalities on torus-orbit closures in projective spaces and associated polytopes.

Let H be a torus with character lattice $\text{Char}(H)$. For a finite dimensional representation V of H and a point $x \in P(V)$, we define the moment polytope $P(H \cdot x)$ of its orbit closure $H \cdot x$ as follows. Let $V \cong \bigoplus_{i=0}^N V_i$ be the canonical decomposition into H-eigenspaces, where H acts on each V_i with character $a_i \in \text{Char}(H)$. For a representative $v \in V$ of $x \in P(V)$, let \mathcal{A} be the set

$$\mathcal{A} = \{a_i : v_i \neq 0 \text{ in the expression } v = \sum_{i=0}^N v_i, \text{ where } v_i \in V_i \text{ for all } i = 0, \ldots, N\}$$

which is independent of the choice of v. We define

$$P(H \cdot x) = \text{the convex hull of } \mathcal{A} \subset \text{Char}(H) \otimes \mathbb{R}.$$

Over \mathbb{C}, this agrees with the classical notion of moment polytopes; see for instance [Ful93, §4.2] and [Sot03, §8]. Let us record the following basic facts.

Proposition 6.1. With notation as above:

1. The $(k$-dimensional$)$ H-orbits of $H \cdot x$ are in bijection with the $(k$-dimensional$)$ faces of $P(H \cdot x)$ (for all $0 \leq k \leq \dim H$). The character lattice of the quotient of H by the stabilizer of the orbit corresponding a face F is the sublattice $\mathbb{Z}\{F \cap \mathcal{A}\}$ of $\text{Char}(H)$. (Here $F \cap \mathcal{A}$ is translated appropriately to contain the origin.)

2. If $\iota: H' \hookrightarrow H$ is an inclusion of a subtorus H' with the corresponding linear projection $\iota^\#: \text{Char}(H) \otimes \mathbb{R} \to \text{Char}(H') \otimes \mathbb{R}$, then $P(H' \cdot x)$ equals the projection $\iota^\# P(H \cdot x)$.

Proof. The orbit closure $H' \cdot x$ is isomorphic to the H-variety

$$X_{\mathcal{A}} = \text{the closure of the image of } H \to \mathbb{P}^{|\mathcal{A}| - 1} \text{ defined by } h \mapsto (h^a)_{a \in \mathcal{A}}.$$

The first statement is then [CLS11, Corollary 3.A.6]. The second statement follows by construction because the H-eigenspace V_i with weight $a_i \in \text{Char}(H)$ is an H'-eigenspace with weight $\iota^\# a_i \in \text{Char}(H')$. □
6.2. Representable delta-matroids. For a delta-matroid \(D \) with feasible sets \(\mathcal{F} \), let

\[
\overline{P(D)} = 2P(D) - \mathbf{e}_{[n]} = \text{the convex hull of } \{ \mathbf{e}_B : B \in \mathcal{F} \} \subset [-1, 1]^n.
\]

When \(P(D) = P(M) \) or \(P(D) = IP(M) \), we set \(\overline{P(M)} := \overline{P(D)} \) and \(I\overline{P(M)} := \overline{P(D)} \) respectively. We now describe representability of \(D \) in terms of the polytope \(\overline{P(D)} \) and torus-orbit closures in a type \(B \) Grassmannian.

The standard \((2n + 1)\)-dimensional quadratic space is \(k^{2n+1} \), whose coordinates are labelled \(\{1, \ldots, n, \bar{1}, \ldots, \bar{n}, 0\} \), and which is equipped with the quadratic form

\[
q(x_1, \ldots, x_n, x_{\bar{1}}, \ldots, x_{\bar{n}}, x_0) = x_1x_{\bar{1}} + \cdots + x_nx_{\bar{n}} + x_0^2.
\]

A maximal isotropic subspace \(L \subset k^{2n+1} \) is an \(n \)-dimensional subspace for which the restriction \(q|_L \) is identically zero. The maximal orthogonal Grassmannian, denoted \(OGr(n; 2n + 1) \), is a variety whose \(k \)-valued points are in bijection with maximal isotropic subspaces of the standard \((2n + 1)\)-dimensional quadratic space \(k^{2n+1} \). By definition, \(OGr(n; 2n + 1) \) is a closed subvariety of the Grassmannian \(Gr(n; 2n + 1) \) with the Plücker embedding \(Gr(n; 2n + 1) \hookrightarrow \mathbb{P}^{(2n+1)}-1 \). The torus \(G_{2n+1}^2 \) acts on \(Gr(n; 2n + 1) \) by its standard action on \(k^{2n+1} \). The torus \(T = G_{2n}^2 \) embeds into \(G_{2n+1}^2 \) by \((t_1, \ldots, t_n) \mapsto (t_1, \ldots, t_n, t_1^{-1}, \ldots, t_n^{-1}, 1) \), and the induced action of \(T \) on \(Gr(n; 2n + 1) \) preserves \(OGr(n; 2n + 1) \). We thus treat \(OGr(n; 2n + 1) \) as a \(T \)-variety with the \(T \)-equivariant Plücker embedding in \(\mathbb{P}^{(2n+1)}-1 \).

Proposition 6.2. For \(L \subset k^{2n+1} \) maximal isotropic, the set of admissible subsets

\[
\mathcal{F} = \{ S \in \text{AdS}_n : \text{the composition } L \hookrightarrow k^{2n+1} \to k^S \text{ is an isomorphism} \}
\]

is the set of feasible sets of a delta-matroid \(D \), and the moment polytope \(P(\overline{P(L)} \cdot [L]) \) of the orbit closure of \([L]\) as a point in \(\mathbb{P}^{(2n+1)}-1 \) is equal to \(\overline{P(D)} \).

In this case, we say that \(L \) is a \(B_n \) representation of \(D \). We say that \(D \) is \(B_n \) representable if it has a \(B_n \) representation. Over \(C \), the proposition is [GS87, Section 7, Theorem 1]. A type \(C \) analogue of this statement for the Lagrangian Grassmannian, without the assertion about moment polytopes, appears in [BGW03, Theorem 3.4.3].

Proof. Index the coordinates of \(\mathbb{P}^{(2n+1)}-1 \) by size \(n \) subsets of \([n, \bar{n}] \cup \{0\} \). One verifies that:

- The \(T \)-fixed points of \(OGr(n; 2n + 1) \) correspond to admissible subsets \(B \in \text{AdS}_n \) of size \(n \), where \(B \) gives a point in \(\mathbb{P}^{(2n+1)}-1 \) whose Plücker coordinates are all zero except at \(B \).
- The \(T \)-invariant closed curves of \(OGr(n; 2n + 1) \) correspond to pairs of \(T \)-fixed points such that, writing \(B \) and \(B' \) for the corresponding admissible subsets, \(\mathbf{e}_B - \mathbf{e}_{B'} \) is parallel to \(\mathbf{e}_i, \mathbf{e}_j, \) or \(\mathbf{e}_i + \mathbf{e}_j, \) or \(\mathbf{e}_i - \mathbf{e}_j \) for some \(i, j \in [n] \).

The proposition now follows from Proposition 6.1(1). \(\square \)

Example 6.3. Schubert delta-matroids are \(B_n \) representable, and their representations explain their name as follows. The closed cells \(X_v \) of the Schubert stratification of \(OGr(n; 2n + 1) \) are indexed by \(v \in \mathcal{S}_n^B / \mathcal{S}_n \), and the containment relation among the \(X_v \) is given by the reversed Bruhat order. If \(x \) is a general point of \(X_v \), then the delta-matroid represented by the corresponding isotropic
subspace is the standard Schubert delta-matroid \(\Omega_{\nu(\gamma)} \). In particular, they are certain generalized Bruhat interval polytopes corresponding to Schubert cells [TW15]. This is analogous to the relationship between Schubert matroids on \([n]\) of rank \(r \) and the Schubert stratification of \(Gr(r; n) \).

A maximal isotropic subspace \(L \) of \(\mathbb{K}^{2n} \) with the quadratic form \(q(x_1, \ldots, x_n, x_{\gamma}, \ldots, x_\Pi) = x_1 x_{\gamma} + \cdots + x_n x_\Pi \) yields a maximal isotropic subspace \(L \oplus \{0\} \) in \(\mathbb{K}^{2n+1} \), and hence a \(B_n \) representation of a delta-matroid \(D \). In such case, we say that \(L \) is a \(D_n \) representation of \(D \). Such a delta-matroid is an even delta-matroid, meaning that the parity of \(|B \cap [n]| \) for any feasible set \(B \) is the same [BGW03, Theorem 3.10.2].

In the literature, there are two prominent constructions of delta-matroids from graphs. Both constructions yield even delta-matroids with \(D_n \) representations.

Example 6.4. Let \(G \) be a simple graph on vertex set \([n]\), and let \(A_G \) be its adjacency matrix with entries considered as elements of \(\mathbb{F}_2 \). As the matrix \(A_G \) is skew-symmetric, the row-span of the \(n \times 2n \) matrix \([I_n | A_G]\) is an isotropic subspace of \(\mathbb{F}_2^{n} \), and hence defines an even delta-matroid \(D(G) \). The interlace polynomial was originally defined and studied as a graph invariant. See [Duc92, ABS04, AvdH04].

Example 6.5. A graph \(\Gamma \) embedded in a surface, also known as a ribbon graph, with edges labeled by \([n]\) defines a delta-matroid \(D(\Gamma) \) whose feasible sets are the “spanning quasi-trees” of \(\Gamma \), i.e., the spanning subgraphs whose small neighborhood has just one boundary component. Note that for a planar graph, this coincides with the usual graphical matroid of the graph. See [CMNR19a] for a history and proofs, and [CMNR19b] for further connection between delta-matroids and ribbon graphs generalizing the connection between matroids and graphs. [BGW03, Theorem 4.3.5] shows that such a delta-matroid has a \(D_n \) representation (see also [BBGS00]).

6.3 Enveloping matroids

The notion of an enveloping matroid of a delta-matroid will play a crucial role when we construct “tautological classes of delta-matroids” in §7 and when we apply tools from tropical Hodge theory to prove Theorem B in §8.

Let \(\text{env} \colon \mathbb{R}^{2n} \to \mathbb{R}^n \) be the map given by \(\text{env}(x_1, \ldots, x_n, x_1, \ldots, x_n) = (x_1 - x_1, \ldots, x_n - x_n) \). To avoid confusion with our notation that \(e_\gamma = -e_i \in \mathbb{R}^n \), we use \(u_1, \ldots, u_n, u_1, \ldots, u_n \) to refer to the standard basis of \(\mathbb{R}^{2n} \). For \(S \subset [n, \bar{n}] \), let \(u_S = \sum_{i \in S} u_i \). If \(S \in \text{AdS} \), then \(\text{env}(u_S) = e_S \).

Definition 6.6. Let \(M \) be a matroid on \([n, \bar{n}]\), and let \(D \) be a delta-matroid on \([n, \bar{n}]\). Then \(M \) is an enveloping matroid of \(D \) if the image of \(P(M) \) under \(\text{env} \) is \(\bar{P}(D) \).

Remark 6.7. In [Bou97, Section 4], Bouchet considers matroids \(M \) on \([n, \bar{n}]\) whose independent sets which are admissible are the subsets of the feasible sets of a delta-matroid \(D \). He calls such a matroid a sheltering matroid of \(D \). It follows from [Lar, Section 3.3] that \(M \) is a sheltering matroid if and only if \(\text{env}(IP(M)) = P(D) + \square - e_{[n]} \), so Lemma 7.6 will show that enveloping matroids are sheltering matroids.

In [BGW03, Exercise 3.12.6], the authors consider matroids whose bases which are admissible are the feasible sets of \(D \). They call such a matroid also an enveloping matroid, which disagrees with Definition 6.6.
Let D be the delta-matroid on $[2, 2]$ with feasible sets $\{1, 2\}$ and $\{1, 2\}$. The matroid on $[2, 2]$ with bases $\{1, 2\}, \{1, 2\}$, and $\{2, 2\}$ is a sheltering matroid for D, but it is not an enveloping matroid. The matroid with bases $\{1, 2\}, \{1, 2\}$, and $\{1, 1\}$ is an enveloping matroid in the sense of [BGW03, Exercise 3.12.6], but it is not a sheltering matroid.

Our main examples of delta-matroids with enveloping matroids are B_n representable delta-matroids (Proposition 6.9), which in particular includes delta-matroids arising from graphs and graphs embedded on surfaces by Examples 6.4 and 6.5, and delta-matroids arising from matroids (Proposition 6.11).

Existence of enveloping matroids behaves well with respect to operations on delta-matroids as follows. Let M be an enveloping matroid of a delta-matroid D on $[n, n]$.

- For $w \in S_n$, the S_n-action on $[n, n]$ makes $w \cdot M$ an enveloping matroid of $w \cdot D$.
- For $i \in [n]$, the matroid minor $M/i \setminus i$ (resp. $M \setminus i/i$) is an enveloping matroid for D/i (resp. $D \setminus i$).
- If M' is an enveloping matroid of another delta-matroid D' on ground set disjoint from that of D, then $M \oplus M'$ is an enveloping matroid for $D \times D'$.
- The dual delta-matroid D^\perp is the delta-matroid with feasible sets $\{B: B$ a feasible set of $D\}$.

Then the dual matroid M^\perp is an enveloping matroid for D^\perp.

For future use in §8, we record an observation that loops and coloops of D and M are compatible.

Lemma 6.8. Let D be a delta-matroid with an enveloping matroid M, and let $i \in [n]$. Then i is a loop (resp. coloop) in D if and only if i is a loop and \bar{i} a coloop (resp. i is a coloop and \bar{i} a loop) in M. In particular, if D is loop-free and coloop-free, then so is M.

Proof. Let us prove the statement for when i is a loop, i.e., the polytope $\widehat{P(D)} \subset \mathbb{R}^n$ is contained in the hyperplane $x_i = -1$. If a basis B of M contains i or does not contain \bar{i}, then $\text{env}(u_B)$ lies in $x_i \geq 0$. Hence i is a loop and \bar{i} a coloop of M. The other direction is similar. □

Proposition 6.9. Let $L \subset k^{2n+1}$ be a B_n representation of a delta-matroid D, and let L' denote the image of L under the projection to k^{2n} forgetting the x_0-coordinate. Then the matroid that L' represents is an enveloping matroid of D. In particular, every B_n representable delta-matroid has an enveloping matroid.

Proof. Let M be the matroid that L represents. As a point in $OGr(n; 2n + 1) \subset Gr(n; 2n + 1) \subset \mathbb{P}^{(2n+1)-1}$, the moment polytope of $\mathbb{G}^{2n+1}_M \cdot [L]$ is $P(M)$, whereas the moment polytope of $\mathbb{T} \cdot [L]$ is $\widehat{P(D)}$ by Proposition 6.2. Then Proposition 6.1(2) implies that the image of $P(M)$ under the composition $\text{env} \circ \pi_0$ is $\widehat{P(D)}$, where $\pi_0: \mathbb{R}^{2n+1} \to \mathbb{R}^{2n}$ is the projection forgetting the 0th coordinate. Note that L' is a representation of $M \setminus 0$, and $\text{env}(P(M \setminus 0))$ is contained in $\text{env} \circ \pi_0(P(M)) = \widehat{P(D)}$. Each feasible set of D is a basis of M which does not contain 0, and hence is a basis of $M \setminus 0$, which proves that $\text{env}(P(M \setminus 0)) = \widehat{P(D)}$. □

Remark 6.10. Because the Weyl groups of type B and C root systems coincide, one may consider delta-matroids as type C Coxeter matroids, and consequently consider C_n representability in terms of Lagrangian subspaces in a $2n$-dimensional space with a symplectic form. See [BGW98].
or [BGW03, §3.4]. The proof of Proposition 6.9 shows that C_n representable delta-matroids also have enveloping matroids.

Proposition 6.11. Let M be a matroid on $[n]$. Then the delta-matroids $P(M)$ and $IP(M)$ have enveloping matroids.

Proof. For $P(M)$, we show that $M \oplus M^\perp$ is an enveloping matroid, where M^\perp is the isomorphic image of M^\perp under $(\gamma): [n] \to [\bar{n}]$. Minkowski sums commute with linear projections, so

$$
\text{env}(P(M \oplus M^\perp)) = \text{env}(P(M) + P(M^\perp))
= P(M) + (-P(M^\perp))
= P(M) + (P(M) - e_{[\bar{n}]}) = \widehat{P(M)}.
$$

For $IP(M)$ we take the free product $M \Box M^\perp$ of [CS05], whose bases are the sets $S \cup \overline{T}$ of size $\text{rank } M + \text{rank } M^\perp = n$ with $S, T \subseteq [n]$ such that S is independent in M and T is spanning in M^\perp. Write $SP(N)$ for the spanning set polytope of a matroid N, so $SP(N^\perp) = -IP(N) + e_{[n]}$. We show that

$$
P(M \Box M^\perp) = (IP(M) + SP(M^\perp)) \cap H,
$$
where H is the hyperplane $\{v \in \mathbb{R}^{2n} : \sum_{i \in [n, \bar{n}]} v_i = n\}$. For a polytope Q, any vertex of $Q \cap H$ is of the form $F \cap H$, where F is a vertex or edge of Q. The polytope $IP(M) + SP(M^\perp)$ is a lattice polytope whose edge directions all have the form u_i or $u_i - u_j$ for $i, j \in [n, \bar{n}]$ because each edge of a Minkowski sum is parallel to an edge of one of the two summands. As $\sum_{i \in [n, \bar{n}]} v_i$ takes values 0 or 1 on all of these direction vectors, if H intersects an edge of $IP(M) + SP(M^\perp)$ transversely, then the intersection is a lattice point. Therefore $(IP(M) + SP(M^\perp)) \cap H$ is a lattice polytope as well. By definition of the free product, $P(M \Box M^\perp)$ and this intersection have the same set of lattice points, so they are equal. Now as above

$$
\text{env}(P(M \Box M^\perp)) \subseteq \text{env}(IP(M) + SP(M^\perp))
= IP(M) + (-SP(M^\perp))
= IP(M) + (IP(M) - e_{[\bar{n}]}) = \widehat{IP(M)}.
$$

The containment is an equality because every vertex of $\widehat{IP(M)}$ has the form $e_S - e_{E \setminus S}$ for S an independent set of M, and this vertex has the preimage $(u_S, u_{E \setminus S})$ in $P(M \Box M^\perp)$. \hfill \Box

Example 6.12. In [Bou97, Section 4], Bouchet gives the example, which he attributes to Duchamp, of the delta-matroid with the set of feasible sets

$$
\mathcal{F} = \{\{1, 2, 3, \bar{4}\}, \{\bar{1}, 2, 3, 4\}, \{1, 2, 3, 4\}, \{1, 2, 3, \bar{4}\}, \{1, 2, 3, 4\}, \{1, 2, 3, \bar{4}\} \}.
$$

There is no matroid on $[4, \bar{4}]$ whose set of bases which are admissible is \mathcal{F}. In particular, this delta-matroid does not have an enveloping matroid.
7. Vector bundles and K-classes

We now define two types of equivariant vector bundles associated to realizations of delta-matroids, which we call isotropic tautological bundles and enveloping tautological bundles respectively. The isotropic tautological bundles are analogous to the bundles used in [BEST23], and the enveloping tautological bundles are analogous to the bundles used in [EHL23]. The construction of an isotropic tautological bundle depends on the choice of a B_n representation of a delta-matroid, and the construction of an enveloping tautological bundle depends on the choice of a realization of an enveloping matroid. The K-classes of the bundles will only depend on the delta-matroid, which leads to the construction of isotropic tautological classes and enveloping tautological classes for all delta-matroids, not necessarily with a B_n representation or a representable enveloping matroid.

In both cases, we will construct a T-equivariant map from X_{B_n} to a Grassmannian and define the bundles as pullbacks of certain universal bundles. Let us therefore prepare with a discussion of maps from X_{B_n} to Grassmannians. The discussion can be easily adapted to replace X_{B_n} with any smooth projective toric variety, but such generality won’t be needed here.

7.1. Maps into Grassmannians. Let $L \subset \mathbb{k}^N$ be a linear space of dimension r, corresponding to a point $[L]$ of $Gr(r; N)$ and representing a matroid M of rank r on $[N]$. Let $\iota: T \to G_m^n$ be an inclusion of T into the torus acting on $Gr(r; N)$, and let $\iota^#: Char(G_m^n) \to Char(T)$ be the pullback map on character lattices. Then $\iota^#(P(M))$ is a lattice polytope in $Char(T) \otimes \mathbb{R}$. Suppose that Σ_{B_n} refines the normal fan of $\iota^#(P(M))$. For each $w \in \mathbb{G}_n^B$ and any v in the interior of C_w, let B_w be any basis of M such that the corresponding vertex of $P(M)$ maps under $\iota^#$ into the v-minimal vertex face of Σ_{B_n}.

Proposition 7.1. With the set-up as above, there is a unique T-equivariant morphism $\varphi_L: X_{B_n} \to Gr(r; N)$ such that the identity of $T \subset X_{B_n}$ is sent to $[L]$. The pullback $\varphi_i^*(\mathcal{S}_{univ})$ of the tautological subbundle on $Gr(r; N)$ is a T-equivariant vector bundle on X_{B_n} such that, for each $w \in \mathbb{G}_n^B$, the T-equivariant K-class localizes to

$$[\varphi_i^*(\mathcal{S}_{univ})]_w = \sum_{i \in B_w} \iota^#T_i.$$

Proof. The moment polytope (taken with respect to the Plücker embedding of the Grassmannian) of the G_m^n-orbit closure $\overline{\mathbb{G}_m^n \cdot [L]} \subset Gr(r; N)$ is $P(M)$, so, by Proposition 6.1(2), the moment polytope of the T-orbit closure $\overline{T \cdot [L]}$ is $\iota^#P(M)$. Note that $\overline{T \cdot [L]}$ is a (possibly non-normal) toric variety whose embedded torus is $T/\text{Stab}_T([L])$. The normalization of $\overline{T \cdot [L]}$ is a toric variety whose fan is the normal fan of $\iota^#P(M)$ (considered in Cochar$(T) \otimes \mathbb{R}$, possibly with lineality space), and whose lattice may be finer than the lattice in Σ_{B_n}. We therefore have a unique morphism $X_{B_n} \to \overline{T \cdot [L]} \hookrightarrow Gr(r; N)$ such that the identity of T is sent to $[L]$.

To compute the localization of $[\varphi_i^*(\mathcal{S}_{univ})]$ to a fixed point of X_{B_n} corresponding to $w \in \mathbb{G}_n^B$, we consider the image of this fixed point, $x_w \in Gr(r; N)$. Because pullbacks commute with pullbacks, it suffices to compute the pullback of $[\mathcal{S}_{univ}]$ to x_w in T-equivariant K-theory. Note that x_w is a T-fixed point, which implies that $\mathbb{G}_m^n \cdot x_w$ is acted on trivially by T, so $K_T(\mathbb{G}_m^n \cdot x_w) = K(\mathbb{G}_m^n \cdot x_w) \otimes \mathbb{Z}[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$. Therefore the pullback in T-equivariant K-theory of $[\mathcal{S}_{univ}]$ to any point of $\mathbb{G}_m^n \cdot x_w$ is the same element of $\mathbb{Z}[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$. The \mathbb{G}_m^n-fixed points of $\mathbb{G}_m^n \cdot x_w$ are exactly the vertices of...
$P(M)$ in the preimage of face, $\iota^# P(M)$. The pullback in \mathbb{G}_m^N-equivariant K-theory of $[S_{\text{univ}}]$ to a \mathbb{G}_m^N-fixed point of $Gr(r; N)$ corresponding to $B_w \subset [N]$ is $\sum_{i \in B_w} T_i$. Applying $\iota^#$ implies the result.

For using Proposition 7.1, we set up some notation for a delta-matroid D and $w \in \mathcal{S}_n^B$.

- Let $B_w(D)$ be the w-minimal feasible set of D, i.e., the feasible set corresponding to the vertex face, $P(D)$ of $P(D)$ on which any linear functional v in C_w^* achieves its minimum.
- Likewise, let $B_w^{\max}(D)$ be the w-maximal feasible set corresponding to the vertex of $P(D)$ on which any linear functional in the interior of C_w achieves its maximum.

Note that $B_w^{\max}(D) = B_w(D^\perp)$. We omit (D) and simply write B_w if no confusion is expected.

7.2. Construction of isotropic tautological bundles. Let $O^{\oplus 2n+1}_{OGr(n; 2n+1)}$ be the rank $2n + 1$ trivial bundle on $OGr(n; 2n + 1)$, which is equipped with the standard quadratic form, and which is a T-equivariant vector bundle with the action

\[(t_1, \ldots, t_n) \cdot (x_1, \ldots, x_n, x_T, \ldots, x_{\pi}, x_0) = (t_1x_1, \ldots, t_nx_n, t_1^{-1}x_1, \ldots, t_n^{-1}x_n, x_0) .\]

Let $\mathcal{I}_{\text{univ}}$ be the universal isotropic subbundle of $O^{\oplus 2n+1}_{OGr(n; 2n+1)}$, whose fiber over a point of $OGr(n; 2n + 1)$ corresponding to the maximal isotropic subspace $L \subset \mathbb{k}^{2n+1}$ is L. Under the inclusion $OGr(n; 2n + 1) \subset Gr(r; n)$, the bundle $\mathcal{I}_{\text{univ}}$ is the T-equivariant subbundle of $O^{\oplus 2n+1}_{OGr(n; 2n+1)}$ obtained as the restriction of the universal subbundle on $Gr(n; 2n + 1)$. Then the following proposition follows from Proposition 7.1 and the fact that $OGr(n; 2n + 1)$ is a T-fixed subvariety of $Gr(n; 2n + 1)$.

Proposition 7.2. For each B_n representation $L \subset \mathbb{k}^{2n+1}$ of a delta-matroid D, we have a T-equivariant map

\[X_{B_n} \to T \cdot [L] \hookrightarrow OGr(n; 2n + 1) ,\]

such that the identity of T is sent to $[L]$. For each $w \in \mathcal{S}_n^B$, the pullback of $\mathcal{I}_{\text{univ}}$ localizes to $\sum_{i \in B_w} T_i$ at the T-fixed point of X_{B_n} corresponding to w.

Note our continued use of the convention that $T_i = T_i^{-1}$ for $i \in [n]$.

Definition 7.3. Let L be a B_n representation of a delta-matroid D. Then the isotropic tautological bundle \mathcal{I}_L on X_{B_n} is the pullback of $\mathcal{I}_{\text{univ}}$ under the map $X_{B_n} \to OGr(n; 2n + 1)$ in Proposition 7.2.

Let $O^{\oplus 2n+1}_{X_{B_n}}$ be the rank $2n + 1$ trivial bundle with a T-equivariant structure given by the action of T on \mathbb{k}^{2n+1} in (7.1). Note that \mathcal{I}_L is the unique T-equivariant subbundle of $O^{\oplus 2n+1}_{X_{B_n}}$ whose fiber at the identity of $T \subset X_{B_n}$ is the isotropic subspace L. In particular, its dual \mathcal{I}_L^* is globally generated, and \mathcal{I}_L is an anti-nef vector bundle. The equivariant K-class of \mathcal{I}_L depends only on the delta-matroid D. Moreover, we show that this K-class is well-defined for any delta-matroid, not necessarily representable.

Proposition 7.4. For any delta-matroid D on $[n, \bar{n}]$, there is a class $[\mathcal{I}_D] \in K_T(X_{B_n})$ defined by

\[[\mathcal{I}_D]_w = \sum_{i \in B_w} T_i .\]

We define the isotropic tautological class $[\mathcal{I}_D]$ of D by the above formula. Proposition 7.2 implies that $[\mathcal{I}_D] = [\mathcal{I}_L]$ if L is a B_n representation of D.
Proof. We need to check that the above formula satisfies the compatibility condition in Theorem 3.1. Let \(w \in \mathcal{G}_n^D \), and set \(w' = w_{\tau_i} \). Then the cones corresponding to \(w \) and \(w' \) share a hyperplane whose normal vector is \(e_{w(i)} - e_{w(i+1)} \). As the normal fan of \(\hat{P}(D) \) coarsens \(\Sigma_{B_n} \), the \(w \)-minimal and \(w' \)-minimal vertices of \(P(D) \) either coincide or differ by an edge parallel to \(e_{w(i)} - e_{w(i+1)} \). This implies that \([I_D]_w = [I_D]_{w'} \) is either 0 or \(\pm (T_{w(i)} - T_{w(i+1)}) \), which is divisible by \(1 - T_{w(i)}T_{w(i+1)}^{-1} \).

Now set \(w' = w_{\tau_n} \). Then the cones corresponding to \(w \) and \(w' \) share a hyperplane whose normal vector is \(e_{w(n)} \). Again, that the normal fan of \(\hat{P}(D) \) coarsens \(\Sigma_{B_n} \) implies that either \([I_D]_w = [I_D]_{w'} \) or \([I_D]_w - [I_D]_{w'} = \pm (1 - T_{w(n)}) \) is divisible by \(1 - T_{w(n)} \). \(\square \)

Remark 7.5. We could also consider the quotient bundles \(O_{X_{B_n}}^{\oplus 2n+1}/\mathcal{I}_L \). However, one can verify that \([\mathcal{I}_L] + [\mathcal{I}_L]^\vee = [O_{X_{B_n}}^{\oplus 2n+1}] \), and so \(c([\mathcal{I}_L]^\vee) = c(O_{X_{B_n}}^{\oplus 2n+1}/\mathcal{I}_L) \). Therefore, studying the quotient bundle does not give any new elements of \(A^*(X_{B_n}) \).

7.3. Construction of enveloping tautological bundles. From each realization \(L \subset k^{2n} \) of an enveloping matroid \(M \) of a delta-matroid \(D \), we construct the enveloping tautological bundles \(S_L^E \) and \(Q_L^E \). Let \(\pi_i : X_{B_n} \to \mathbb{P}^1 \) denote the composition \(X_{B_n} \to (\mathbb{P}^1)^n \to \mathbb{P}^1 \), where the latter map is the projection onto the \(i \)th factor. Let us treat \(\mathbb{P}^1 \) as the toric variety of the fan in \(\mathbb{R} \) consisting of the positive ray, negative ray, and the origin. \(\mathbb{P}^1 \) has two torus-fixed divisors \(\infty \) and \(o \) that correspond respectively to the negative ray and the positive ray. These torus-fixed divisors correspond respectively to the intervals \([0, 1]\) and \([-1, 0]\) under the standard correspondence between polytopes and basepoint-free divisors on toric varieties [CLS11, Chapter 6]. Let \(O(1_{\infty}) \) and \(O(1_o) \) be the respective toric line bundles isomorphic to \(O_{\mathbb{P}^1}(1) \), and define

\[
\mathcal{M} = \bigoplus_{i \in [n]} \pi_i^*O(1_{\infty}) \oplus \pi_i^*O(1_o).
\]

We now show the existence of vector bundles \(S_L^E \) and \(Q_L^E \) on \(X_{B_n} \) that fit into a short exact sequence of \(T \)-equivariant vector bundles

\[
0 \to S_L^E \to \mathcal{M} \to Q_L^E \to 0,
\]

which is characterized by the property that the fiber over of the identity point of \(T \) is \(0 \to L \to k^{2n} \to k^{2n}/L \to 0 \). We prepare with a combinatorial lemma. Recall that \(\square \) denotes the cube \([0, 1]^n\), and the standard basis of \(\mathbb{R}^{2n} \) is denoted \(u_1, \ldots, u_n, u_{\bar{1}}, \ldots, u_{\bar{n}} \).

Lemma 7.6. Let \(M \) be an enveloping matroid of a delta-matroid \(D \). Then

\[
\text{env}(IP(M)) = P(D) + \square - e_{[n]}.
\]

Proof. First we note that \(\text{env}(IP(M)) \) is contained in \(P(D) + \square - e_{[n]} \). Every vertex of \(\text{env}(IP(M)) \) can be written as \(\frac{1}{2} \text{env}(u_B) + \frac{1}{2} \text{env}(-u_S) \) for some basis \(B \) of \(M \) and \(S \subset B \). Then \(\frac{1}{2} \text{env}(u_B) \in P(D) - (\frac{1}{2}, \ldots, \frac{1}{2}) \) and \(\frac{1}{2} \text{env}(-u_S) \in \square - (\frac{1}{2}, \ldots, \frac{1}{2}) \).
Now it suffices to show that every vertex of \(P(D) + \square - e_{[n]} \) is contained in \(\text{env}(IP(M)) \). Let \(v \) be a vector in the interior of \(C_w \). Then

\[
\text{face}_v(P(D) + \square - e_{[n]}) = \text{face}_v(P(D) - \frac{1}{2}e_{[n]}) + \text{face}_v(\square - \frac{1}{2}e_{[n]})
\]

\[
= \frac{1}{2}e_{B_w} + \frac{1}{2}e_{w([n])}
\]

\[
= \frac{1}{2}e_{B_w} - \frac{1}{2}e_{w([n])},
\]

Because the normal fan of \(P(D) + \square - e_{[n]} \) is a coarsening of \(\Sigma_{B_n} \), every vertex is of the form \(\frac{1}{2}e_{B_w} - \frac{1}{2}e_{w([n])} \) for some \(w \in \mathfrak{C}_n^B \). We see that this is equal to \(\text{env}(u_{B_w} - u_{B_w \cap w([n])}) \). Because \(B_w \cap w([n]) \subset B_w \), this is contained in \(IP(M) \). \(\square \)

We first construct the dual of the vector bundle \(Q^E_L \). Let \(L^\perp \) be the dual space \((k^{2n}/L)^\vee \), considered as a subspace of \(k^{2n} \) under the isomorphism \((k^{2n})^\vee \simeq k^{2n} \). It represents the dual matroid of the matroid represented by \(L \). Let the torus \(T \) act on \(k^{4n} = k^{2n} \times k^{2n} \) by the usual action \((t_1 x_1, \ldots, t_n x_n, t_1^{-1} x_T, \ldots, t_n^{-1} x_T) \) on the first \(k^{2n} \) factor and trivially on the second \(k^{2n} \) factor. We let \(T \) act on \(Gr(n; 4n) \) accordingly.

Proposition 7.7. For a representation \(L \) of an enveloping matroid \(M \) of a delta-matroid \(D \), let \(E_L \subset k^{4n} \) be the image of \(L^\perp \) under the diagonal embedding \(k^{2n} \hookrightarrow k^{4n} \). Then there is a composition of \(T \)-equivariant maps

\[
\varphi_L : X_{B_n} \to \overline{T \cdot [E_L]} \hookrightarrow Gr(n; 4n).
\]

We define the **enveloping tautological quotient bundle** \(Q^E_L \) to be the dual of the pullback of the universal subbundle on \(Gr(n; 4n) \) via the map \(\varphi_L \).

Proof. Let \(\overline{T} \) be the \(2n \)-dimensional torus \(G_m^{2n} \) with the action on \(Gr(n; 4n) \) induced by

\[
(t_1, \ldots, t_{2n}) \cdot (x_1, \ldots, x_{4n}) = (t_1 x_1, \ldots, t_{2n} x_{2n}, x_{2n+1}, \ldots, x_{4n}).
\]

By [EHL23, Proposition 3.16], the moment polytope of \(\overline{T \cdot [E_L]} \) is \(IP(M^\perp) \). By Proposition 6.1(2), the moment polytope of \(\overline{T \cdot [E_L]} \) is \(\text{env}(IP(M^\perp)) \) \(= P(D^\perp) + \square - e_{[n]} \). Note that the normal fan of \(P(D^\perp) + \square - e_{[n]} \) coarsens \(\Sigma_{B_n} \), so we conclude by Proposition 7.1. \(\square \)

By construction, we have a surjection \(\mathcal{O}_{X_{B_n}}^{4n} \to Q^E_L \). There is also a surjection \(\mathcal{O}_{X_{B_n}}^{4n} \to M \), given by taking the direct sum over all \(i = 1, \ldots, n \) of the surjections

\[
\mathcal{O}_{X_{B_n}}^{4n} \simeq H^0(\mathbb{P}^1, \mathcal{O}(1_\infty) \oplus \mathcal{O}(1_o)) \otimes \mathcal{O}_{X_{B_n}} \to \pi^*_i \mathcal{O}(1_\infty) \oplus \pi^*_i \mathcal{O}(1_o),
\]

whose kernel is \(\pi^*_i(-1_\infty) \oplus \pi^*_i(-1_o) \).

Proposition 7.8. The composition

\[
\bigoplus_{i \in [n]} \pi^*_i(-1_\infty) \oplus \pi^*_i(-1_o) \to \mathcal{O}_{X_{B_n}}^{4n} \to Q^E_L
\]

is zero, so there is a map \(M \to Q^E_L \).

We define the **enveloping subbundle** \(S^E_L \) to be the kernel of the map \(M \to Q^E_L \).
Proof. It suffices to check this on the dense open torus $T \subset X_{B_n}$. By considering each factor of $T = \mathbb{G}_m$ separately, the computation reduces to the case $n = 1$. Over a point $t \in \mathbb{G}_m$, the fiber of $\pi_1(-1, t) \oplus \pi_1(-1, -t) \subseteq \mathcal{O}_{\mathbb{G}_m}^\times$ is the subspace $\{(ta, t^{-1}b, a, b) : (a, b) \in k^2\} \subseteq k^4$. The form of E_L then implies the claim.

We now compute the T-equivariant K-classes of S^E_L and Q^E_L.

Proposition 7.9. The equivariant K-classes of S^E_L and Q^E_L are given by

$$[S^E_L]_w = [B^\text{max}_w \cap w([n])] + \sum_{i \in w([n]), i \notin B^\text{max}_w} T_i, \text{ and } [Q^E_L]_w = n - [B^\text{max}_w \cap w([n])] + \sum_{i \in B^\text{max}_w \cap w([n])} T_i.$$

Proof. Let v be a vector in the interior of C_w. We have noted that B^max_w of D is equal to the w-minimal feasible set of D^\perp. Then, as in the proof of Lemma 7.6, we have that

$$\text{face}_v(P(D^\perp) + \square - e([n])) = \frac{1}{2} e_B((D^\perp) - \frac{1}{2} e_w([n])) = \frac{1}{2} e_{B^\text{max}} - \frac{1}{2} e_w([n]).$$

In order to compute the localization of the pullback of S_{univ}, we find a preimage of $\text{face}_v(P(D^\perp) + \square - e([n]))$ in the polytope of the matroid represented by E_L. A preimage in $IP(M^\perp)$ of this vertex is $\{w_{B^\text{max}} - w_{B^\text{max} \cap w([n])}\}$. A preimage of this in the matroid polytope of the matroid represented by E_L extends the independent set $B^\text{max}_w \setminus B^\text{max}_w \cap w([n])$ of M^\perp to a basis without adding any elements in $[2n]$. Proposition 7.1 then implies that the localization of the pullback of S_{univ} at the fixed point of X_{B_n} corresponding to w is

$$[B^\text{max}_w \cap w([n])] + \sum_{i \in B^\text{max}_w \setminus (B^\text{max}_w \cap w([n]))} T_i = [B^\text{max}_w \cap w([n])] + \sum_{i \in B^\text{max}_w \cap w([n])} T_i.$$

Because Q^E_L is the dual of the pullback of S_{univ}, this gives the result for Q^E_L. We note that $[M]_w = n + \sum_{i \in w([n])} T_i$. As $[S^E_L] = [M] - [Q^E_L]$, the result for $[S^E_L]$ follows.

In particular, the equivariant K-classes of $[S^E_L]$ and $[Q^E_L]$ depend only on the delta-matroid associated to L. For arbitrary delta-matroid D, the proof of Proposition 7.4 immediately adapts to show that we may define *enveloping tautological classes* $[S^E_B]$ and $[Q^E_B]$ in $K_T(X_{B_n})$ by the formulas in Proposition 7.9. Note that the enveloping tautological classes $[S^E_B]_\vee$ and $[Q^E_B]_\vee$ have “nice Chern roots” in the sense discussed above Proposition 3.8.

Remark 7.10. Arguing analogously to [BEST23, Proposition 5.6], one can show that any fixed polynomial in the tautological classes of delta-matroids or their Chern classes is a valuative invariant of delta-matroids in the sense of [ESS21].

7.4. Intersection computations.

We now compute several intersection numbers arising from the Chern and Segre classes of isotropic and enveloping tautological classes. We first do the computations with enveloping tautological classes, which are easier to work with because they are closely related to the exceptional isomorphisms ϕ^B and ζ^B introduced in Section 3. We then relate an intersection number of the Chern classes of the isotropic tautological classes to one involving enveloping tautological classes.

We begin by realizing both the interlace polynomial and the U-polynomial as intersection numbers of the enveloping tautological classes. Because the classes $[S^E_B]$ do not have any positivity
properties, this does not give log-concavity properties for the interlace polynomial. But these results will form the basis for later intersection theory computations that prove Theorem B. In [EHL23, Theorem 8.1], the analogous computation on $X_{S_{n}}$ yields the rank-generating function of a matroid.

Theorem 7.11. We have that $\int_{X_{B_{n}}} c([S_{D}^E], u) \cdot c([Q_{D}^E], v) = v^{n} \text{Int}_{D}(u/v)$.

Proof. To compute $\int_{X_{B_{n}}} c([S_{D}^E], u) \cdot c([Q_{D}^E], v)$, we look at the degree n part of $c^{T}([S_{D}^E], u) \cdot c^{T}([Q_{D}^E], v)$. Let $S \in \text{AdS}_{n}$, and consider the cone τ_{S} whose rays are $\{e_{i} : i \in S\}$. Then τ_{S} is a maximal cone in the fan $(\Sigma_{B_{n}})^{n}$ of $(\mathbb{P}^{1})^{n}$. The linear function defined by e_{S} attains its maximum on a face F of $P(D)$, and every function in the interior of τ_{S} attains its maximum on a face of F because every cone of $\Sigma_{B_{n}}$, which is contained in τ_{S} contains e_{S}. Note any point x of F minimizes the distance to e_{S} from $P(D)$.

Note that $C_{w} \in \tau_{S}$ if and only if $S = w([n])$. For each $w \in \mathcal{B}_{n}$ with $S = w([n])$, we have that

$$c^{T}([S_{D}^E], u) = \prod_{i \in S \cap \mathbb{B}^{\max}_{w}} (1 + t_{i}), \quad \text{and} \quad c^{T}([Q_{D}^E], v) = \prod_{i \in S \cap \mathbb{B}^{\max}_{w}} (1 + t_{i}).$$

We see that the degree n part of $c^{T}([S_{D}^E], u) \cdot c^{T}([Q_{D}^E], v)$ is

$$(-1)^{|S\cap[n]|} u^{d_{D}(S)} v^{n-d_{D}(S)} t_{1} \cdots t_{n}.$$

Note that, for each $S \in \text{AdS}_{n}$, the piecewise polynomial function that is $(-1)^{|S\cap[n]|} t_{1} \cdots t_{n}$ on τ_{S} and vanishes otherwise is $c^{T}(\bigoplus_{i \in [n]} \pi_{i}^{*} \mathcal{O}(1))$, where we give $\mathcal{O}(1)$ on the ith copy of \mathbb{P}^{1} the $\mathcal{O}(1_{\infty})$ linearization if $i \notin S$, and give it the $\mathcal{O}(1_{0})$ linearization if $i \in S$. Proposition 5.2 gives

$$\int_{X_{B_{n}}} c([S_{D}^E], u) \cdot c([Q_{D}^E], v) = \sum_{S \in \text{AdS}_{n}} u^{d_{D}(S)} v^{n-d_{D}(S)} \int_{(\mathbb{P}^{1})^{n}} c_{n}(\bigoplus_{i} \pi_{i}^{*} \mathcal{O}(1)) = v^{n} \text{Int}_{D}(u/v).$$

We prepare to do more computations by studying how enveloping tautological classes restrict to smaller type B permutohedral varieties. The description of the fan of $\Sigma_{B_{n}}$ implies that the closure of each coordinate $G_{m}^{n-1} \subset T$ in $X_{B_{n}}$ can be identified with $X_{B_{n-1}}$. The inclusion is G_{m}^{n-1}-equivariant, so for each $i \in n$, we have a map $K_{T}(X_{B_{n}}) \to K_{G_{m}^{n-1}(X_{B_{n-1}})}$ given by the composition of the forgetful map $K_{T}(X_{B_{n}}) \to K_{G_{m}^{n-1}(X_{B_{n}})}$ and the restriction map. Recall that for a delta-matroid D and $I \subseteq [n]$, $D(I)$ is the projection of D away from I.

Proposition 7.12. The images of $[S_{D}^E], [Q_{D}^E]$, and $[I_{D}]$ under the map $K_{T}(X_{B_{n}}) \to K_{G_{m}^{n-1}(X_{B_{n-1}})}$ are $1 + [S_{D(i)}^E]$, $1 + [Q_{D(i)}^E]$, and $1 + [I_{D(i)}]$ respectively.

Proof. Under the embedding $X_{B_{n-1}} \to X_{B_{n}}$, each G_{m}^{n-1}-fixed point of $X_{B_{n-1}}$ is the identity of the torus embedded into a T-fixed curve in $X_{B_{n}}$ on which G_{m}^{n-1} acts trivially. We may compute the G_{m}^{n-1}-equivariant localization at this fixed point by computing the T-equivariant localization at any T-fixed point of this curve, and then applying the forgetful map $K_{T}(pt) \to K_{G_{m}^{n-1}(pt)}$. Then the result follows from the definition of the tautological classes.

Proposition 7.13. We have that

$$U_{D}(u, v) = \int_{X_{B_{n}}} c(\mathcal{O}(1), u) \cdot c([S_{D}^E], v) \cdot c([Q_{D}^E]).$$
Proof. The zero-locus of a general element of the complete linear system of \(\pi^*_i \mathcal{O}(1) \) is \(\{ t \in T : t_i = \lambda \} \) for some \(\lambda \in k^* \). As these divisors are all \(\mathbb{G}_m \)-translates of the closure of \(\mathbb{G}^{n-1}_m \), the class \([X_{B_{n-1}}] \in A^1(X_{B_n}) \) represents \(c_1(\pi^*_i \mathcal{O}(1)) \). Letting \(i \) vary, we see that \(c(\mathcal{O}(1)) \) is the sum of the Chow classes of the closures of the coordinate subtori of \(T \). The closure of each coordinate subtorus of \(T \) can be identified with a smaller \(X_{B_k} \). By the projection formula and Proposition 7.12, we see that

\[
\int_{X_{B_n}} c(\mathcal{O}(1), u) \cdot c([\mathcal{S}_{D}^E], v) \cdot c([\mathcal{Q}_{D}]^E, 1) = \sum_{I \subseteq [n]} u^{|I|} \int_{X_{B_{n-|I|}}} c([\mathcal{S}_{D}^E], v) \cdot c([\mathcal{Q}_{D}]^E, 1) \cdot c([\mathcal{Q}_{D}(I)], 1).
\]

The result follows from Theorem 7.11 and Proposition 5.2.

Recall that \(\gamma \) is the first Chern class of the line bundle corresponding to the cross polytope \(\diamond \) and \(s \) denotes the Segre class. We now do the computation which underlies the proof of Theorem B(1.2).

Theorem 7.14. We have that

\[
\int_{X_{B_n}} s([\mathcal{Q}_{D}]^E, z) \cdot c([\mathcal{Q}_{D}]^E, w) \cdot \frac{1}{1 - y \gamma} \cdot c(\mathcal{O}(1), x) = (y + w)^n U_D \left(\frac{2z + x}{y} \cdot \frac{y - z}{y + w} \right).
\]

The key tools in the proof are the two exceptional isomorphisms and the Hirzebruch–Riemann–Roch-type formulas that they satisfy, which are a manifestation of Serre duality. This allows us to show the equality of certain intersection numbers, and we leverage Theorem 7.11 to compute more intersection numbers.

Proof. We prove the theorem in three steps.

Step 1: we have that

\[
\int_{X_{B_n}} s([\mathcal{Q}_{D}]^E, z) \cdot c([\mathcal{Q}_{D}]^E) = U_D(2z, -z).
\]

Because \([\mathcal{S}_{D}^E] + [\mathcal{Q}_{D}]^E = [\mathcal{M}] = [\mathcal{O}(1)^{\oplus 2}]\), we have that \(c([\mathcal{S}_{D}^E], z) \cdot c([\mathcal{Q}_{D}]^E, z) = c(\mathcal{O}(1)^{\oplus 2}, z) = c(\mathcal{O}(1), 2z) \). So

\[
s([\mathcal{Q}_{D}]^E, z) = c([\mathcal{S}_{D}^E], -z) \cdot c(\mathcal{O}(1), 2z).
\]

Then, using Proposition 7.12, we see that

\[
\int_{X_{B_n}} s([\mathcal{Q}_{D}]^E, z) \cdot c([\mathcal{Q}_{D}]^E, w) = \int_{X_{B_n}} c([\mathcal{S}_{D}^E], -z) \cdot c(\mathcal{O}(1), 2z) \cdot c([\mathcal{Q}_{D}]^E, w)
= \sum_{I \subseteq [n]} (2z)^{|I|} \int_{X_{B_{n-|I|}}} c([\mathcal{S}_{D}^E(I)], -z) \cdot c([\mathcal{Q}_{D}(I)]^E, w)
= \sum_{I \subseteq [n]} (2z)^{|I|} w^{n-|I|} \text{Int}_D(I)(-z/w).
\]

Setting \(w = 1 \) and using Lemma 5.4 gives the result.

Step 2: we have that

\[
\int_{X_{B_n}} s([\mathcal{Q}_{D}]^E, z) \cdot c([\mathcal{Q}_{D}]^E, w) \cdot \frac{1}{1 - \gamma} = (1 + w)^n U_D \left(\frac{2z}{1 + w}, \frac{1 - z}{1 + w} \right).
\]
Let \square be the class of the line bundle corresponding to the cube $\square = [0, 1]^n$. From Lemma 3.5 and [EHL23, Corollary 6.5(1)], we have that both $Q^E(\square) = c(\mathbb{O}(1))$ and $\zeta^E(\square) = c(\mathbb{O}(1))$. Applying Proposition 3.8, Proposition 3.7, and Theorem C, we get that

$$\chi \left(\left(\sum_{i \geq 0} \text{Sym}^i [Q^E_D] \right) \left(\sum_{i \geq 0} \wedge^i [Q^E_D] \right) \right)$$

$$= \int_{X_{\mathbb{A}^n}} \frac{1}{(1 - z)^n} \cdot s([Q^E_D], \frac{z}{z - 1}) \cdot (w + 1)^n \cdot c \left([Q^E_D], \frac{w}{1 + w} \right) \cdot \frac{1}{1 - \gamma}$$

$$= \int_{X_{\mathbb{A}^n}} \frac{1}{(1 - z)^n} \cdot s([Q^E_D], \frac{1}{1 - z}) \cdot (w + 1)^n \cdot c \left([Q^E_D], \frac{1}{1 + w} \right) \cdot c(\mathbb{O}(1), 2).$$

Equate the two right-hand sides, canceling, and replacing w by $-\frac{w}{1 + w}$ and z by $\frac{z}{z - 1}$, we obtain

$$\int_{X_{\mathbb{A}^n}} s([Q^E_D], z) \cdot c([Q^E_D], w) \cdot \frac{1}{1 - \gamma} = \int_{X_{\mathbb{A}^n}} s([Q^E_D], 1 - z) \cdot c([Q^E_D], w + 1) \cdot c(\mathbb{O}(1), 2).$$

Substituting in the result of Step 1 after homogenizing, we have that

$$\int_{X_{\mathbb{A}^n}} s([Q^E_D], z - 1) \cdot c([Q^E_D], 1 + w) = (1 + w)^n U_D \left(\frac{2(z - 1)}{1 + w}, \frac{1 - z}{1 + w} \right).$$

Therefore, using Lemma 5.4, we have that

$$\int_{X_{\mathbb{A}^n}} s([Q^E_D], z) \cdot c([Q^E_D], w) \cdot \frac{1}{1 - \gamma} = \sum_{I \subseteq [n]} 2^{|I|} (1 + w)^n U_D(1 + w, 1 + w)$$

$$= (1 + w)^n \sum_{I \subseteq E} \left(\frac{2}{1 + w} \right)^{|I|} U_D(1 + w, 1 + w)$$

$$= (1 + w)^n U_D \left(\frac{2z}{1 + w}, \frac{1 - z}{1 + w} \right).$$

Step 3: we now prove the result. We compute:

$$\int_{X_{\mathbb{A}^n}} s([Q^E_D], z) \cdot c([Q^E_D], w) \cdot \frac{1}{1 - y^\gamma} \cdot c(\mathbb{O}(1), x)$$

$$= \sum_{I \subseteq [n]} x^{|I|} \int_{X_{\mathbb{A}^n}} s([Q^E_D], z) \cdot c([Q^E_D], w) \cdot \frac{1}{1 - y^\gamma}$$

$$= \sum_{I \subseteq [n]} (y + w)^n (y + w)^{-|I|} U_D(1 + w, y + w)$$

$$= (y + w)^n U_D \left(\frac{2z + x}{y + w}, \frac{y - z}{y + w} \right).$$

Theorem 7.15. Let D be a delta-matroid. We have that

$$\int_{X_{\mathbb{A}^n}} c([I_D], q) \cdot \frac{1}{1 - y^\gamma} \cdot \prod_{i=1}^n (1 + x_i h_i) = (y + q)^n U_D \left(\frac{x_1}{y + q}, \ldots, \frac{x_n}{y + q}, \frac{y - q}{y + q} \right).$$

Recall that $h_i = c_1(\pi_i^* \mathbb{O}(1))$, and note that $\prod_{i=1}^n (1 + x_i h_i) = c(\mathbb{O}(1), x)$. We prove the above theorem by relating it to Theorem 7.14. We first recall the equivariant descriptions of $c^T([I_D])$.

Recall that if \(i \in [n] \), then \(t_i := -t_i \). On a fixed point of \(X_{B_n} \), corresponding to \(w \in \mathbb{E}^B_n \), we have that
\[
c^T((I_D)^\vee, q)_w = \prod_{i \in B_w} (1 - t_i q) = \prod_{i \in B_w} (1 + t_i q).
\]

Proof. We claim that
\[
s((Q_{D+}^E)^\vee, q) \cdot c((Q_{D+}^E), q) \cdot c(\mathbb{O}(1), -2q) = c((I_D)^\vee, q).
\]
Then Theorem 7.14 implies that
\[
\int_{X_{B_n}} c((I_D)^\vee, q) \cdot \frac{1}{1 - y y^\gamma} = \int_{X_{B_n}} s((Q_{D+}^E)^\vee, q) \cdot c((Q_{D+}^E), q) \cdot c(\mathbb{O}(1), -2q) = (y + q)^n \text{Int}_{D+} \left(\frac{y - q}{y + q} \right).
\]
Then, assuming the claim, the result follows using that \(\text{Int}_{D}(v) = \text{Int}_{D+}(v) \), Proposition 7.12, and the definition of the multivariate \(U \)-polynomial.

Observe that
\[
c^T((Q_{D+}^E), q)_w = \prod_{i \in B_w \cap w([n])} (1 + t_i q), \text{ and } s^T((Q_{D+}^E)^\vee, q)_w = c^T((Q_{D+}^E), -q)^{-1} = \prod_{i \in B_w \cap w([n])} \frac{1}{1 + t_i q}.
\]
On \(\mathbb{P}^1 \), the piecewise polynomial function which is \(t \) on the cone \(\{ x < 0 \} \) and \(-t \) on the cone \(\{ x > 0 \} \) is a linearization of \(\mathbb{O}(-2) \). Therefore, with this linearization, we have that
\[
c^T(\mathbb{O}(1), -2q)_w = \prod_{i \in w([n])} (1 + t_i q).
\]
Then the claim follows from multiplying the above expressions together. \(\square \)

8. LOG-CONCAVITY

In this section, we prove Theorem B. First we recall some definitions. Let \(f \in \mathbb{R}[x_1, \ldots, x_n] \) be a homogeneous polynomial of degree \(d \). If \(f = \sum a_m x^m \), then the **normalization** of \(f \), denoted \(N(f) \), is the polynomial \(\sum a_m x^m / m! \), where \(m! = m_1! \cdots m_n! \) if \(m = (m_1, \ldots, m_n) \). We call \(f \) the **denormalization** of \(N(f) \). We say that \(f \) is **strictly Lorentzian** if the coefficient of every monomial of degree \(d \) is positive, and every quadratic form obtained by taking \(d - 2 \) partial derivatives of \(f \) is nondegenerate with signature \((+,-,\ldots,-)\). We say that \(f \) is **Lorentzian** if it is a coefficientwise limit of strictly Lorentzian polynomials.

It follows from [BH20, Example 2.26] and [BH20, Theorem 2.10] that a denormalized Lorentzian polynomial has a log-concave unbroken array of coefficients. We now state a strengthening of (1.1) in Theorem B.

Theorem 8.1. Let \(D \) be a delta-matroid which has an enveloping matroid. Then the polynomial
\[
(y + q)^n U_D \left(\frac{x_1}{y + q}, \ldots, \frac{x_n}{y + q}, \frac{y - q}{y + q} \right)
\]
is denormalized Lorentzian.

By [BLP23, Lemma 4.8], this is indeed a strengthening of the statement that (1.1) is denormalized Lorentzian. Even when \(D \) has an enveloping matroid, we do not know if there is a denormalized Lorentzian evaluation of the multivariable \(U \)-polynomial that specializes to (1.2). We have the following corollaries of Theorem B and Theorem 8.1.
Corollary 8.2. Let D be a delta-matroid which has an enveloping matroid. Then the coefficients of $(y + 1)^n U_D(0, \frac{y + 1}{y + 3}) = (y + 1)^n \text{Int}_D(\frac{y + 1}{y + 3})$ and $U_D(2w, -u)$ form a nonnegative log-concave sequence with no internal zeros, and in particular form a unimodal sequence. After multiplying the coefficient of u^k in $U_D(u, 0)$ or $U_D(u, -1)$ by $k!$, the resulting sequence is a nonnegative log-concave sequence with no internal zeros.

Proof. To obtain the first two results, we set $x = 0, q = 1$ in (1.1) and set $x = y = 0, w = 1$ in (1.2) respectively, and then apply [BLP23, Lemma 4.8]. To obtain the last two results, we normalize (8.1) and set $y = q = 1/2, x_i = u$ and set $y = 0, q = 1, x_i = u$ respectively, and then apply [BH20, Corollary 3.7].

Remark 8.3. In [Lar, Proposition 3.4, Theorem 3.8], the third author showed that the coefficients of $U_D(u, 0)$ count the number of independent set (i.e., subsets of feasible sets) of D by their cardinality, and the coefficients of $U_D(u, -1)$ count the number of faces of a delta-matroid analogue of the broken circuit complex of a matroid. In particular, Corollary 8.2 gives an analogue of the log-concavity of the independence polynomial and the characteristic polynomial of a matroid [AHK18].

Remark 8.4. For the adjacency delta-matroid $D(G)$ of a graph G (Example 6.4), [ABS04] conjectured that the coefficients of $\text{Int}_{D(G)}(v - 1)$ form a unimodal sequence, which was disproved by [DP10]. Both works conjectured that $\text{Int}_{D(G)}(v)$ has unimodal coefficients. We note that $\text{Int}_D(v)$ may not have unimodal coefficients even when D is an even delta-matroid with a D_n representation, like $D(G)$. See Example 8.5 below. In [FS, Corollary 7.22], Ferroni and Schröter gave an example of a matroid M such that $\text{Int}_{P(M)}(v)$ is not unimodal.

Example 8.5. Let $U_{r,n}$ be the even delta-matroid on $[n, \pi]$ whose feasible sets are

$$\{S \cup ([\pi] \setminus S) : S \subseteq [n] \text{ with } |S| \leq r \text{ and } |S| \equiv r \mod 2\}.$$

That is, the vertices of the polytope $P(U_{r,n})$ are obtained from $IP(U_{r,n})$ by taking only the vertices corresponding to subsets with parity equal to that of r. Then $U_{r,n}$ has a D_n representation by the row-span of the $n \times 2n$ matrix

$$\begin{pmatrix} I_r & A \\ 0 & 0 & B & 0 \\ -A^t & I_{n-r} \end{pmatrix}$$

where I_k is the $k \times k$ identity matrix, A is a general $r \times (n - r)$ matrix, and B is a general $r \times r$ skew-symmetric matrix. In particular, $U_{r,n}$ has an enveloping matroid. Using the formula in Proposition 5.2, we compute that the coefficients of $(1, v, v^2, v^3, \ldots)$ in $\text{Int}_{U_{r,n}}(v)$ are

$$\left(\sum_{0 \leq i \leq m - 3 \mod 2} \binom{2m}{i}, \sum_{0 \leq i \leq m - 3 \mod 2} \binom{2m}{i} + \binom{2m}{m - 2}, \binom{2m}{m - 1}, \binom{2m}{m}, \ldots\right)$$

For large m, this sequence is not unimodal. For instance, at $m = 10$ the sequence reads

$$(94184, 169766, 167960, 184756, \ldots).$$

In particular, the interlace polynomial of an even delta-matroids with a D_n representation need not have unimodal or log-concave coefficients.
Remark 8.6. The nonnegativity of the coefficients of $U_D(2u, -u)$, which is part of the content of Corollary 8.2, can be proven directly using the recursive definition of the U-polynomial.

8.1. Motivation. We exhibit the general strategy for constructing log-concave sequences from vector bundles, first used in [BEST23, Section 9] and later placed into a general framework in [EHL23]. We do this in the special case of showing that the coefficients of $(y + 1)^n \dim D \left(\frac{y-1}{y+1} \right)$ are log-concave when D has an enveloping matroid.

Setting $x = 0$ and $q = 1$ in Theorem 7.15, we have the equality

$$
\int_{X_{B_n}} c(\mathcal{I}_D) \cdot \frac{1}{1 - y} = (y + 1)^n \dim D \left(\frac{y-1}{y+1} \right).
$$

Suppose first we are in the special case that D has a B_n representation $L \subset k^{2n+1}$. The first step will be rewriting this intersection to involve Segre classes rather than Chern classes. As \mathcal{I}_L is a subbundle of $O(\mathbb{P}^{2n+1}_{X_{B_n}})$, by dualizing we obtain a short exact sequence

$$
0 \to K_L \to O(\mathbb{P}^{2n+1}_{X_{B_n}}) \to \mathcal{I}_L^\vee \to 0
$$

for some vector bundle K_L. Then $c(\mathcal{I}_L) = s(K_L)$, and so

$$
\int_{X_{B_n}} c(\mathcal{I}_L) \cdot \frac{1}{1 - y} = \int_{X_{B_n}} s(K_L) \cdot \frac{1}{1 - y} = \sum_{k=0}^n y^k \int_{X_{B_n}} s_{n-k}(K_L) \gamma^k = \sum_{k=0}^n y^k \int_{\mathbb{P}(K_L)} \delta^{2n-k} \gamma^k
$$

where δ is the first Chern class of $O(1)$ on $\mathbb{P}(K_L)$. The Khovanskii–Teissier inequality implies the coefficient sequence is log-concave. To establish this log-concavity beyond the case that D is B_n representable, we note that we may rewrite the last equation as

$$
\sum_{k=0}^n y^k \int_{\mathbb{P}(K_L)} \delta^{2n-k} \gamma^k = \sum_{k=0}^n y^k \int_{X_{B_n} \times \mathbb{P}^{2n}} [\mathbb{P}(K_L)] \delta^{2n-k} \gamma^k,
$$

where $[\mathbb{P}(K_L)] \in A^*(X_{B_n} \times \mathbb{P}^{2n}) = A^*(X_{B_n})/\delta^{2n+1})$ is the fundamental class of $\mathbb{P}(K_L) \subset X_{B_n} \times \mathbb{P}^{2n}$. We have the formula $[\mathbb{P}(K_L)] = \sum_{i=0}^n c_{n-i}(\mathcal{I}_L)^\vee \delta^i$. The formula for this class makes sense for any delta-matroid, and one can formally define $[\mathbb{P}(K_D)] = \sum_{i=0}^n c_{n-i}(\mathcal{I}_D)^\vee \delta^i \in A^*(X_{B_n} \times \mathbb{P}^{2n})$. By Theorem 7.15, $\int_{X \times \mathbb{P}^{2n}} [\mathbb{P}(K_D)] \delta^{2n-k} \gamma^k$ still computes the coefficients of $(y + 1)^n \dim D \left(\frac{y-1}{y+1} \right)$.

In order to deduce log-concavity, we need to know that the Chow class $[\mathbb{P}(K_D)]$ has Hodge-theoretic properties resembling those of an irreducible subvariety. The framework of [EHL23, Section 8.3] constructs classes which are associated to any matroid which have good Hodge-theoretic properties. The strategy is to relate the class to the Bergman fan of some matroid, which has good Hodge-theoretic properties by [AHK18]. The notion of valuativity for invariants of matroids is used to reduce certain computations to the case of realizable matroids. When D has an enveloping matroid M, we can use this to deduce that $[\mathbb{P}(K_D)]$ has good Hodge-theoretic properties.

\footnote{For technical reasons we actually work with classes in $A^*(X_{B_n} \times \mathbb{P}^{2n-1})$ instead of $A^*(X_{B_n} \times \mathbb{P}^{2n})$ which more naturally extend to all rank n matroids, but the underlying idea is the same.}
8.2. Proof of log-concavity. Before proving Theorem B, we prove a log-concavity statement for an arbitrary matroid of rank \(n \) on \([n, \tilde{n}]\) (Theorem 8.10) by using the framework in [EHL23, Section 8.3], which is based on [BEST23, Section 9]. Afterwards, we relate this log-concavity statement to Theorem B. Using Proposition 7.1, we construct two types of vector bundles on \(X_{B_n} \) that are associated to a realization of a matroid of rank \(n \) on \([n, \tilde{n}]\). First we give a definition (cf. Definition 2.4).

Definition 8.7. Let \(A \) be an abelian group. A function

\[\varphi : \{ \text{matroids of rank } r \text{ on } [n] \} \to A \]

is **valuable** if it factors through the map \(M \mapsto 1(P(M)) \). That is, for any matroids \(M_1, \ldots, M_k \) and integers \(a_1, \ldots, a_k \) such that \(\sum a_i 1(P(M_i)) = 0 \), we have that \(\sum a_i \varphi(M_i) = 0 \).

Let \(T \) act on \(k^{4n} \) by \((t_1 x_1, t_2 x_2, \ldots, t_n x_n, t_1^{-1} x_{n+1}, \ldots, t_n^{-1} x_{2n}, x_{2n+1}, \ldots, x_{4n}) \). Let \(L \subset k^{2n} \) be a linear space of dimension \(n \). Let \(E_L \) be the image of \(L \) under the diagonal embedding of \(k^{2n} \) into \(k^{4n} \) and consider the point \([E_L] \in Gr(n; 4n)\). The fan of the normalization of \(T \cdot [E_L] \) is the normal fan of \(\text{env}(IP(M)) \). Every edge of \(\text{env}(IP(M)) \) is parallel to \(e_i \), or \(e_i \pm e_j \), so \(\Sigma_{B_n} \) is a coarsening of the normal fan of \(\text{env}(IP(M)) \). Therefore there is a toric morphism \(X_{\Sigma_{B_n}} \to Gr(n; 4n) \). Set \(S_{\text{univ}} \) and \(Q_{\text{univ}} \) to be the universal subbundle and quotient bundle respectively on \(Gr(n; 4n) \). Let \(\tilde{K}_L^E \) and \(\tilde{Q}_L^E \) be the duals of the pullbacks of \(Q_{\text{univ}} \) and \(S_{\text{univ}} \) respectively.

Lemma 8.8. For each \(w \in \mathcal{S}_n^B \), let \(I_w \) be any independent set of \(M^\perp \) such that any functional in the interior of \(C_w \) achieves its minimum on the corresponding vertex of \(\text{env}(IP(M^\perp)) \). Then

\[[\tilde{Q}_L^E]_w = n - |I_w \cap w([n])| + \sum_{i \in I_w \cap w([n])} T_i, \text{ and } [\tilde{K}_L^E]_w = n + |I_w \cap w([n])| + \sum_{i \notin w([n]) \cap I_w} T_i. \]

Note that the classes \([\tilde{Q}_L^E]_w \) and \([\tilde{K}_L^E]_w \) only depend on the matroid \(M \) that \(L \) represents. For any matroid \(M \) of rank \(n \) on \([n, \tilde{n}]\), we define classes \([\tilde{Q}_M^E]_w \) and \([\tilde{K}_M^E]_w \) in \(K_T(X_{B_n}) \); the proof of Proposition 7.4 adapts to show that these are indeed well-defined. The proof of [BEST23, Proposition 5.6] shows that any function that maps a matroid \(M \) of rank \(n \) on \([n, \tilde{n}]\) to a fixed polynomial expression in the Chern classes of \([\tilde{Q}_M^E]_w \) and \([\tilde{K}_M^E]_w \) is a valuable invariant of matroids of rank \(n \) on \([n, \tilde{n}]\).

We now construct analogues of isotropic tautological bundles. Consider a matroid \(M \) of rank \(n \) on \([n, \tilde{n}]\) represented by \(L \subset k^{2n} \). Then \(L \) determines a \(k \)-valued point of \(Gr(n; 2n) \). We have a \(T \)-action on \(Gr(n; 2n) \) given by

\[(t_1, \ldots, t_n) \cdot (x_1, \ldots, x_n, x_{\tilde{n}+1}, \ldots, x_n) = (t_1 x_1, \ldots, t_n x_n, t_1^{-1} x_{\tilde{n}+1}, \ldots, t_n^{-1} x_n). \]

The fan of the normalization of \(T \cdot [L] \) is the toric variety with normal fan \(\text{env}(P(M)) \), which is a coarsening of \(\Sigma_{B_n} \). This determines a morphism \(X_{B_n} \to Gr(n; 2n) \); define \(\tilde{K}_L \) to be dual of the pullback of the universal quotient bundle \(Q_{\text{univ}} \) under this map. Proposition 7.1 implies the following lemma.

Lemma 8.9. For \(w \in \mathcal{S}_n^B \), let \(B_w \) be a basis corresponding to any vertex in the preimage of the vertex of \(\text{env}(P(M)) \) that any functional in \(C_w^\perp \) achieves its minimum on. Then

\[[\tilde{K}_L]_w = \sum_{i \in B_w} T_i. \]
Note that the above description of the equivariant K-class depends only on the matroid M. Define $[\bar{\mathcal{K}}_M] \in K_T(X_{B_n})$ by the above formula for any M; the proof of Proposition 7.4 adapts to show that these are indeed well-defined. The proof of [BEST23, Proposition 5.6] shows that any function that maps a matroid M of rank n on $[n, \bar{n}]$ to a fixed polynomial expression in the Chern classes of $[\bar{\mathcal{K}}_M]$ is a valuative invariant of matroids of rank n on $[n, \bar{n}]$. We now use the framework [EHL23, Section 8.3], which establishes log-concavity properties for classes constructed in this way associated to loop-free and coloop-free matroids M. Indeed, the above constructions give globally generated vector bundles associated to realizations of matroids of rank n on $[n, \bar{n}]$. The Chern classes of these vector bundle depend only on the underlying matroid and depend valuatively on the matroid. Then [EHL23, Theorem 8.7] gives the following result.

Theorem 8.10. Let M be a loop-free and coloop-free matroid of rank n on $[n, \bar{n}]$. Then the polynomials

$$
\int_{X_{B_n}} s([(\bar{\mathcal{K}}^E_M]^\vee, z) \cdot s([\bar{\mathcal{K}}_M^E], w) \cdot \frac{1}{1 - y^\gamma} \cdot c(\Xi \mathcal{O}(1), x) \text{ and } \int_{X_{B_n}} s([\bar{\mathcal{K}}_M], q) \cdot \frac{1}{1 - y^\gamma} \cdot \prod_{i=1}^n (1 + x_i h_i)
$$

are denormalized Lorentzian.

Proof of Theorem B and Theorem 8.1. We first do (1.2). Consider the case when D is loop-free and coloop-free. By Lemma 6.8, the enveloping matroid M of D is loop-free and coloop-free. Then $[\bar{\mathcal{Q}}_M^E] = [\mathcal{Q}_D^E]$, so $s([(\bar{\mathcal{Q}}_M^E]^\vee, z) = s([(\mathcal{Q}_D^E]^\vee, z)$. Also, $s([\bar{\mathcal{K}}_M^E], w) = c([\bar{\mathcal{Q}}_M^E], w) = c([\mathcal{Q}_D^E], w)$. We see that

$$
\int_{X_{B_n}} s([(\bar{\mathcal{Q}}_M^E]^\vee, z) \cdot s([\bar{\mathcal{K}}_M^E], w) \cdot \frac{1}{1 - y^\gamma} \cdot c(\Xi \mathcal{O}(1), x)
$$

$$
= \int_{X_{B_n}} s([(\mathcal{Q}_D^E]^\vee, z) \cdot c([\mathcal{Q}_D^E], w) \cdot \frac{1}{1 - y^\gamma} \cdot c(\Xi \mathcal{O}(1), x) = (y + w)^n U_D \left(\frac{2z + x}{y + w}, \frac{y - z}{y + w} \right)
$$

by Theorem 7.14. So when D is loop-free and coloop-free, Theorem 8.10 gives that the above polynomial is denormalized Lorentzian. In general, we can write $D = D' \times P(U_{0,k}) \times P(U_{\ell,t})$ for some k and ℓ, where D' is loop-free and coloop-free. Using the behavior of the U-polynomial for delta-matroids with loops, we have that

$$
(y + w)^n U_D \left(\frac{2z + x}{y + w}, \frac{y - z}{y + w} \right) = (y + w)^{n-k-\ell} U_{D'} \left(\frac{2z + x}{y + w}, \frac{y - z}{y + w} \right) \cdot (y + w)^{k} U_{P(U_{0,k})} \left(\frac{2z + x}{y + w}, \frac{y - z}{y + w} \right) \cdot (y + w)^{\ell} U_{P(U_{\ell,t})} \left(\frac{2z + x}{y + w}, \frac{y - z}{y + w} \right)
$$

As product of denormalized Lorentzian polynomials are denormalized Lorentzian [BH20, Corollary 3.8], we see that (1.2) is denormalized Lorentzian for all delta-matroids D that have an enveloping matroid.
The proof of Theorem 8.1 is identical: one shows that, when M is an enveloping matroid of a loop-free and coloop-free delta-matroid D,

$$
\int_{X_B} s([\tilde{K}_M], q) \cdot \frac{1}{1 - y^\gamma} \cdot \prod_{i=1}^n (1 + x_i h_i) = \int_{X_B} c([\mathcal{F}_D]^\vee, q) \cdot \frac{1}{1 - y^\gamma} \cdot \prod_{i=1}^n (1 + x_i h_i)
$$

$$
= (y + q)^n U_D \left(\frac{x_1}{y + q}, \ldots, \frac{x_n}{y + q} \right)
$$

by Theorem 7.15. One then deduces the general case using the behavior of the U-polynomial under products. □

Remark 8.11. Our proof that (1.2) is denormalized Lorentzian only requires that D has a sheltering matroid, as we only need that there is a matroid M with $\text{env}(IP(M)) = P(D) + \square - e_{[n]}$. See Remark 6.7.

References

Harvard University. Cambridge, MA. USA.
Email address: ceur@math.harvard.edu

School of Mathematical Sciences, Queen Mary University of London. London E1 4NS. UK
Email address: a.fink@qmul.ac.uk

Stanford University. Stanford, CA. USA.
Email address: mwlarson@stanford.edu

University of Toronto. Toronto, ON. Canada.
Email address: hunter.spink@utoronto.ca