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ABSTRACT. We establish a connection between the algebraic geometry of the type B permutohedral
toric variety and the combinatorics of delta-matroids. Using this connection, we compute the volume
and lattice point counts of type B generalized permutohedra. Applying tropical Hodge theory to a new
framework of “tautological classes of delta-matroids,” modeled after certain vector bundles associated
to realizable delta-matroids, we establish the log-concavity of a Tutte-like invariant for a broad family
of delta-matroids that includes all realizable delta-matroids. Our results include new log-concavity
statements for all (ordinary) matroids as special cases.
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1. INTRODUCTION

For a nonnegative integer n, let [n] = {1, . . . , n}. For a subset S ⊆ [n], let eS =
∑

i∈S ei ∈ Rn be
the sum of the standard basis vectors indexed by S. If n ≥ 1, the An−1 permutohedral fan ΣAn−1

is
the complete fan in Rn whose maximal cones are the chambers of the arrangement of hyperplanes

Hei−ej = {(x1, . . . , xn) ∈ Rn : xi − xj = 0} for all 1 ≤ i < j ≤ n.

A polytope P ⊂ Rn is an An−1 generalized permutohedron if its normal fan coarsens the fan
ΣAn−1

. The polyhedral properties of An−1 generalized permutohedra and the algebraic geometry
of the toric varietyXAn−1 associated to ΣAn−1 (as a fan in Rn/R(1, . . . , 1)) have been well studied as
a way to illuminate the structure of several combinatorial objects [Pos09, AA23], including graphs,
posets, and, notably in recent years, matroids.
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Definition 1.1. A matroid M on [n] is a nonempty collection B of subsets of [n], called the bases of
M, such that the polytope

P (M) = the convex hull of {eB : B ∈ B} ⊂ [0, 1]n,

has all edges parallel translates of ei − ej for various i, j ∈ [n], or, equivalently, such that P (M) is
an An−1 generalized permutohedron with all vertices lying in {0, 1}n.

Recently, an interpretation of matroids as elements in the Chow cohomology ring of XAn−1
has

led to fruitful developments in matroid theory [HK12, AHK18, BST20, LdMRS20]. Conversely, this
interpretation allows matroid theory to inform the geometry of XAn−1 [Ham17, EHL23]. Many
of these developments have recently been unified, recovered, and extended under the new frame-
work of “tautological classes of matroids” [BEST23], modeled after certain torus-equivariant vector
bundles on XAn−1

.
Meanwhile, the fan ΣAn−1

generalizes to the fan ΣΦ of the Coxeter arrangement of an arbitrary
crystallographic root system Φ, the toric variety XAn−1 generalizes to the toric variety XΦ of ΣΦ,
and the combinatorial objects such as graphs, posets, and matroids generalize appropriately to their
Coxeter analogues (see [ACEP20, §4] and references therein). For instance, in the theory of Coxeter
matroids [BGW03], matroids in the usual sense are exactly the type A minuscule Coxeter matroids.
Several works [Pro90, DL94, Ste94, Kly95] have studied the Chow cohomology ring ofXΦ. Missing
in these previous works is an interaction between Coxeter matroids and the Chow cohomology
ring of XΦ that generalizes the interaction between matroids and the Chow cohomology ring of
XAn−1 .

We establish here such an interaction when Φ is a root system of type B, noting that the type B
minuscule Coxeter matroids are exactly delta-matroids (Definition 1.3). This interaction interfaces
particularly well with the framework of “tautological classes of delta-matroids” we develop in
Section 7, which is modeled after toric vector bundles associated to maximal isotropic subspaces
that realize delta-matroids. Some barriers to establishing a uniform treatment for arbitrary Coxeter
types can be found in Remark 3.6.

1.1. Main combinatorial consequences.

Definition 1.2. Let n ≥ 0. The Bn permutohedral fan ΣBn
is the complete fan in Rn whose

maximal cones are the chambers of the arrangement of hyperplanes

Hei±ej
= {(x1, . . . , xn) ∈ Rn : xi ± xj = 0} for all i ̸= j ∈ [n], and

Hei = {(x1, . . . , xn) ∈ Rn : xi = 0} for all i ∈ [n].

The fan ΣBn is the normal fan of the type Bn permutohedron ΠBn , also called the signed per-
mutohedron, which is the convex hull of {w · (n, . . . , 1) ∈ Rn : w ∈ SB

n }, where SB
n is the signed

permutation group (see §2.1). A polytope P ⊂ Rn is a Bn generalized permutohedron if its nor-
mal fan ΣP coarsens ΣBn

, or, equivalently, if each edge of P is parallel to ei + ej , ei − ej , or ei for
various i, j ∈ [n]. Bn generalized permutohedra are also known as bisubmodular polytopes, see
[Fuj17, Theorem 1].
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A celebrated result of Postnikov [Pos09] gives a formula for the volumes and lattice point enu-
merators of An−1 generalized permutohedra in terms of transversals of subsets S1, . . . , Sk of [n],
i.e., subsets τ ⊆ [n] such that there exist a bijection j : {1, . . . , k} → τ with j(i) ∈ Si for all
i ∈ {1, . . . , k}. We give a formula for the volumes and lattice point enumerators of Bn general-
ized permutohedra as follows.

Let [n] = {1, . . . , n}, and let [n, n] = [n] ⊔ [n], which is endowed with the obvious involution
(·). For S ⊆ [n, n], we denote eS =

∑
i∈S ei, where ej := −ej for j ∈ [n]. Define the set AdS of

admissible subsets of [n, n] to be

AdS = {S ⊂ [n, n] such that {i, i} ̸⊆ S for all i ∈ [n]}, and define AdSn = {S ∈ AdS : |S| = n}

to be the set of maximal admissible subsets. A signed transversal of S1, . . . , Sn is an admissible
subset τ ∈ AdSn such that there exists a bijection j : {1, . . . , n} → τ with j(i) ∈ Si for all i = 1, . . . , n.
For an admissible subset S ∈ AdS, let

∆0
S = the simplex which is the convex hull of {ei : i ∈ S} ∪ {0} in Rn.

Theorem A. Let P be a lattice Bn generalized permutohedron (i.e., P has vertices in Zn).

(a) There exists a unique set of integers {cS ∈ Z : S ∈ AdS \ {∅}} such that the signed
Minkowski sum

∑
S∈AdS\{∅}

cS∆
0
S equals P . Hence we may write P = P ({cS}).

(b) For any sequence (S1, . . . , Sn) of nonempty admissible subsets of [n, n], one has that

mixed volume of {∆0
S1
, . . . ,∆0

Sn
} = |{signed transversals of S1, . . . , Sn}|.

In particular, normalizing the volume of the standard simplex ∆0
[n] to be 1, one has

Vol
(
P ({cS})

)
=

∑
(S1,...,Sn)

|{signed transversals of S1, . . . , Sn}| · cS1
cS2

· · · cSn

where the sum is over all sequences (S1, . . . , Sn) of nonempty admissible subsets.
(c) Let Ψ be the linear operator on polynomials that replaces each monomial xd1

1 · · ·xdm
m in a

polynomial f(x1, . . . , xm) by d1!···dm!
(d1+···+dm)!

(
x1

d1

)
· · ·
(
xm

dm

)
. Let □ = [0, 1]n be the standard unit

cube in Rn. Then, we have

# lattice points of
(
P ({cS})−□

)
= Ψ

(
Vol

(
P ({cS})

))
,

where P ({cS}) − □ denotes the polytope P ({c′S}) with c′S = cS − 1 if S = {i} ⊆ [n] and
c′S = cS otherwise. Here, the volume and lattice point counts are considered as polynomials
in the {cS}.

The statements (a), (b), and (c) generalize to type B the classical type A results [ABD10, Propo-
sition 2.4], [Pos09, Theorem 9.3], and [Pos09, Theorem 11.3], respectively. Hence, Theorem A fully
answers [ACEP20, Question 9.3] for type B. The statement (a) was also shown in [Bas21] via a
study of Tits algebras, and a different set of polytopes satisfying the property in (a) was obtained
in [PPR23] via a study of shard polytopes. Neither work gives a formula for the volume or lattice
point enumerator. We will deduce Theorem A via our study of delta-matroids.
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Definition 1.3. A delta-matroid D on ground set [n, n] is a nonempty collection F ⊆ AdSn of
admissible subsets of [n, n] of cardinality n, called the feasible sets of D, such that the polytope

P (D) = the convex hull of {eB∩[n] : B ∈ F} ⊂ [0, 1]n

has all edges parallel translates of ei + ej , ei − ej , or ei for various i, j ∈ [n], or, equivalently, such
that P (D) is a Bn generalized permutohedron with all vertices lying in {0, 1}n. For i ∈ [n], we say
that i is a loop, resp. coloop, of D if no, resp. every, feasible set contains i.

We often identify a delta-matroid D with its polytope P (D).

Delta-matroids were introduced in [Bou87] by weakening the basis exchange axiom for ma-
troids, to allow cases where not all bases have the same cardinality. (A basis of D is the intersection
of a feasible set with [n]). Several combinatorial settings that give rise to matroids have general-
izations to delta-matroids. As one example, a bipartite graph yields a transversal matroid whose
bases come from maximal matchings, as the incident vertices in one part. Given an arbitrary graph,
the sets of vertices incident to matchings of any size are the bases of a delta-matroid [Bou89]. As
another, a connected graph yields a graphic matroid whose bases are the spanning trees. Given a
graph embedded on a surface, the set of spanning “quasi-trees” are the bases of a delta-matroid
[CMNR19a, CMNR19b]: see Example 6.5. There is a theory of linear representability for delta-
matroids as well: see Section 6.2. For the equivalence of the definition of delta-matroids in the
works cited above and the one given here, see [BGW03, Ch. 4].

A matroid M on [n] with set of bases B defines a delta-matroid D in two different ways: first, by
its base polytope P (M), and, second, by its independence polytope

IP (M) = the convex hull of (eI : I ⊆ [n] such that I ⊆ B for some B ∈ B) ⊂ [0, 1]n,

whose edges are all of the form ei or ei − ej . We will frequently use P (M) and IP (M) to refer to
the delta-matroids obtained from M as above.

We introduce a new invariant of delta-matroids defined by a recursive relation similar to the one
satisfied by Tutte polynomials of matroids. See Definition 5.1 for the deletion D\ i, contraction D/i,
and projection D(i) of a delta-matroid D.

Definition 1.4. For a delta-matroid D on [n, n] with feasible sets F , the U -polynomial UD(u, v) is
the unique bivariate polynomial satisfying the properties:

• (Base case) If n = 0, then UD(u, v) = 1.
• (Recursive relation) If n ≥ 1 and i ∈ [n], then

UD(u, v) =

UD\i(u, v) + UD/i(u, v) + uUD(i)(u, v) if i is neither a loop nor a coloop

(u+ v + 1) · UD\i(u, v) if i is a loop or a coloop.

Proposition 5.2 verifies that this recursive definition is well-defined. Specializing UD(u, v) at u =

0, one obtains the interlace polynomial IntD(v), introduced in [ABS04] for graphs and generalized
to delta-matroids in [BH14]. See [Mor17] for a survey on interlace polynomials.1 The invariant UD

1In our terms the “interlace polynomial” defined in [ABS04] equals IntD(v − 1). Our definition agrees with [Mor17,
Definition 28] and the polynomial denoted q1 in [BH14].
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also gives rise to two invariants of (ordinary) matroids. Let TM denote the Tutte polynomial of M.
One computes, as done in Examples 5.5 and 5.6, that

UP (M)(u, v) =
∑

T⊆S⊆[n]

u|S−T |vcorankM(S)+nullityM(T ),

so in particular IntP (M)(v) = TM(v + 1, v + 1), and

UIP (M)(u, v) = (u+ 1)n−rank(M) TM

(
u+ 2,

u+ v + 1

u+ 1

)
.

We establish a log-concavity property for U -polynomials of delta-matroids which have an en-
veloping matroid (Definition 6.6), a condition necessary for applying tools from the tropical Hodge
theory developed in [ADH23]. Such delta-matroids include P (M) and IP (M) when M is a matroid
(Proposition 6.11), and include realizable delta-matroids (Proposition 6.9), in particular the adja-
cency delta-matroids of graphs (Example 6.4) and delta-matroids from graphs embedded on sur-
faces (Example 6.5). We say that the coefficients of a homogeneous polynomial f of degree d form
a log-concave unbroken array if for any 1 ≤ i < j ≤ n and any monomial xm of degree d′ ≤ d, the
coefficients of {xki x

d−d′−k
j xm} form a nonnegative log-concave sequence with no internal zeros.

Theorem B. Let D be a delta-matroid which has an enveloping matroid. Then the polynomials

(1.1) (y + q)n UD

(
x

y + q
,
y − q

y + q

)
and

(1.2) (y + w)n UD

(
2z + x

y + w
,
y − z

y + w

)
have a log-concave unbroken array of coefficients. In fact, they are denormalized Lorentzian poly-
nomials in the sense of [BH20, BLP23].

In fact, we obtain that (1.1) is denormalized Lorentzian by showing that a specialization of a mul-
tivariable version of the U -polynomial is Lorentzian, which gives stronger log-concavity results.
See Theorem 8.1. Setting x = 0 and q = 1 in (1.1) implies that the transformation (y+1)n IntD(

y−1
y+1 )

of the interlace polynomial has nonnegative log-concave coefficients with no internal zeros, and
hence has unimodal coefficients. We note that the interlace polynomial of a realizable delta-matroid
can have non-unimodal coefficients (Example 8.5); see Remark 8.4 for a history of conjectures
about unimodality for the interlace polynomial. Theorem B and Theorem 8.1 also yield new log-
concavity results for (ordinary) matroids. For instance, Theorem 8.1 implies that the coefficients of
UD(u, 0) are log-concave after multiplying the coefficient of uk by k!, and in particular are strictly
log-concave. Taking D = P (M) for a matroid M, this implies that if we set

ak = |{T ⊆ S ⊆ [n] : T independent in M and S spanning in M, |S| − |T | = k}|,

then a2k ≥ k+1
k ak−1ak+1. See Corollary 8.2 for more implications of Theorem B. See Theorems 7.15

and 7.14 for the algebro-geometric results underlying the formulas (1.1) and (1.2) respectively, and
see §8 for the derivation of log-concavity from these formulas using tropical Hodge theory.

Conjecture 1.5. The hypothesis that D has an enveloping matroid can be removed in Theorem B.
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We do not know an easy way to check if a given delta-matroid has an enveloping matroid, so it
is difficult to test Conjecture 1.5. We have checked Conjecture 1.5 for all delta-matroids on at most 5
elements, which includes some delta-matroids which lack enveloping matroids: see Example 6.12.

1.2. Underlying geometry. We obtain Theorems A and B by establishing a new connection be-
tween the algebraic geometry of the Bn permutohedral fan ΣBn and the combinatorics of delta-
matroids. The fan ΣBn

, as a rational fan over Zn, defines a smooth projective toric variety XBn

which we call the Bn-permutohedral variety. We follow the conventions in [Ful93, CLS11] for
toric varieties and polyhedra, and we work over an algebraically closed field k. The toric vari-
ety XBn

is equipped with two well-studied rings, the Chow cohomology ring A•(XBn
) and the

Grothendieck ring of vector bundles K(XBn).

We construct an isomorphism between the ringsK(XBn
) andA•(XBn

), different from the classi-
cal Hirzebruch–Riemann–Roch theorem. Recall that the Hirzebruch–Riemann–Roch theorem states
that for an arbitrary smooth projective variety X , the Chern character map ch : K(X) ⊗ Q ∼→
A•(X)⊗Q is an isomorphism such that

χ([E ]) =
∫
X

ch([E ]) · Td(X) for all [E ] ∈ K(X),

where χ : K(X) → Z is the sheaf Euler characteristic map,
∫
X

is the degree map, and Td(X) ∈
A•(X)⊗Q is the Todd class of X .

To state our exceptional Hirzebruch–Riemann–Roch-type theorem, we need the following defi-
nitions. Note that the product fan (ΣB1

)n, which is the fan induced by the arrangement of coordi-
nate hyperplanes in Rn, is a coarsening of ΣBn

. Hence, since the toric variety of ΣB1
is P1, we have

a birational toric morphism XBn
→ (P1)n. Let ⊞O(1) be the vector bundle on XBn

obtained as the
direct sum of the pullbacks of OP1(1) from each P1 factor in the product (P1)n.

Theorem C. There exists a ring isomorphism ϕB : K(XBn
) → A•(XBn

) such that

χ([E ]) =
∫
XBn

ϕB([E ]) · c(⊞O(1)) for all [E ] ∈ K(XBn
),

where c(⊞O(1)) = c0(⊞O(1)) + · · ·+ cn(⊞O(1)) denotes total Chern class of ⊞O(1).

We define the map ϕB and prove Theorem C in §3. We note that the map ϕB in Theorem C differs
from ch and is an isomorphism integrally, and the class c(⊞O(1)) differs from the Todd class ofXBn

.
The isomorphism ϕB here is closely related to the type A exceptional Hirzebruch–Riemann–Roch
isomorphisms that appeared in [BEST23] and [EHL23] (see §3.3).

The combinatorial utility of Theorem C is mediated by our Theorem D that describes a basis
of the ring K(XBn) in terms of Schubert delta-matroids (Proposition-Definition 2.7), which corre-
spond to the Bruhat cells of a type B generalized flag variety (Example 6.3). Recall that there is
a standard correspondence between polytopes and base-point-free line bundles on toric varieties
[CLS11, §6.2].

Theorem D. The classes of line bundles on XBn
corresponding to the polytopes of Schubert delta-

matroids without coloops form a basis for K(XBn
).
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Theorem D is proved in Section 2. By combining Theorem C with Theorem D, we construct in
Corollary 4.5 a graded basis for A•(XBn

) indexed by coloop-free Schubert delta-matroids. By con-
sidering the basis elements in A1(XBn), we deduce statement (a) of Theorem A. The rest of Theo-
rem A is deduced from Theorem C in §4.2. Theorem B is proved by constructing torus-equivariant
nef vector bundles on XBn

which are related to delta-matroids; see §7.2 and §7.3. The proof of The-
orem B invokes Theorem C in §7.4 to compute certain intersection numbers. Their log-concavity
properties are established using tropical Hodge theory in §8.

Acknowledgments. We thank Steven Noble for pointing out Example 6.12. We thank the referee
for their helpful comments. The first author is partially supported by the US National Science
Foundation (DMS-2001854). The third author is supported by an NDSEG fellowship.

2. POLYTOPE ALGEBRAS OF DELTA-MATROIDS

In this section, we prove Theorem D, which describes K(XBn
) in terms of delta-matroids. Sec-

tion 2.1 sets up preliminaries on the fan ΣBn
and signed permutation group SB

n . The first step of the
proof of Theorem D is that K(XBn) is isomorphic to a combinatorially defined ring, the polytope
algebra I(ΣBn) of indicator functions of lattice Bn generalized permutohedra modulo translation,
introduced in Section 2.2. This is a special case of the folklore statement that K(XΣ) is isomorphic
to a polytope algebra for an arbitrary smooth projective fan Σ, proven precisely in [EHL23, Ap-
pendix A]. The isomorphism sends the class [1(P )] of the indicator function of a Bn generalized
permutohedron P to the K-class of the corresponding line bundle.

Section 2.3 introduces Schubert delta-matroids. Section 2.4 contains the bulk of the proof of
Theorem D, and Section 2.5 assembles it. The proof proceeds in three main steps. Using polyhedral
properties special to the unit cube [0, 1]n, we show that the intersection of a lattice Bn generalized
permutohedron with the cube is a delta-matroid polytope (Proposition 2.12); tiling by translates of
this cube, we conclude that I(ΣBn

) is generated by classes of delta-matroid polytopes. Intersecting
the cube with the dual of a cone of ΣBn

gives a Schubert delta-matroid polytope (Corollary 2.16),
which up to translation may be taken to be coloop-free; using the Brianchon–Gram theorem, these
intersections by themselves generate I(ΣBn) (Theorem 2.17). The last step is to show that Schubert
delta-matroid polytopes satisfy no linear relations (Proposition 2.19 and the sequel).

2.1. The fan ΣBn
and the signed permutation group SB

n . Let n be a nonnegative integer. Recall
that theBn permutohedral fan ΣBn was defined to be the complete fan in Rn whose maximal cones
are the chambers of the type B arrangement of hyperplanes, the union of all hyperplanes of the
form {xi ± xj = 0} and {xi = 0}.

Definition 2.1. The Weyl reflection group corresponding to the real hyperplane arrangement defin-
ing ΣBn

is the signed permutation group SB
n , which is the subgroup

SB
n = {w ∈ S[n,n] : w(i) = w(i) for all i ∈ [n, n]} ⊂ S[n,n],

where S[n,n] denotes the symmetric group on [n, n].
A permutation σ of [n] can be extended to a signed permutation of [n, n] by setting σ(i) = σ(i).

In this way, the permutation group Sn is naturally a parabolic subgroup of SB
n , viewed as the
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stabilizer of [n] ⊂ [n, n]. Then SB
n is a semidirect product

SB
n = Sn ⋉ {±1}n,

where {±1}n ⊴ SB
n is the sign group such that the ith copy of {±1} is the subgroup generated by

the transposition (i, i). We denote the map to the set of left cosets of Sn by

(ϵ1, . . . , ϵn) : S
B
n → {±1}n,

which can also be described by

ϵi(w) =

1 i ∈ w([n])

−1 i ̸∈ w([n]).

Recall that we have defined eī = −ei ∈ Rn for i ∈ [n]. We next fix notation for cones of ΣBn
.

Proposition 2.2. The maximal cones of ΣBn
are given by

Cw = cone{ew(1), . . . , ew(1) + · · ·+ ew(n)}

for each w ∈ SB
n . The cone Cw is the unique maximal cone containing w · (n, . . . , 1). The dual cones

are given by

C∨
w = cone{ew(1), ew(2) − ew(1), . . . , ew(n) − ew(n−1)}.

We describe here the various (left) actions of SB
n we will consider.

• SB
n acts on Rn by w · ei = ew(i). This is the geometric definition of the Weyl group as the

set of isometries preserving the type B hyperplane arrangement.
• SB

n acts on the set of maximal cones of ΣBn through its action on Rn by w · Cw′ = Cww′ .
• SB

n acts on the set of delta-matroids D through the action on the ground set [n, n].
• SB

n acts on the set of delta-matroid polytopes P (D) through its action on the set of delta-
matroids. This is not induced by the above SB

n -action on Rn (which does not preserve
the cube [0, 1]n containing all delta-matroid polytopes), but rather the SB

n -action on Rn

conjugated by translation by (− 1
2 , . . . ,−

1
2 ). Hence Sn acts in the usual way by permuting

coordinates, but the ith copy of {±1} in the sign group acts by reflection in the xi = 1
2

hyperplane.

Remark 2.3. The orbit of a delta-matroid under Sn ≤ SB
n consists of all isomorphic delta-matroids

in the sense usual in the delta-matroid literature. Its orbit under {±1}n ⊴ SB
n are called its partial

duals [Chm09]. So its SB
n -orbit consists of all partial duals of isomorphic delta-matroids.

2.2. The polytope algebra. We collect some facts about McMullen’s polytope algebra; see [EHL23,
Appendix A] for a survey and references. For a polyhedron P ⊆ Rn, possibly unbounded, let
1(P ) : Rn → Z be its indicator function, defined so that 1(P )(x) equals 1 if x ∈ P and 0 if not. Let
P be a collection of polyhedra in Rn.

Definition 2.4. The indicator group I(P) is the group of functions from Rn to Z generated by the
indicator functions 1(P ) for P ∈ P . A function f : P → G valued in an abelian group G is called
strongly valuative if it factors through the map 1 : P → I(P).
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Let Zn + P = {m+ P : m ∈ Zn, P ∈ P} be the set of lattice translates of polyhedra in P .

Definition 2.5. The translation-invariant indicator group I(P) is the quotient

I(P) = I(Zn + P)/(1(m+ P )− 1(P ) : m ∈ Zn, P ∈ P).

We write [f ] for the class of a function f ∈ I(Zn + P) in this quotient. For a polyhedron P ∈ P ,
we often write [P ] for the class [1(P )].

Suppose now that P is the set PZ,Σ of lattice deformations of a smooth projective fan Σ in Rn,
that is, PZ,Σ = {P ⊂ Rn a lattice polytope whose normal fan coarsens Σ}. In this case, the group
I(PZ,Σ) is isomorphic to the subalgebra of McMullen’s polytope algebra spanned by polytopes in
PZ,Σ [EHL23, Proposition A.6] (see also [McM09]). In particular, I(PZ,Σ) acquires the structure of
a unital commutative ring [McM89, Lemma 6], with the product induced by [P ] · [Q] = [P +Q].

The polytope algebra I(PZ,Σ) relates to the geometry of the smooth projective toric variety XΣ

of the fan Σ as follows. The standard correspondence between polyhedra and divisors on toric
varieties [CLS11, §6.2] (see also [ACEP20, §2.4]) gives a bijection between polytopes P ∈ PZ,Σ and
base-point-free torus-invariant divisors DP on XΣ. Let OXΣ

(DP ) denote the corresponding line
bundle. We then have the following folklore isomorphism.

Theorem 2.6. [EHL23, Theorem A.10] (cf. [Mor93, Theorem 8]). The assignment [P ] 7→ [OXΣ(DP )]

defines an isomorphism of rings I(PZ,Σ)
∼→ K(XΣ).

We now specialize to the Bn permutohedral fan. Let

GPZ,Bn = PZ,ΣBn

be the set of Bn generalized permutohedra that are lattice polytopes. Then

DMatn = the set of all delta-matroids on [n, n]

is identified with the subset of GPZ,Bn
consisting of polytopes with vertices in {0, 1}n.

2.3. Schubert delta-matroids. We now describe a special family of delta-matroids that we will use
to provide bases for I(GPZ,Bn) and I(GPZ,Bn). By identifying w ∈ SB

n /Sn with w · [n] ∈ AdSn,
the Bruhat order provides a partial order on AdSn, namely the (hyperoctahedral) Gale order of
[BGW03, §3.1.2], given as follows. Endow [n, n] with the total order

(2.1) n < · · · < 1 < 1 < · · · < n.

Then, the Gale order on AdSn is the corresponding dominance order, which is described in two
equivalent ways:

• Given S, S′ ∈ AdSn, we have S ≤ S′ if and only if |S∩U | ≤ |S′∩U | for every upper segment
U of the order (2.1).

• In terms of elementwise inequalities, if S = {i1, . . . , in} and S′ = {j1, . . . , jn} with i1 <

· · · < in and j1 < · · · < jn, then S ≤ S′ if and only if ik ≤ jk for all k.
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Proposition-Definition 2.7. [BGW03, §6.1.1] Each lower interval [[n], S] in the Gale order is the
set of feasible sets of a delta-matroid ΩS . We call the ΩS for S ∈ AdSn the standard Schubert
delta-matroids. A Schubert delta-matroid is a SB

n -image of a standard Schubert delta-matroid.

Example 2.8. For n = 3, the admissible sets dominated by {2, 1, 3} are

{2, 1, 3}, {3, 1, 2}, {2, 1, 3}, {3, 1, 2}, {3, 2, 1}, {3, 2, 1},

so the standard Schubert delta-matroid Ω{2,1,3} is the delta-matroid whose polytope is the convex
hull of

{e{1,3}, e{1,2}, e{3}, e{2}, e{1}, e{∅}}

One may also recognize this polytope as the independence polytope of the matroid on [3] whose
bases are {1, 2} and {1, 3}.

For S ∈ AdSn, the standard Schubert delta-matroid polytope P (ΩS) is the independence poly-
tope of a type A Schubert matroid in the following way. The standard Schubert matroid ΩA

T of a
subset T ⊆ [n] is the matroid on [n] whose set of bases is

ΩA
T = {B ⊆ [n] : |B| = |T | and B ≤ T in the dominance order}

where the dominance order is taken with respect to the ground set ordering 1 < · · · < n.

Lemma 2.9. For S, S′ ∈ AdSn, then the following are equivalent.

(1) S ≤ S′ in the Gale order;
(2) |S ∩ {i, . . . , n}| ≤ |S′ ∩ {i, . . . , n}| for all 1 ≤ i ≤ n; and
(3) There exists B ⊂ [n] with |B| = |S′ ∩ [n]| such that S ∩ [n] ⊂ B ≤ S′ ∩ [n], where the

inequality is taken in the dominance order.

Proof. All equivalences are easy to verify directly, so we omit the proof. □

A Schubert matroid is a Sn-image of a standard Schubert matroid. From the equivalence of the
first and third parts of Lemma 2.9, we see that P (ΩS) = IP (ΩA

S∩[n]), and so the subset

SchDMatn = the set of all Schubert delta-matroids on [n, n]

of DMatn is identified with the set of SB
n -images of independence polytopes of Schubert matroids

on [n]. The name “Schubert (delta-)matroid” reflects a relationship with Schubert cells explained in
Example 6.3.

2.4. Intersecting with unit cubes. We record here some key properties concerning how lattice Bn

generalized permutohedra intersect with unit cubes. We will use them to prove Theorem D and
some related isomorphisms in the next subsection.

The natural level of generality of our first proposition, Proposition 2.12, is not only lattice Bn

generalized permutohedra but also their unbounded analogues. A polyhedron P ⊆ Rn is lattice
(over Zn) if the affine span aff(F ) of any face F of P contains a coset of a subgroup of Zn of rank
dimF . If P is bounded, i.e., P is a polytope, this is equivalent to the vertices of P being lattice
points, because the differences between vertices of F generate the subgroup sought for any face F .
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Lemma 2.10. Let P ⊂ Rn be a (closed convex) polyhedron and u : Rn → R a linear functional. If
P+ = P ∩{x ∈ Rn : x1 ≥ 0} is nonempty, then u is bounded below on P+ if and only if there exists
r ≥ 0 such that u− rx1 is bounded below on P .

Proof. Suppose u is bounded below on P+. If u attains its minimum over points x ∈ P+ at a point
with x1 > 0, then r = 0 suffices. Otherwise take

r = lim sup
y→0+

1

y

(
min{u(x) : x ∈ P, x1 = 0} −min{u(x′) : x′ ∈ P, x′1 = y}

)
.

The limit superior exists because finitely many faces on the boundary of P+ contain a minimizer
x′, and for each either y is bounded away from 0 or the face also contains a minimizer x and the
quantity inside is constant. The converse is clear because u ≥ u− rx1 on P+. □

Lemma 2.11. Let σ be a cone of ΣBn , and let u lie in the relative interior of σ. Then both the set of
cones of ΣBn

which meet cone{u, e1} and the order in which u + λe1 meets these cones as λ ≥ 0

increases are functions of σ, independent of u.

In lieu of a proof of Lemma 2.11 we describe the cones arising. This is easier in the language of
total preorders. Arbitrary cones of ΣBn

are in bijection with total preorders ≤ on [n, n] such that for
i, j ∈ [n, n], i ≤ j if (and only if) j ≤ i, via the map

≤ 7→ C≤ = cone
{∑

j≤i

ej : i ∈ [n, n]
}
.

In Lemma 2.11, if σ = C≤, then the cones whose relative interiors meet cone{u, e1} are the C⪯ for
all ⪯ such that ≤ and ⪯ have the same restriction to [n, n] \ {1, 1}, and for all i ∈ [n, n], if 1 ≤ i then
1 ⪯ i.

Proposition 2.12. Let P be a lattice polyhedron, possibly unbounded, whose normal fan coarsens
a subfan of ΣBn

. If m ∈ Zn and P ∩ (m+ [0, 1]n) is nonempty, then P ∩ (m+ [0, 1]n) ∈ GPZ,Bn
.

The above result is also proved in [Fuj17, FP94], at least when P is a lattice polytope, using the
theory of bisubmodular functions. We include a direct proof. The counterpart for type A gen-
eralized permutohedra follows from [Sch03, (44.70)] on intersections with coordinate half-spaces,
which implies that Theorem 2.17 below also holds for type A.

Proof. By translating we may assume that m = 0. The cube □ = [0, 1]n is an intersection of coor-
dinate half-spaces. So we reduce to considering the intersection of P with a coordinate half-space
H+, say {(x1, . . . , xn) ∈ Rn : x1 ≥ 0}, and showing that if P ∩H+ is nonempty, then it is a lattice
polyhedron and has normal fan coarsening a subfan of ΣBn

. Together with the observation that
P ∩□ is bounded because □ is, this proves the proposition.

First, we show that P ∩H+ is lattice. Note that for any face G of P ∩H+, there is a face F of P
such that either

(1) G = F ∩H+ and dimG = dimF , or
(2) G = F ∩H and dimG = dimF − 1.
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In the former case, aff(G) = aff(F ). In the latter case, fix a cone of ΣBn
maximal among those

normal to F . This cone has the form

cone{ew(1) + ew(2) + · · ·+ ew(ik) : k = 1, . . . ,m}

for some w ∈ SB
n and {i1, . . . , im} ⊆ [n] by Proposition 2.2. Thus

aff(F ) = {x ∈ Rn : xw(1) + · · ·+ xw(ik) = aik for all k = 1, . . . ,m},

= {x ∈ Rn : xw(ik−1)+1 + · · ·+ xw(ik) = aik − aik−1
for all k = 1, . . . ,m}(2.2)

where the ai are integers because P is lattice. The lattice points in aff(G) = aff(F )∩H are those with
x1 = 0, which form a coset of a subgroup of corank 1 among the lattice points in aff(F ) because x1
appears in at most one equation in (2.2). We have thus shown that P ∩H+ is lattice.

Now we prove that the normal fan of P ∩ H+ coarsens a subfan of ΣBn
. Write faceuQ for the

face of a polytope Q on which a linear functional u : Rn → R attains its minimum; set faceuQ = ∅
by convention if no minimum is attained. The assumption on P is that for each cone σ of ΣBn

with
relative interior σ◦, it holds that faceu P = facev P for all u, v ∈ σ◦. Our claim is that the same is
true of P ∩H+.

Fix a cone σ of ΣBn and u, v ∈ σ◦. By Lemma 2.10, faceu(P ∩H+) = ∅ if and only if u− rx1 lies
outside the normal fan of P for all r ≥ 0, where x1 is the first coordinate functional, and likewise
for v. By Lemma 2.11, whether this happens depends only on σ, not on u or v. So it remains to
handle the case faceu(P ∩ H+) ̸= ∅. If faceu P is not disjoint from H+, we are done, since in this
case

faceu(P ∩H+) = (faceu P ) ∩H+ = (facev P ) ∩H+ = facev(P ∩H+).

If they are disjoint, let r ∈ R be minimal such that F := faceu−rx1
P intersects H+, where x1 is

the first coordinate functional; some such r exists by our earlier invocation of Lemma 2.10. Note
that r > 0, so u is a positive combination of x1 and u − rx1. Since facex1

(P ∩ H+) = P ∩ H and
faceu−rx1

(P ∩H+) = F ∩H+ intersect in their common face F ∩H , this implies faceu(P ∩H+) =

F ∩H . Again by Lemma 2.11, the faces of the form faceu−rx1 P , and their order they appear in as r
varies, depend only on σ, so we have facev(P ∩H+) = F ∩H also. □

Let

C = −C∨
id = cone{−e1, e1 − e2, . . . , en−1 − en} = {x ∈ Rn :

n∑
i=k

xi ≤ 0 for k ∈ [n]}.

This is the type Bn negative root cone for the choice of positive roots corresponding to our Gale
order [BGW03, §3.2.2].

Lemma 2.13. Let m ∈ {0, 1}n and let S ∈ AdSn be the size n admissible set such that m is the
indicator vector of S ∩ [n]. Then P (ΩS) = (m+ C) ∩ [0, 1]n.

Proof. The half-space description of m+ C is

(2.3) m+ C = {x ∈ Rn :

n∑
i=k

xi ≤
n∑

i=k

mi for k ∈ [n]}.
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By the equivalence of the first and second parts of Lemma 2.9, we see that x ∈ (m+ C) ∩ {0, 1}n if
and only if, for the admissible set S′ ∈ AdSn such that x is the indicator vector of S′ ∩ [n], we have
S′ ≤ S in the Gale order. Therefore (m + C) ∩ [0, 1]n and ΩS contain the same set of lattice points.
Since C is the dual of a cone of ΣBn , Proposition 2.12 applies and shows that (m + C) ∩ [0, 1]n is a
lattice polytope. But ΩS is also a lattice polytope, so they are equal. □

Proposition 2.14. Let m ∈ Zn. If the intersection (m+C)∩ [0, 1]n is nonempty, then it is a standard
Schubert delta-matroid polytope.

Proof. Assume that (m + C) ∩ [0, 1]n is nonempty. We construct a sequence m0 = m, m1, . . . of
integer vectors so that

(2.4) (mj + C) ∩ [0, 1]n = (m+ C) ∩ [0, 1]n.

One of the mj will lie in {0, 1}n, whereupon the proposition follows from Lemma 2.13.
Denote the generators of C, the negative simple roots, by α1 = −e1 and αi = ei−1 − ei for

i = 2, . . . , n. An arbitrary lattice point of mj + C has the form x = mj +
∑n

i=1 aiαi for nonnegative
integers ai. If mj

i > 1 then we let mj+1 = mj +(mj
i − 1)αi. In this case xi ≤ 1 only if ai > mj

i − 1, so
mj + C and mj + (mj

i − 1)αi + C have the same intersection with [0, 1]n and (2.4) holds. Similarly,
if mj

i < 0, then we let mj+1 = mj + (−mj
i )αi+1, and (2.4) holds because xi ≥ 0 only if ai+1 > −mi

(note that i < n in this case, which follows from (m+ C) ∩ [0, 1]n being nonempty).
The sequence (

∑n
i=1 im

j
i )j≥0 is decreasing by construction, and bounded below by 0, because if∑n

i=1 im
j
i < 0 the functional

∑n
i=1 ixi takes negative values on mj + C and nonnegative values on

[0, 1]n, implying (mj +C)∩ [0, 1]n = ∅. So it is finite, i.e., the case mj ∈ {0, 1} happens after finitely
many steps. □

Corollary 2.15. The set SchDMatn is closed under nonempty intersections with faces of [0, 1]n.

Proof. By the SB
n symmetry and iteration, it’s enough to prove that if P = P (D) for D a standard

Schubert delta-matroid and F is a facet of [0, 1]n, then P∩F ∈ SchDMatn. Write P = (m+C)∩[0, 1]n

as in Proposition 2.14, and F = H ∩ [0, 1]n for a hyperplane H = {x ∈ Rn : xi = s} where i ∈ [n]

and s ∈ {0, 1}. Then P ∩ F = (m+ C) ∩H ∩ [0, 1]n. Let π : H → Rn−1 be the map omitting the ith
coordinate. Using (2.3) and its counterpart for Bn−1, one can check that (m + C) ∩H is identified
by π with a translate of the cone −C∨

id which is dual to a cone in ΣBn−1 . Therefore π takes P ∩ F
to a type Bn−1 standard Schubert delta-matroid polytope. This implies that P ∩ F is a Schubert
delta-matroid polytope, as follows. In the case H = {x ∈ Rn : xn = 0}, if π(P ∩F ) = P (ΩS) for S a
maximal admissible subset of [n− 1], then P ∩ F = P (ΩS∪{n}) by Lemma 2.13. The other possible
choices of H are SB

n images of this one, so in general P ∩ F is a SB
n image of P (ΩS∪{n}). □

Corollary 2.16. Let □′ be a face of [0, 1]n, and σ be a cone of ΣBn . For m ∈ Zn, if the intersection
(m+ σ∨) ∩□′ is nonempty, then it is in SchDMatn.

Proof. If σ is a maximal cone of ΣBn
, then σ∨ is a Weyl image of the cone C = −C∨

id above, and the
result follows from Proposition 2.14 and Corollary 2.15.

For an arbitrary cone σ, we reduce to the preceding case. The cone σ is a face of a maximal
cone τ of ΣBn

, so σ∨ is a tangent cone of τ∨, that is, σ∨ = −F + τ∨ for a face F ⊂ τ∨. Now for
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m′ ∈ −F ∩ Zn, we have
σ∨ ⊇ (−F ∩ (m′ + F )) + τ∨ = m′ + τ∨.

If m′ is chosen deep enough in the interior of −F , the defining halfspaces of m +m′ + τ∨ will all
contain □′, so m+ σ∨ and m+m′ + τ∨ will have the same intersection with □′. □

2.5. Bases from Schubert delta-matroids. We are now ready to prove the following intermediate
step for the proof of Theorem D.

Theorem 2.17. One has

I(Zn + SchDMatn) = I(Zn + DMatn) = I(GPZ,Bn
).

Proof. Let P ⊂ Rn be a lattice Bn generalized permutohedron. We will write 1(P ) as a sum of
indicator functions of lattice translates of Schubert delta-matroid polytopes. This will prove that
I(GPZ,Bn) ⊂ I(Zn + SchDMatn), and the left-to-right inclusions in the theorem are clear.

Recall the signed permutohedron ΠBn
. By the Brianchon–Gram theorem applied to P + εΠBn

in
the pointwise limit ε→ 0+, we have

1(P ) =
∑

σ∈ΣBn

(−1)codimσ 1(P + σ∨).

Note that P + σ∨ is a lattice translate of σ∨.
Tile Rn by lattice translates of Boolean cubes [0, 1]n. Let C be the set of all such cubes that meet

P , together with their common internal faces, so that we have an inclusion-exclusion relation

1(
⋃
F∈C

F ) =
∑
F∈C

(−1)codim(F ) 1(F ).

Then

1(P ) =
∑
F∈C

(−1)codim(F ) 1(P ∩ F ) =
∑
F∈C

∑
σ∈ΣBn

(−1)codim(F )+codim(σ) 1((P + σ∨) ∩ F ).

By Corollary 2.16, the right hand side is in I(Zn + SchDMatn). □

We remark that the second equality of the theorem could have been proved using the tiling by
Boolean cubes and Proposition 2.12 without invoking the Brianchon–Gram theorem.

Corollary 2.18. One has
I(SchDMatn) = I(DMatn) = I(GPZ,Bn

).

Proof. What is left to prove after Theorem 2.17 is that the three groups of relations are equal. These
are generated by 1(m + P ) − 1(P ) where m ∈ Zn and P ∈ SchDMatn, DMatn, and GPZ,Bn

respec-
tively. If P ∈ GPZ,Bn

, then another use of Theorem 2.17 gives us a finite expression

1(m+ P )− 1(P ) =
∑

Q∈SchDMatn,v∈Zn

aQ,v (1(m+ v +Q)− 1(v +Q))

=
∑

Q∈SchDMatn,v∈Zn

aQ,v

(
(1(m+ v +Q)− 1(Q))− (1(v +Q)− 1(Q))

)
.

So the relations for I(GPZ,Bn
) are also relations for I(SchDMatn), and the other containments are

obvious. □
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We prepare for the proof of Theorem D by proving the analogous fact for I(DMatn).

Proposition 2.19. The set {1(P ) : P ∈ SchDMatn} is a basis for I(DMatn).

Proof. The first equality in Theorem 2.17 implies that every 1(P ) for P a delta-matroid polytope can
be expressed as a linear combination of indicator functions of Schubert delta-matroid polytopes.
Here we note that a lattice translate of a Schubert delta-matroid polytope P (D), provided it is
contained in the unit cube, is again a Schubert delta-matroid polytope because it is a SB

n -image
of P (D).

For linear independence, suppose we have a nontrivial relation

k∑
i=1

ai1(Pi) = 0 with k ≥ 1 and a1, . . . , ak ̸= 0

where P1, . . . , Pk are Schubert delta-matroids. By Proposition 2.14, there existsw ∈ SB
n andm ∈ Zn

such that P1 = [0, 1]n ∩ (m + w · C). Without loss of generality, we may assume that P1 does not
contain Pi for all i > 1. In particular, no Pi for i > 1 is contained inm+w ·C. Now, [ESS21, Theorem
2.3] implies that the assignment

P 7→

1 if P ⊂ m+ w · C and P ∩m ̸= ∅

0 otherwise

defines a strongly valuative function on GPZn,Bn . Applying this function to both sides of the rela-
tion

∑k
i=1 ai1(Pi) = 0 then yields a1 = 0, a contradiction. □

We are ready to prove Theorem D. Converted to a statement about polyhedra by using Theo-
rem 2.6, the theorem asserts that a basis of I(GPZ,Bn

) is

SchDMatclfn := {D ∈ SchDMatn : D has no coloops}.

The superscript clf stands for “coloop-free.” We verify that, among the polytopes of the delta-
matroids in SchDMatclfn , there is exactly one translate of any Schubert delta-matroid polytope. For
any D ∈ SchDMat, changing any coloops D may have to loops gives a translate in SchDMatclfn . If for
two delta-matroids D and D′ we have P (D′) = m+P (D) for some m ∈ Zn, then m ∈ {−1, 0, 1}n; if
for some i we have mi = 1, then P (D′) ⊆ {x ∈ Rn : xi = 1} and P (D) ⊆ {x ∈ Rn : xi = 0}, and if
m1 = −1 then these containments hold vice versa, so not both D and D′ are coloop-free.

Our method for proving Theorem D can also be used to deduce the counterpart of the theorem
in type A, i.e., that coloop-free Schubert matroids are a basis for the translation-invariant polytope
algebra of lattice type A generalized permutohedra. Another proof of the type A theorem can
be assembled from [BEST23, Theorem D] and the analogous theorem for the cohomology ring in
type A appearing in [Ham17].

Proof of Theorem D. Theorem 2.17 shows that {[P ] : P ∈ SchDMatclfn } generates I(SchDMatn). So we
must prove linear independence.
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We first show translates of coloop-free Schubert delta-matroids are linearly independent in I(Zn+

SchDMatn). Suppose we are given a finite relation∑
P∈SchDMatclfn ,m∈Zn

aP,m 1(m+ P ) = 0.

Let V ⊆ Zn be the set of vectors v such that, for some (P,m) with aP,m ̸= 0, m + P intersects the
translate [0, 1)n + v of the half-open cube. Our objective is to prove V empty. Suppose otherwise,
and let v ∈ V be lexicographically minimum. Restricting our relation to the closed cube v + [0, 1]n

gives ∑
P∈SchDMatclfn ,m∈Zn

aP,m 1((m+ P ) ∩ (v + [0, 1]n)) = 0.

If (m + P ) ∩ (v + [0, 1]n) is nonempty, then it has the form v + Q for some Q ∈ SchDMatn by
Corollary 2.15. Letting

J(Q) = {(P,m) : (m+ P ) ∩ (v + [0, 1]n) = v +Q},

we collect identical translates: ∑
Q∈SchDMatn

 ∑
(P,m)∈J(Q)

aP,m

1(v +Q) = 0.

By Proposition 2.19, every inner sum is zero. For any Q ∈ SchDMatclfn , minimality of v implies that
the only possibly nonzero summand in this inner sum is the one indexed by (P,m) = (Q, v), so
aQ,v = 0. But this contradicts v ∈ V .

Now, a linear dependence in I(GPZ,Bn
),∑

P∈SchDMatclfn

aP [1(P )] = 0,

lifts to I(GPZ,Bn
) as a relation∑

P∈SchDMatclfn

aP 1(P ) +
∑

Q,m∈Zn\{0}

bQ,m (1(m+Q)− 1(Q)) = 0

over some family of latticeBn generalized permutohedraQ, where finitely many bQ,m are nonzero.
Applying Theorem 2.17 to these Q, this can be rewritten∑

P∈SchDMatclfn

aP 1(P ) +
∑

P∈SchDMatn,m ̸=0

cP,m (1(m+ P )− 1(P )) = 0.

Every P ∈ SchDMatn has a lattice translate P ′ ∈ SchDMatclfn , and we can use the relation 1(m +

Q) − 1(Q) = (1(m + Q) − 1(Q′)) − (1(Q) − 1(Q′)) for any polytopes Q,Q′ to rewrite the second
sum: ∑

P∈SchDMatclfn

aP 1(P ) +
∑

P ′∈SchDMatclfn ,m ̸=0

dP ′,m (1(m+ P ′)− 1(P ′)) = 0.

The earlier lifted linear independence statement implies that each polytope in the above sum has
a zero coefficient, i.e., dP,m = 0 for all m ̸= 0 and aP −

∑
m̸=0 dP,m = 0. Therefore aP = 0 for all

P ∈ SchDMatclfn . □
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3. THE EXCEPTIONAL HIRZEBRUCH–RIEMANN–ROCH-TYPE THEOREM

We prove Theorem C, relating the Grothendieck ring of vector bundles K(XBn
) to the Chow co-

homology A•(XBn
), in two parts. In §3.2, we establish the isomorphism ϕB : K(XBn

) → A•(XBn
)

via localization methods in torus-equivariant geometry. Then, in §3.3, we establish the formula
involving the sheaf Euler characteristic by relating the isomorphism ϕB to a similar isomorphism
for stellahedral varieties established in [EHL23].

3.1. K-rings and Chow rings ofXBn . Let T = Gn
m be the torus embedded inXBn , and letKT (XBn)

be the T -equivariant K-ring of XBn
, which is the Grothendieck ring of T -equivariant vector bun-

dles on XBn
, and let A•

T (XBn
) be the T -equivariant Chow ring in the sense of [EG98]. We describe

the equivariant and non-equivariantK and Chow rings ofXBn
. We will make use of descriptions of

KT (XBn) and A•
T (XBn) coming from equivariant localization. See [EHL23, Section 2] for a review

of equivariant localization.

We first set up some notation. To describe the adjacent maximal cones in ΣBn , we use the fol-
lowing special involutions in SB

n :

• τi,i+1 = (i, i+ 1)(i, i+ 1) for 1 ≤ i ≤ n− 1, and
• τn = (n, n).

Then Cw is adjacent to Cw′ exactly if w = w′τi,i+1 for some i, in which case the common facet
normal is ±(ew(i) − ew(i+1)), or w = w′τn, in which case the common facet normal is ±ew(n). Recall
that KT (pt) = Z[T±1

1 , . . . , T±1
n ] and A•

T (pt) = Z[t1, . . . , tn]. Let Tī = T−1
i and t̄i = −ti for i ∈ [n].

Theorem 3.1. [VV03, Pay06] The following hold.

(1) The injective localization mapKT (XBn
) → KT (X

T
Bn

) =
⊕

w∈SB
n
KT (pt) identifiesKT (XBn

)

with the set of collections of elements (fw)w∈SB
n
∈
⊕

w∈SB
n
Z[T±1

1 , . . . , T±1
n ] such that

• if wτi,i+1 = w′ for 1 ≤ i ≤ n− 1, then fw ≡ fw′ mod 1− Tw(i)T
−1
w(i+1), and

• if wτn = w′ then fw ≡ fw′ mod 1− Tw(n).
The diagonal embedding of Z[T±1

1 , . . . , T±1
n ] into

⊕
w∈SB

n
KT (pt) identifies Z[T±1

1 , . . . , T±1
n ]

with a subring of KT (XBn), and the K-ring K(XBn) is given by

K(XBn) = KT (XBn)/(T1 − 1, . . . , Tn − 1).

(2) The injective localization mapA•
T (XBn) → A•

T (X
T
Bn

) =
⊕

w∈SB
n
A•

T (pt) identifiesA•
T (XBn)

with the set of collections of elements (fw)w∈SB
n
∈
⊕

w∈SB
n
Z[t1, . . . , tn] such that

• if wτi,i+1 = w′ for 1 ≤ i ≤ n− 1, then fw ≡ fw′ mod tw(i) − tw(i+1), and
• if wτn = w′ then fw ≡ fw′ mod tw(n).

The diagonal embedding of Z[t1, . . . , tn] into
⊕

w∈SB
n
A•

T (pt) identifies Z[t1, . . . , tn] with a
subring of A•

T (XBn), and the Chow ring A•(XBn) is given by

A•(XBn) = A•
T (XBn)/(t1, . . . , tn).

There is an action of SB
n by automorphisms on XBn

, so we functorially obtain an action of SB
n

onK(XBn
) andA•(XBn

). We now describe SB
n -actions onKT (XBn

) andA•
T (XBn

), the latter being
the type Bn case of Tymoczko’s dot action [Tym08]. To do so, we prepare with some generalities on
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maps between torus-equivariant K-rings for actions of potentially different tori. For i = 1, 2, let Ti
be a torus and Xi a smooth projective Ti-variety. Suppose we have a map of tori φ : T1 → T2 and a
map φ : X1 → X2 with the commuting diagram

T1 ×X1 T2 ×X2

X1 X2,

φ×φ

φ

where the two vertical maps are the torus actions. Then, by treating X2 as a T1-variety via φ, we
have the induced maps

(3.1) KT2(X2) → KT1(X2)
φ∗

→ KT1(X1)

where the first map is the “forgetful map” and the second map is the pullback map. We similarly
have induced maps of equivariant Chow rings.

In our situation, we will have T1 = T2 = T and X1 = X2 = XBn in the following way. An ele-
ment w ∈ SB

n acts on Rn by ei 7→ ew(i). We consider Rn as the real vector space Cochar(T )⊗R that
contains the fan ΣBn

. This SB
n -action defines an automorphism φw : T → T given by Ti 7→ Tw−1(i).

Since the SB
n -action maps ΣBn

isomorphically onto itself, the map φw extends to an automorphism
φw : XBn

→ XBn
. The map φw is not a T -equivariant map, but it fits into the commuting diagram

T ×XBn
T ×XBn

XBn
XBn

.

φw×φw

φw

Hence, we have the maps

ψw : KT (XBn) → KT (XBn)
φ∗

w→ KT (XBn)

as in (3.1), and similarly for A•
T (XBn

). The assignments w 7→ ψw−1 give a SB
n -action descending to

the usual SB
n -action on K(XBn

) and A•(XBn
). In terms of the localization description of KT (XBn

)

and A•
T (XBn

) in Theorem 3.1, the action has the following explicit description:

(1) An element w ∈ SB
n acts on f ∈ KT (XBn

) by (w · f)w′ = fw−1w′(Tw(1), . . . , Tw(n)).
(2) An element w ∈ SB

n acts on f ∈ A•
T (XBn

) by (w · f)w′ = fw−1w′(tw(1), . . . , tw(n)).

3.2. The exceptional isomorphism. Recall the map ϵ : SB
n → {±1}n from Section 2.1.

Theorem 3.2. There is an injective ring map

ϕBT : KT (XBn) → A•
T (XBn)[1/(1± ti)] := A•

T (XBn)[{ 1
1−ti

, 1
1+ti

}1≤i≤n]

obtained by
(ϕBT (f))w(t1, . . . , tn) = fw(hϵ1(w)(t1), . . . , hϵn(w)(tn))

where

hϵ(t) = (1 + ϵt)ϵ :=

1 + t ϵ = +1

1
1−t ϵ = −1

.
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This equivariant map ϕBT descends to a non-equivariant isomorphism ϕB : K(XBn
)

∼→ A•(XBn
).

Finally, ϕB and ϕBT are SB
n -equivariant in the sense that they intertwine the above SB

n -actions:

ϕBT (w · f) = w · ϕBT (f), and ϕB(w · f) = w · ϕB(f).

Proof. We first check that ϕBT is SB
n -equivariant. For f ∈ KT (XBn

), we have that

(ϕBT (w · f))w′ = fw−1w′(hϵ1(w′)(Tw(1)), . . . , hϵn(w′)(Tw(n))), and

(w · ϕBT (f))w′ = fw−1w′((1 + ϵ1(w
′)tw(1))

ϵ1(w
′), . . . , (1 + ϵn(w

′)tw(n))
ϵn(w

′)),

which are equal. We now check the congruence conditions. First, we check for w′ = wτi,i+1 that

(ϕBT (f))w ≡ (ϕBT (f))w′ mod tw(i) − tw(i+1).

By SB
n -equivariance, this is equivalent to

(ϕBT (w
−1 · f))id ≡ (ϕBT (w

−1 · f))τi,i+1
mod ti − ti+1,

which by definition of ϕBT , and the fact that ϵj(id) = ϵj(τi,i+1) = 1 for all j, is equivalent to

(w−1 · f)id(t1 + 1, . . . , tn + 1) ≡ (w−1 · f)τi,i+1
(t1 + 1, . . . , tn + 1) mod ti − ti+1.

Since w−1 · f ∈ KT (XBn
), we have ((w−1 · f)id(T1, . . . , Tn) ≡ (w−1 · f)τi,i+1

(T1, . . . , Tn)) mod 1 −
T−1
i Ti+1, and the result follows from replacing Tj with tj + 1 for all j. Now, we check for w′ = wτn

that
(ϕBT (f))w ≡ (ϕBT (f))w′ mod tw(n).

Indeed, this similarly follows from the fact that w · f ∈ KT (XBn
) and the compatibility

(w−1 · f)id(T1, . . . , Tn) ≡ (w−1 · f)τn(T1, . . . , Tn) mod Tn − 1.

As we now know that ϕBT is well-defined, from the defining formula it is trivial to check that it is
an injective ring map.

We now check that the map ϕBT descends non-equivariantly to a map ϕB : K(XBn) → A•(XBn).
Note that under the map A•

T (XBn) → A•(XBn) we have 1 ± ti 7→ 1, so there is an induced map
A•

T (XBn
)[ 1

1±ti
] → A•(XBn

). To obtain the map ϕB , we have to show that under the composite
KT (XBn

) → A•
T (XBn

)[ 1
1±ti

] → A•(XBn
), the ideal (T1 − 1, . . . , Tn − 1) gets mapped to 0. Indeed,

ϕBT (Ti − 1) = ti · ri where (ri)w is 1 if ϵi(w) = 1 and 1
1−ti

if ϵi(w) = −1. Therefore ϕBT (Ti − 1) is zero
under the map A•

T (XBn
)[ 1

1±ti
] → A•(XBn

) because ti maps to 0.
The SB

n -equivariance of ϕB follows immediately from the SB
n -equivariance of ϕBT , so it re-

mains to check that ϕB is an isomorphism. For this, we identify the image of ϕBT . Note that
ϕB(KT (XBn

)) lies in the subring R ⊂ A•
T (XBn

)[ 1
1±ti

] consisting of those g where gw lies in the
ring KT (pt)[

1
1+ϵ1(w)t1

, . . . , 1
1+ϵn(w)tn

] for all w. Define

h−1
ϵ (T ) = ϵ(T ϵ − 1) :=

T − 1 ϵ = +1

1− T−1 ϵ = −1.

It is easy to see that for g ∈ Rwe have gw(h−1
ϵ1(w)(t1), . . . , h

−1
ϵn(w)(tn)) ∈ KT (pt) for allw, and, arguing

as before, we see that
w 7→ gw(h

−1
ϵ1(w)(t1), . . . , h

−1
ϵn(w)(tn))
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gives a preimage of g under ϕBT . Hence ϕBT : KT (XBn
) → R is an isomorphism. Now, note that the

ri constructed above has the property that ri ∈ R×, so the ideal (T1 − 1, . . . , Tn − 1) ⊂ KT (XBn
)

maps under ϕBT to the ideal (t1, . . . , tn) ⊂ R. Hence because

AT (XBn
) ⊂ R ⊂ AT (XBn

)

[
1

1± ti

]
and 1

1±ti
gets sent to 1 after quotienting by (t1, . . . , tn), we conclude that ϕB induces an isomor-

phism

K(XBn
) ∼= R/(t1, . . . , tn) = AT (XBn

)

[
1

1± ti

]
/(t1, . . . , tn) = A•(XBn

). □

3.3. Stellahedral geometry. We show that the isomorphism ϕB of Theorem 3.2 satisfies

χ([E ]) =
∫
XBn

ϕB([E ]) · c(⊞O(1))

for any [E ] ∈ K(XBn
), thereby completing the proof of Theorem C. While one can prove this via the

Atiyah-Bott localization formula, as in [BEST23], we present a more geometric proof that explains
how our result relates to a previous exceptional Hirzebruch–Riemann–Roch-type theorem given in
[EHL23] for stellahedral varieties. Note that (ΣB1)

n is a fan in Rn whose cones are

Cone(ei : i ∈ S) for S an admissible subset of [n, n].

Definition 3.3. The stellahedral fan ΣStn is a fan in Rn obtained from (ΣB1
)n by iteratively per-

forming stellar subdivisions on all faces of the nonpositive orthant Cone(ei : i ∈ [n̄]) starting with
the maximal face.

Note that theBn permutohedral fan ΣBn is obtained by performing such iterated stellar subdivi-
sions on all the orthants. In other words, the fan ΣBn is the common refinement of the 2n different
“copies” of the stellahedral fan: For each admissible subset τ ∈ AdSn, we have the “copy” of the
stellahedral fan obtained from (ΣB1

)n by performing the iterated stellar subdivision on the orthant
Cone(ei : i ∈ τ). See Figure 1 for an illustration when n = 2.

FIGURE 1. The fans (ΣB1)
2 (left), ΣSt2 (middle), and ΣB2 (right)

The stellahedral variety XStn is the toric variety associated to the fan ΣStn . Since the fans
ΣBn

, ΣStn , and (ΣB1
)n form a sequential coarsening, we have a natural sequence of maps XBn

→
XStn → (P1)n of toric varieties. The map XBn

→ XStn is also considered in [CDH+23]. Recall
that ⊞O(1) denotes the vector bundle on XBn that is the direct sum of the pullbacks of OP1(1) from
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each P1 factor in (P1)n. We reuse the notation ⊞O(1) for the similar vector bundle pulled back only
to XStn .

Stellahedral varieties play a central role in the proof the top-heavy conjecture and the nonneg-
ativity of Kazhdan-Lusztig polynomials of matroids [BHM+22, BHM+]. The connection between
stellahedral varieties and matroids was further developed in [EHL23]. In our case, we will need
the following exceptional Hirzebruch–Riemann–Roch-type theorem for stellahedral varieties.

Theorem 3.4. [EHL23, Theorem 1.9 & Theorem 6.1] There is an isomorphism ϕT : KT (XStn) →
A•

T (XStn)[1/(1− ti)] defined by

fx(T1, . . . , Tn) 7→ fx(
1

1−t1
, . . . , 1

1−tn
)

where fx(T1, . . . , Tn) ∈ Z[T±1
1 , . . . , T±1

n ] is the localization value of a K-class f ∈ KT (XStn) at a
T -fixed point x of XStn . It descends to an isomorphism ϕ : K(XStn) → A•(XStn) which satisfies

χ([E ]) =
∫
XStn

ϕ([E ]) · c(⊞O(1)) for any [E ] ∈ K(XStn).

The isomorphism ϕB of Theorem 3.2 is an extension of this isomorphism ϕ as follows.

Lemma 3.5. Let p : XBn
→ XStn be the toric morphism described above. The following diagram

commutes:

K(XStn) A•(XStn)

K(XBn
) A•(XBn

).

ϕ

p∗ p∗

ϕB

Proof. For a matroid M on [n], its independence polytope IP (M) is a deformation of ΣStn and hence
defines a class [IP (M)] in the polytope algebra I(PZ,ΣStn

) [EHL23, Example 3.15]. Moreover, the
set {[IP (M)] : M a matroid on [n]} spans I(PZ,ΣStn

) as an abelian group [EHL23, Proposition 7.4],
which is isomorphic to K(XStn) via Theorem 2.6. Hence, it suffices to show the commutativity
of the diagram on the spanning set {[IP (M)] : M a matroid on [n]}. Now, for i ∈ [n] and any
maximal cone σ of ΣBn

containing ei, the T -equivariant localization value of [IP (M)] at σ is a
Laurent polynomial in the variables Tj for j ̸= i, because the vertex of IP (M) minimizing the
standard pairing with a vector in the interior of σ has zero as its ith coordinate. By the descriptions
of the maps ϕT and ϕBT , this implies that p∗ϕT ([IP (M)]) = ϕBT ([IP (M)]) for any matroid M on
[n]. □

We caution that the torus-equivariant analogue of the above diagram does not commute. We can
now finish the proof of Theorem C.

Proof of Theorem C. We have shown that ϕB is an isomorphism in Theorem 3.2. It remains to show
the Hirzebruch–Riemann–Roch-type formula

χ([E ]) =
∫
XStn

ϕB([E ]) · c(⊞O(1)) for any [E ] ∈ K(XBn).

Theorem D implies that K(XBn
) is generated as an abelian group by Weyl images of independence

polytopes of matroids. Hence, it suffices to check the Hirzebruch–Riemann–Roch-type formula
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for Weyl images of independence polytopes of matroids. Moreover, by Weyl-equivariance of ϕB , it
suffices to check this for independence polytopes of matroids. Then this follows from the projection
formula, Theorem 3.4, and Lemma 3.5. □

Remark 3.6. There are two obstructions to establishing analogues of Theorems C and D for arbi-
trary root systems. First, Propositions 2.12 and 2.14 about intersections with the unit cube, which
were essential to our proof of Theorem D, no longer hold when the unit cube is replaced by (mi-
nuscule) weight polytopes of types other than A and B, for instance in type D. See [ESS21, Remark
3.15]. Second, the useful feature of ΣBn

in the construction of the map ϕBT in Theorem 3.2 and in the
proof of Theorem C is that ΣBn

can be viewed as a common refinement of 2n “copies” of the stel-
lahedral fan ΣStn . For arbitrary crystallographic root systems Φ, we do not know whether K(XΦ)

and A•(XΦ) are integrally isomorphic.

In Section 7.4, we will make use of the following “dual” version of ϕB . For a varietyX , define the
ring involution DK : K(X) → K(X) by [E ] 7→ [E∨] and the ring involution DA : A•(X) → A•(X)

by multiplication by (−1)d in degree d. Define the “dual” isomorphism ζB : K(XBn
) → A•(XBn

)

by DA ◦ ϕB ◦ DK . Similarly define ζBT . The isomorphism ζB satisfies the following Hirzebruch–
Riemann–Roch-type formula. To state it, let γ ∈ A1(XBn) be the divisor class on XBn corre-
sponding to the n-dimensional cross polytope, which is the Bn generalized permutohedron ♢ =

Conv(ei : i ∈ [n, n]) ⊂ Rn.

Proposition 3.7. For any [E ] ∈ K(XBn
), one has

χ([E ]) =
∫
XBn

ζB([E ]) · c(⊞O(−1)) · (1 + γ + · · ·+ γn).

Proof. A primitive vector in a ray of ΣBn
is eS for some nonempty admissible subset S of [n, n].

We note that the minimum of the standard pairing ⟨x, eS⟩ for x ∈ ♢ is −1. Under the standard
correspondence between polytopes and base-point-free divisors on toric varieties that we have
been using, this means that γ is the sum of all boundary divisors on XBn . In other words, by
[CLS11, Theorem 8.1.6], the line bundle O(−γ) is the canonical bundle of XBn . Applying Serre
duality along with ϕB = DA ◦ ζB ◦DK to Theorem C, we have that

χ([E ]) = (−1)nχ
(
[O(−γ)] ·DK([E ])

)
= (−1)n

∫
XBn

ϕB
(
[O(−γ)] ·DK([E ])

)
· c(⊞O(1))

= (−1)n
∫
XBn

DA

(
ζB([O(γ)] · [E ]) · c(⊞O(−1))

)
=

∫
XBn

ζB([O(γ)]) · ζB([E ]) · c(⊞O(−1)).

It suffices now to show that ζB([O(γ)]) = 1 + γ + · · · + γn. For this, we compute using torus-
equivariant localization. For w ∈ SB

n such that facev ♢ = −ei for any v ∈ C◦
w, we have that

[O(γ)]w = Ti. For such w, we must have that i ∈ w([n]), so this maps to 1/(1 − ti) under ζBT . If
facev ♢ = ei, [O(γ)]w = T−1

i , and we must have i ̸∈ w([n]), so this maps to 1/(1 + ti) under ζBT . We
thus see that ζB([O(γ)]) = c(O(−γ))−1 = 1 + γ + · · ·+ γn, as desired. □
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We now introduce a set of equivariant K-classes that is inspired by [BEST23, Definition 10.4].
Say that a class [E ] ∈ KT (XBn

) has “nice Chern roots” if, on the maximal cone corresponding to
w ∈ SB

n , we have [E ]w = aw,0 +
∑

i∈w([n]) aw,iT
−1
i −

∑
i ̸∈w([n]) aw,iTi.

We first define some notation. For [E ] ∈ KT (XBn), let cT ([E ], u) = cT0 ([E ]) + cT1 ([E ])u + · · · ∈
A•

T (XBn
)[u] be the equivariant Chern polynomial. The equivariant Segre power series sT ([E ], u) =

sT0 ([E ]) + sT1 ([E ])u + · · · ∈ A•
T (XBn

)[[u]] is defined by sT ([E ], u) := cT ([E ], u)−1. Recall that the
map that assigns a vector bundle E to its rank extends to a map rk : K(XBn

) → Z. If we write
[E ]w =

∑kw

i=1 aw,iT
mw,i , then, with u a formal variable, we have that

∞∑
j=0

∧j
[E ]wuj =

kw∏
i=1

(1 + Tmw,iu)aw,i , and
∞∑
j=0

Symj [E ]wuj =
kw∏
i=1

(
1

1− Tmw,iu

)aw,i

.

Proposition 3.8. If [E ] has nice Chern roots, then

∑
i≥0

ζBT (
∧i

[E ])ui = (u+ 1)rk(E) cT
(
[E ], u

u+ 1

)
,

∑
i≥0

ϕBT (
∧i

[E ])ui = (u+ 1)rk(E) sT ([E ]∨) cT
(
[E ]∨, 1

u+ 1

)
,

∑
j≥0

ζBT (Symj [E ])uj = 1

(1− u)rk(E)
sT
(
[E ], u

u− 1

)
, and

∑
j≥0

ϕBT (Sym
j [E ])uj = cT ([E ]∨)

(1− u)rk(E)
sT
(
[E ]∨, 1

1− u

)
.

Proof. We prove the formulas involving ϕB ; the formulas involving ζB are similar. Consider a
maximal cone corresponding to w ∈ SB

n , and write

[E ]w = aw,0 +
∑

i∈w([n])

aw,iT
−1
i −

∑
i ̸∈w([n])

aw,iTi.

Then

∑
i≥0

ϕBT (
∧i

[E ])wui = (u+ 1)aw,0

∏
i∈w([n])

(1 + ϕBT (T
−1
i )u)aw,i

∏
i̸∈w([n])

(1 + ϕBT (Ti)u)
aw,i

= (u+ 1)aw,0

∏
i∈w([n])

(1 + (1 + ti)
−1u)aw,i

∏
i ̸∈w([n])

(1 + (1− ti)
−1u)aw,i

= (u+ 1)rk(E)
∏

i∈w([n])

(1 + ti)
−aw,i

(
1 +

ti
u+ 1

) ∏
i ̸∈w([n])

(1− ti)
−aw,i

(
1− ti

u+ 1

)

= (u+ 1)rk(E)sT ([E ]∨)w cT
(
[E ]∨, 1

u+ 1

)
w

.



24 CHRISTOPHER EUR, ALEX FINK, MATT LARSON, HUNTER SPINK

Similarly, we compute∑
j≥0

ϕBT (Sym
j [E ])wuj =

1

(1− u)aw,0

∏
i∈w([n])

(
1

1− ϕBT (T
−1
i )u

)aw,i ∏
i ̸∈w([n])

(
1

1− ϕBT (Ti)u

)aw,i

=
1

(1− u)aw,0

∏
i∈w([n])

1

(1− (1 + ti)−1u)aw,i

∏
i ̸∈w([n])

1

(1− (1− ti)−1u)aw,i

=
1

(1− u)rk(E)

∏
i∈w([n])

1 + ti
1 + ti/(1− u)

∏
i ̸∈w([n])

1− ti
1− ti/(1− u)

=
cT ([E ]∨)

(1− u)rk(E)
sT
(
[E ]∨, 1

1− u

)
. □

4. THE CHOW COHOMOLOGY RING OF XBn

In this section, we first combine Theorems C and D to obtain a basis for the Chow cohomology
ring A•(XBn

). We then prove Theorem A by using the Hirzebruch–Riemann–Roch-type formula
that ϕB satisfies.

4.1. A Schubert basis. We now describe the structure of the Chow cohomology ring A•(XBn) in
terms of “augmented Bergman classes” of matroids. Let M be a matroid of rank r on [n]. The
augmented Bergman fan of M is a subfan ΣM of the stellahedral fan ΣStn obtained by gluing
together the order complex of lattice of flats and the independence complex of M; for a precise
definition see [BHM+22, Definition 2.4]. Assigning weight 1 to each of its maximal cones defines a
Minkowski weight [ΣM], called the augmented Bergman class of M, which can be considered as an
element inAn−r(XStn). Augmented Bergman classes are nef Chow classes, and they span extremal
rays of the cone of nef classes in An−r(XStn) [BHM+22, Proposition 2.8].

We will consider the pullbacks of augmented Bergman classes to XBn
under the morphism

p : XBn
→ XStn described in Section 3.3. These pullbacks continue to span extremal rays of the cone

of nef classes in A•(XBn). We will also refer to these pulled back classes as augmented Bergman
classes. For a matroid M, let M⊥ be the dual matroid. Only two properties of augmented Bergman
classes will be used in the rest of the paper:

(1) For any matroid M, the class [ΣM] is nonzero.
(2) When M has rank n−1, the class [ΣM] is the first Chern class of the line bundle correspond-

ing to the simplex IP (M⊥).

We now introduce some terminology. Say that a delta-matroid D with feasible sets F is standard
cornered if, whenever B ∈ F and i ∈ B ∩ [n], then B \ {i} ∪ {i} ∈ F . For example, delta-matroids
of the form IP (M) are standard cornered. In fact this is the only example.

Lemma 4.1. Any standard cornered delta-matroid is of the form IP (M) for a matroid M.

Proof. We show the matroid independent set axioms for I = {B ∩ [n] : B ∈ F}. By assumption,
I is a nonempty family of sets closed under taking subsets, so we must prove the independent set
augmentation axiom. Let A,B ∈ F with |A ∩ [n]| < |B ∩ [n]|. Let F be the smallest face of [0, 1]n

containing a = eA∩[n] and b = eB∩[n]. We have that P (D) ∩ F is a delta-matroid polytope. Let C
be the vertex cone of a in P (D) ∩ F (with the apex of C at the origin). Then C contains b− a and is
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generated by type Bn roots. Because b − a has strictly positive sum of coordinates, C must have a
generator with strictly positive sum of coordinates, either ei or ei + ej for some i, j ∈ [n]. So either
a + ei or a + ei + ej lies in P (D) ∩ F ; because D is standard cornered, the latter case implies the
former one. By the choice of F , the element i lies in B \A, and hence (A ∩ [n]) ∪ {i} ∈ I. □

Say that a delta-matroid C is cornered if there is w ∈ SB
n such that w · C is standard cornered.

We now develop some properties of cornered delta-matroids.

Lemma 4.2. Let M be a matroid of rank r on [n]. Then the degree i part of ϕB([IP (M)]) vanishes
for i > r, is equal to [ΣM⊥ ] in degree r, and is 1 in degree 0.

Proof. That ϕ : K(XStn) → A•(XStn) has this property follows from [EHL23, Lemma 5.9]. Then the
result follows from Lemma 3.5. □

Lemma 4.3. Let M1,M2 be matroids on [n], and suppose that w1 · [IP (M1)] = w2 · [IP (M2)] for some
w1, w2 ∈ SB

n . Then the rank of M1 is equal to the rank of M2, and w1 · [ΣM⊥
1
] = w2 · [ΣM⊥

2
].

Proof. By the SB
n -equivariance of ϕB , we must have that w1 · [ΣM⊥

1
] = w2 · [ΣM⊥

2
]. Lemma 4.2

identifies the rank of M as the degree of the top nonzero piece of ϕB([IP (M)]). □

In particular, if C = w · IP (M) is a cornered delta-matroid, then we define the cornered rank
rkcor(C) as the rank of M, which is independent of the choice of M and w, and we define

[ΣC] := w · [ΣM⊥ ].

Note that [ΣIP (M⊥)] = [ΣM]. The following is an immediate consequence of Lemma 4.2.

Lemma 4.4. Let C be a cornered delta-matroid. Then the degree i part of ϕB([C]) vanishes for
i > rkcor(C), is equal to [ΣC] in degree rkcor(C), and is 1 in degree 0.

Now we construct our basis for A•(XBn
), noting that Schubert delta-matroids are cornered.

Corollary 4.5. For any 0 ≤ r ≤ n,

{[ΣC] : C ∈ SchDMatclfn and rkcor(C) = r}

is a basis for Ar(XBn
).

Proof. Endow K(XBn) with a grading by declaring the rth graded piece to be generated by the
elements {[P (C)] : C ∈ SchDMatclfn , rkcor(C) = r}; this is well-defined by Theorem D. Combining
Theorem D with Theorem C, we have that {ϕB([P (C)]) : C ∈ SchDMatclfn } is a basis of A•(XBn

). By
Lemma 4.4, ϕB is lower-triangular with respect to the gradings on K(XBn

) and A•(XBn
) and the

degree r part of ϕB([C]) is [ΣC], so we conclude. □

Setting r = 1 in the corollary yields Theorem A(a) as follows.

Proof of Theorem A(a). The polytope of a delta-matroid in SchDMatclfn of cornered rank 1 is a translate
of a simplex ∆0

S for S ∈ AdS \ {∅}, and vice versa. Namely, P (Ω[n]\{i}∪{i}) = ∆0
{1,...,i}, and if

D = w · Ω[n]\{i}∪{i}, then P (D) = w · P (Ω[n]\{i}∪{i}) differs from ∆0
w·{1,...,i} = w ·∆0

{1,...,i} only by
the translations that distinguish the SB

n -action on delta-matroid polytopes from the SB
n -action on
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Rn in Section 2.1. No two simplices ∆0
S are translations of each other except for the pairs of line

segments {∆0
{i},∆

0
{i}}. Hence, setting r = 1 in Corollary 4.5, we have that the set

{the divisor class associated to ∆0
S : S ∈ AdS \ {∅} and S ̸= {i} for i ∈ [n]}

is a basis of A1(XBn
). Thus, up to translation by a vector in Zn, every Bn generalized permutohe-

dron is a signed Minkowski sum of the simplices ∆0
S in the displayed set. Since ∆0

{i} = ∆0
{i} − ei,

reinserting the segments ∆0
{i} into the set accounts for the translations. □

Remark 4.6. The h-vector of the Coxeter complex ΣΦ of a root system Φ, or, equivalently, the se-
quence of dimensions of the graded pieces of A•(XΦ), is equal to the vector of Φ-Eulerian numbers
[Bjö84, Bre94], which are defined in terms of the descents of elements in the Coxeter group associ-
ated to Φ. Concretely, in type B the set of descents of an element w ∈ SB

n is

des(w) = {i ∈ [n] : w(i− 1) > w(i)},

where we define w(0) = 0 to fit into the total order as n < · · · < 1 < 0 < 1 < · · · < n. The rth Bn

Eulerian number is then
hr(Bn) := |{w ∈ SB

n : des(w) = r}|.
In particular, Corollary 4.5 implies that the Bn Eulerian numbers count the coloop-free Schubert
delta-matroids of cornered rank r. An analogous statement for type A was shown in [Ham17]. In
neither typeA nor typeB do we know of a natural bijection between the set of Weyl group elements
with a fixed number of descents and the corresponding set of coloop-free Schubert (delta-)matroids.

4.2. Volumes and lattice point enumerators. We now compute volumes and lattice point counts of
Bn generalized permutohedra by using Theorem C. We will use the following observation through-
out. For an admissible subset S ∈ AdS, let hS be the divisor class on XBn associated to the simplex
∆0

S . Because simplices are Weyl images of the independence polytopes of standard Schubert ma-
troids of cornered rank 1, Lemma 4.4 implies that ϕB([∆0

S ]) = 1 + hS .

Proof of Theorem A(b). For a sequence (S1, . . . , Sn) of n admissible subsets, standard results in toric
geometry [Ful93, §5.4] imply that the mixed volume of the corresponding simplices is the intersec-
tion product

∫
XBn

hS1
· · ·hSn

, which is equal to∫
XBn

(1 + hS1
) · · · (1 + hSn

) =

∫
XBn

ϕB([∆0
S1
] · · · [∆0

Sn
]) =

∫
XBn

ϕB([∆0
S1

+ · · ·+∆0
Sn

]).

Let P be the Minkowski sum ∆0
S1
+· · ·+∆0

Sn
. By construction, the polytope P is “saturated towards

the origin” in the following sense: For any subset S ⊆ [n], let OrthS = RS
≥0×R[n]\S

≤0 . If u ∈ P∩OrthS ,
then any v ∈ OrthS such that u− v ∈ OrthS is also in P . We tile Rn by lattice translates of the unit
cube □ = [0, 1]n, and express

[P ] =
( ∑

m∈Zn

[P ∩ (m+□)]
)

+ a linear combination of {[P ∩ (m+ F )] : m ∈ Zn, F a proper face of □}

Every intersection P ∩(m+□) or P ∩(m+F ) in the expression is a translate of a delta-matroid poly-
tope by Proposition 2.12. Because P is saturated towards the origin, these delta-matroid polytopes
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are cornered by Lemma 4.1. For such a delta-matroid C, by Lemma 4.4 we have
∫
XBn

ϕB([P (C)]) =

0 when P (C) ̸= □. When P (C) = □ we have∫
XBn

ϕB([□]) =

∫
XBn

ϕB([∆0
{1}] · · · [∆

0
{n}]) =

∫
XBn

(1 + h{1}) · · · (1 + h{n}) = 1.

We have thus reduced to counting the number of m such that P ∩ (m+□) = m+□. This happens
only when m + □ contains the origin, since each simplex is contained in the cross-polytope ♢, so
P ⊂ n♢, and every integral translate of □ contained in n♢ contains the origin. In other words, we
are counting the set of cardinality-n admissible subsets τ ∈ AdSn such that eτ ∈ P . This set, by the
construction of P , is in bijection with the set of signed transversals of (S1, . . . , Sn). □

Proof of Theorem A(c). Denote by AdS/∈[n] the subset {S ∈ AdS : |S| > 1 or S = {i} ⊂ [n]} of admis-
sible subsets of [n, n]. Note that the divisor class on XBn corresponding to the cube □ = [0, 1]n is
h{1} + · · ·+ h{n}. By standard results in toric geometry [Ful93, §3.5], the quantity

(
# lattice points of

(
P ({cS})−□

))
is computed by the Euler characteristic

χ
([ ∑

S∈AdS/∈[n]

cS∆
0
S +

∑
i∈[n]

(ci − 1)∆0
{i}
])
.

Noting that c(⊞O(1)) =
∏

i∈[n](1 + h{i}), we apply Theorem C to obtain

χ
(
[
∑

S∈AdS/∈[n]

cS∆
0
S +

∑
i∈[n]

(ci − 1)∆0
{i}]
)

=

∫
XBn

∏
S∈AdS/∈[n]

ϕB([∆0
S ])

cS ·
∏
i∈[n]

ϕB([∆0
{i}])

ci−1 · c(⊞O(1))

=

∫
XBn

∏
S∈AdS/∈[n]

(1 + hS)
cS ·

∏
i∈[n]

(1 + h{i})
ci

=

∫
XBn

∏
S∈AdS\{∅}

(
n∑

k=0

(
cS
k

)
hcSS

)

= Ψ
(
Vol

( ∑
S∈AdS\{∅}

cS∆
0
S

))
,

as desired. □

Finally, we note that the mixed volume computation above can be generalized to arbitrary cor-
nered delta-matroids as follows.
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Theorem 4.7. Let C1, . . . ,Ck be cornered delta-matroids with
∑

rkcor(Ci) = n, and write Ci =

wi · IP (Mi). Then we have∫
XBn

[ΣC1 ] · · · [ΣCk
] =∣∣∣∣∣

{
τ ∈ AdSn

∣∣∣∣∣ τ a signed transversal of (w1 ·B1, . . . , w1 ·B1, . . . , wk ·Bk, . . . , wk ·Bk)

where Bi is a basis of Mi and wi ·Bi is repeated rkcor(Ci) times

}∣∣∣∣∣ .
Proof. The argument is similar to the proof of Theorem A(b), so we sketch only the main steps. By
Theorem C and Lemma 4.4, we have∫

XBn

[ΣC1
] · · · [ΣCk

] = |{m ∈ Zn : C1 + · · ·+Ck ⊇ (m+□)}|

where □ = [0, 1]n. Write wiIP (Mi) for the image of the polytope IP (Mi) under the isometry
associated to wi for the standard geometric action of SB

n on Rn. Then P (C1) + · · · + P (Ck) is an
integral translate of P = w1IP (M1) + · · · + wkIP (Mk), so we may equivalently compute |{m ∈
Zn : P ⊇ (m + □)}|. Because wiIP (Mi) ⊂ rkcor(Ci)♢ for the cross-polytope ♢, we have P ⊆
(
∑

rkcor(Ci))♢ = n♢. Hence for P ⊇ (m + □), we must have that n♢ ⊃ m + □ so m + □ contains
the origin. Hence, we are counting the number of τ ∈ AdSn such that eτ ∈ P . The desired formula
follows. □

Corollary 4.8. For a matroid M of rank r and admissible subsets S1, . . . , Sr ∈ AdS, we have∫
XBn

[ΣM] · hS1 · · ·hSr =

∣∣∣∣∣
{
τ ∈ AdSn

∣∣∣∣∣ τ a signed transversal of (S1, . . . , Sr, B, . . . , B)

for some basis B of M⊥

}∣∣∣∣∣ .
5. TUTTE-LIKE INVARIANTS OF DELTA-MATROIDS

We first recall some combinatorial operations on delta-matroids. In the context of multi-matroids,
these operations can be found in [Bou97].

Definition 5.1. Let D be a delta-matroid on [n, n̄], and let i ∈ [n]. We define three delta-matroids on
[n, n̄] \ {i, ī} obtained from D as follows:

(1) If i is not a loop, the contraction D/i is the delta-matroid with feasible sets B \ i for B a
feasible set of D containing i.

(2) If i is not a coloop, the deletion D \ i is the delta-matroid with feasible sets B \ ī for B a
feasible set of D containing ī.

(3) We define the projection D(i) as the delta-matroid with feasible setsB\{i, ī} forB a feasible
set of D.

(4) If i is a loop (resp. coloop), we define D/i = D\i (resp. D\i = D/i), so that D/i = D\i = D(i).

If i is not a loop (resp. a coloop), then P (D/i) (resp. P (D \ i)) is obtained by intersecting P (D)

with the hyperplane xi = 0 (resp. xi = 1). We obtain P (D(i)) by taking the orthogonal projection of
P (D) onto xi = 0. Therefore projections commute with each other and commute with deletion and
contraction. For I ⊆ [n], we write D(I) for the delta-matroid obtained by successively projecting
along each i ∈ I , and similarly define D/I and D \ I .
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In the introduction, we defined the U -polynomial UD(u, v) and its specialization, the interlace
polynomial IntD(v) = UD(0, v), via a recursion involving deletion, contraction, and projection,
similar to the deletion-contraction recursion for the Tutte polynomial of a matroid. Like the Tutte
polynomial of a matroid, theU -polynomial and the interlace polynomial also admit a non-recursive
formula in the following way. For a delta-matroid D with feasible sets F and S ∈ AdSn, let

dD(S) =
1

2
min
B∈F

|B △ S|, the lattice distance between eS∩[n] and P (D).

Proposition 5.2. For a delta-matroid D on [n, n], define polynomials Int′D(v) and U ′
D(u, v) by

Int′D(v) =
∑

S∈AdSn

vdD(S), and U ′
D(u, v) =

∑
I⊆[n]

u|I| Int′D(I)(v).

Then U ′
D(u, v) satisfies the recursion for UD(u, v) in Definition 1.4. In particular, U ′

D = UD and
Int′D = IntD, and the recursive definition of UD is independent of the element i ∈ [n] chosen.

Proof. We first show that Int′D(v) satisfies the recursive property in Definition 1.4 with u = 0. Then
[BH14, Theorem 30] states that if i ∈ [n] is neither a loop nor coloop, then Int′D(v) = Int′D/i(v) +

Int′D\i(v), and that if every element is a loop or a coloop, then Int′D(v) = (1 + v)n. If i is a loop or
a coloop of D, then it continues to be so in D/J and D \ J for J ⊆ [n] not containing i. Thus, we
conclude that Int′D satisfies the desired recursive relation, and hence that Int′D = IntD.

For the U -polynomial, we have that

U ′
D(u, v) = uU ′

D(i)(u, v) +
∑
J ̸∋i

u|J| IntD(J)(v).

If i neither a loop nor coloop of D, then i is neither a loop nor coloop of D(J) for any J not containing
i. The defining recursion for the interlace polynomial gives that∑

J ̸∋i

u|J| IntD(J)(v) =
∑
J ̸∋i

u|J|
(
IntD(J)/i(v) + IntD(J)\i(v)

)
= U ′

D/i(u, v) + U ′
D\i(u, v).

Combining these yields U ′
D(u, v) = U ′

D/i(u, v) + U ′
D\i(u, v) + uU ′

D(i)(u, v) if i is not a loop or coloop
of D. If i is a loop or a coloop of D, then it continues to be so in D(J) for J ⊆ [n] not containing i.
Hence, if i is a loop or a coloop, we have

U ′
D(u, v) =

∑
J ̸∋i

u|J|+1 IntD(J∪i)(v) + u|J| IntD(J)(v) =
∑
J ̸∋i

u|J|
(
u IntD(J∪i)(v) + (v + 1) IntD(J∪i)(v)

)
,

and hence U ′
D(u, v) = (u+ v + 1)U ′

D\i(u, v). □

Given two delta-matroids D1, D2 on disjoint ground sets, let D1 × D2 be the delta-matroid on
the union of the ground sets whose feasible sets are B1 ⊔ B2 for Bi feasible in Di. Observe that
dD1

(S1)dD2
(S2) = dD1×D2

(S1 ⊔S2) and that projections commute with products, so Proposition 5.2
implies the following.

Corollary 5.3. For two delta-matroids D1 and D2 on disjoint ground sets, we have

UD1×D2
(u, v) = UD1

(u, v)UD2
(u, v).

We also note the following property of UD for future use.
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Lemma 5.4. We have that ∑
I⊆[n]

a|I|UD(I)(u, v) = UD(u+ a, v).

Proof. We claim that, if i is not a loop or coloop, then∑
I⊆[n]

a|I|UD(I)(u, v) = UD/i(u+ a, v) + UD\i(u+ a, v) + (u+ a)UD(i)(u+ a, v).

We induct on the size of the ground set. Note that∑
i∈I⊆[n]

a|I|UD(I)(u, v) = a ·
∑

J∈[n]\i

a|J|UD(i∪J) = a · UD(i)(u+ a, v), and

∑
i̸∈I⊆[n]

a|I|UD(I)(u, v) =
∑

i ̸∈J⊂[n]

a|J|(UD/i(J)(u, v) + UD\i(J)(u, v) + uUD(i∪J)(u, v))

= UD/i(u+ a, v) + UD\i(u+ a, v) + uUD(i)(u+ a, v).

Summing these gives the claim. When i is a loop or coloop, it follows from the multiplicativity
of the U -polynomial (Corollary 5.3) that the left-hand side satisfies the expected product formula.
This shows that the left-hand side satisfies the defining recursion of the right-hand side. □

We now compute the U -polynomials of delta-matroids arising from matroids.

Example 5.5. We compute UD for D = IP (M), where M is a matroid on [n] of rank r. An element
i ∈ [n] is a loop of D if i is a loop of M, and i is never a coloop of D. Then D(i) and D/i are both
IP (M/i), and D \ i is IP (M \ i). Hence, UIP (M) is a Tutte–Grothendieck invariant, which implies
that

UIP (M)(u, v) = (u+ 1)n−rTM

(
u+ 2,

u+ v + 1

u+ 1

)
.

Example 5.6. We compute UP (M) for a matroid M on [n]. Let corankM(S) = rkM([n])− rankM(S) be
the corank and nullityM(S) = |S| − rkM(S) the nullity of a subset S in M. Then we claim that

UP (M)(u, v) =
∑

T⊆S⊆[n]

u|S−T |vcorankM(S)+nullityM(T ).

Let I ⊆ [n], and fix some S ⊆ [n] \ I . Then dP (M)(I)(S) = minS⊆S′⊆S∪I dP (M)(S
′), and

dP (M)(S
′) = corankM(S′) + nullityM(S′)

= (corankM|S∪I/S(S
′) + corankM(S ∪ I)) + (nullityM|S∪I/S(S

′) + nullityM(S)).

The summand corankM|S∪I
(S′) + nullityM|S∪I

(S′) achieves its minimum value 0 when S′ is a basis
of the minorM |S∪I/S. The other summand is the constant corankM(S∪I)+nullityM(S). The claim
then follows from Proposition 5.2.

It would be interesting to compute the U -polynomial of other families of delta-matroids such
as those arising from graphs and ribbon graphs (see Examples 6.4 and 6.5). Theorem B applies to
these delta-matroids, and therefore gives log-concavity results.
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We conclude this section by recording a multivariable version of the U -polynomial in the vari-
ables u1, . . . , un, v. Because this multivariable version will arise naturally in our intersection com-
putations on XBn , it will be useful for proving log-concavity results. For I ⊆ [n], set uI =

∏
i∈I ui.

Following the formula in Proposition 5.2, we define

UD(u1, . . . , un, v) :=
∑
I⊆[n]

uI IntD(I)(v).

Note that we recover the usual U -polynomial by setting u = u1 = · · · = un.

6. REPRESENTABILITY AND ENVELOPING MATROIDS

We now discuss representability of delta-matroids and prepare for the construction of vector
bundles associated to realizations of delta-matroids in Section 7.

6.1. Torus-orbit closures. We will discuss representability of delta-matroids using polytopes and
torus-orbit closures. Let us prepare with generalities on torus-orbit closures in projective spaces
and associated polytopes.

Let H be a torus with character lattice Char(H). For a finite dimensional representation V of H
and a point x ∈ P(V ), we define the moment polytope P (H · x) of its orbit closure H · x as follows.
Let V ≃

⊕N
i=0 Vi be the canonical decomposition into H-eigenspaces, where H acts on each Vi with

character ai ∈ Char(H). For a representative v ∈ V of x ∈ P(V ), let A be the set

A =
{
ai : vi ̸= 0 in the expression v =

N∑
i=0

vi, where vi ∈ Vi for all i = 0, . . . , N
}

which is independent of the choice of v. We define

P (H · x) = the convex hull of A ⊂ Char(H)⊗ R.

Over C, this agrees with the classical notion of moment polytopes; see for instance [Ful93, §4.2] and
[Sot03, §8]. Let us record the following basic facts.

Proposition 6.1. With notation as above:

(1) The (k-dimensional) H-orbits of H · x are in bijection with the (k-dimensional) faces of
P (H · x) (for all 0 ≤ k ≤ dimH). The character lattice of the quotient of H by the sta-
bilizer of the orbit corresponding a face F is the sublattice Z{F ∩ A } of Char(H). (Here
F ∩ A is translated appropriately to contain the origin.)

(2) If ι : H ′ ↪→ H is an inclusion of a subtorus H ′ with the corresponding linear projection
ι# : Char(H)R → Char(H ′)R, then P (H ′ · x) equals the projection ι#P (H · x).

Proof. The orbit closure H · x is isomorphic to the H-variety

XA = the closure of the image of H → P|A |−1 defined by h 7→ (ha)a∈A .

The first statement is then [CLS11, Corollary 3.A.6]. The second statement follows by construction
because the H-eigenspace Vi with weight ai ∈ Char(H) is an H ′-eigenspace with weight ι#ai ∈
Char(H ′). □
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6.2. Representable delta-matroids. For a delta-matroid D with feasible sets F , let

P̂ (D) = 2P (D)− e[n] = the convex hull of {eB : B ∈ F} ⊂ [−1, 1]n.

When P (D) = P (M) or P (D) = IP (M), we set P̂ (M) := P̂ (D) and ÎP (M) := P̂ (D) respectively. We
now describe representability of D in terms of the polytope P̂ (D) and torus-orbit closures in a type
B Grassmannian.

The standard (2n + 1)-dimensional quadratic space is k2n+1, whose coordinates are labelled
{1, . . . , n, 1, . . . , n, 0}, and which is equipped with the quadratic form

q(x1, . . . , xn, x1̄, . . . , xn̄, x0) = x1x1̄ + · · ·+ xnxn̄ + x20.

A maximal isotropic subspace L ⊂ k
2n+1 is an n-dimensional subspace for which the restriction q|L

is identically zero. The maximal orthogonal Grassmannian, denoted OGr(n; 2n + 1), is a variety
whose k-valued points are in bijection with maximal isotropic subspaces of the standard (2n+ 1)-
dimensional quadratic space k2n+1. By definition, OGr(n; 2n + 1) is a closed subvariety of the
Grassmannian Gr(n; 2n + 1) with the Plücker embedding Gr(n; 2n + 1) ↪→ P(

2n+1
n )−1. The torus

G2n+1
m acts on Gr(n; 2n + 1) by its standard action on k

2n+1. The torus T = Gn
m embeds into

G2n+1
m by (t1, . . . , tn) 7→ (t1, . . . , tn, t

−1
1 , . . . , t−1

n , 1), and the induced action of T on Gr(n; 2n + 1)

preserves OGr(n; 2n + 1). We thus treat OGr(n; 2n + 1) as a T -variety with the T -equivariant
Plücker embedding in P(

2n+1
n )−1.

Proposition 6.2. For L ⊂ k
2n+1 maximal isotropic, the set of admissible subsets

F = {S ∈ AdSn : the composition L ↪→ k
2n+1 ↠ k

S is an isomorphism}

is the set of feasible sets of a delta-matroid D, and the moment polytope P (T · [L]) of the orbit
closure of [L] as a point in P(

2n+1
n )−1 is equal to P̂ (D).

In this case, we say that L is aBn representation of D. We say that D isBn representable if it has
a Bn representation. Over C, the proposition is [GS87, Section 7, Theorem 1]. A type C analogue of
this statement for the Lagrangian Grassmannian, without the assertion about moment polytopes,
appears in [BGW03, Theorem 3.4.3].

Proof. Index the coordinates of P(
2n+1

n )−1 by size n subsets of [n, n] ∪ {0}. One verifies that:

• The T -fixed points of OGr(n; 2n+ 1) correspond to admissible subsets B ∈ AdSn of size n,
where B gives a point in P(

2n+1
n )−1 whose Plücker coordinates are all zero except at B.

• The T -invariant closed curves of OGr(n; 2n+ 1) correspond to pairs of T -fixed points such
that, writing B and B′ for the corresponding admissible subsets, eB − eB′ is parallel to ei,
ei + ej , or ei − ej for some i, j ∈ [n].

The proposition now follows from Proposition 6.1(1). □

Example 6.3. Schubert delta-matroids are Bn representable, and their representations explain their
name as follows. The closed cells Xv of the Schubert stratification of OGr(n; 2n + 1) are indexed
by v ∈ SB

n /Sn, and the containment relation among the Xv is given by the reversed Bruhat order.
If x is a general point of Xv , then the delta-matroid represented by the corresponding isotropic
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subspace is the standard Schubert delta-matroid Ωv·[n]. In particular, they are certain generalized
Bruhat interval polytopes corresponding to Schubert cells [TW15]. This is analogous to the rela-
tionship between Schubert matroids on [n] of rank r and the Schubert stratification of Gr(r;n).

A maximal isotropic subspaceL of k2n with the quadratic form q(x1, . . . , xn, x1, . . . , xn) = x1x1+

· · ·+xnxn yields a maximal isotropic subspace L⊕{0} in k2n+1, and hence aBn representation of a
delta-matroid D. In such case, we say that L is aDn representation of D. Such a delta-matroid is an
even delta-matroid, meaning that the parity of |B ∩ [n]| for any feasible set B is the same [BGW03,
Theorem 3.10.2].

In the literature, there are two prominent constructions of delta-matroids from graphs. Both
constructions yield even delta-matroids with Dn representations.

Example 6.4. Let G be a simple graph on vertex set [n], and let AG be its adjacency matrix with
entries considered as elements of F2. As the matrix AG is skew-symmetric, the row-span of the
n×2nmatrix [In|AG] is an isotropic subspace of F2n

2 , and hence defines an even delta-matroid D(G).
The interlace polynomial was originally defined and studied as a graph invariant. See [Duc92,
ABS04, AvdH04].

Example 6.5. A graph Γ embedded in a surface, also known as a ribbon graph, with edges labeled
by [n] defines a delta-matroid D(Γ) whose feasible sets are the “spanning quasi-trees” of Γ, i.e., the
spanning subgraphs whose small neighborhood has just one boundary component. Note that for
a planar graph, this coincides with the usual graphical matroid of the graph. See [CMNR19a] for
a history and proofs, and [CMNR19b] for further connection between delta-matroids and ribbon
graphs generalizing the connection between matroids and graphs. [BGW03, Theorem 4.3.5] shows
that such a delta-matroid has a Dn representation (see also [BBGS00]).

6.3. Enveloping matroids. The notion of an enveloping matroid of a delta-matroid will play a
crucial role when we construct “tautological classes of delta-matroids” in §7 and when we apply
tools from tropical Hodge theory to prove Theorem B in §8.

Let env : R2n → Rn be the map given by env(x1, . . . , xn, x1̄, . . . , xn̄) = (x1 − x1̄, . . . , xn − xn̄). To
avoid confusion with our notation that ei = −ei ∈ Rn, we use u1, . . . ,un,u1̄, . . . ,un̄ to refer to the
standard basis of R2n. For S ⊂ [n, n̄], let uS =

∑
i∈S ui. If S ∈ AdS, then env(uS) = eS .

Definition 6.6. Let M be a matroid on [n, n̄], and let D be a delta-matroid on [n, n̄]. Then M is an
enveloping matroid of D if the image of P (M) under env is P̂ (D).

Remark 6.7. In [Bou97, Section 4], Bouchet considers matroids M on [n, n̄] whose independent
sets which are admissible are the subsets of the feasible sets of a delta-matroid D. He calls such a
matroid a sheltering matroid of D. It follows from [Lar, Section 3.3] that M is a sheltering matroid
if and only if env(IP (M)) = P (D)+□− e[n], so Lemma 7.6 will show that enveloping matroids are
sheltering matroids.

In [BGW03, Exercise 3.12.6], the authors consider matroids whose bases which are admissible
are the feasible sets of D. They call such a matroid also an enveloping matroid, which disagrees
with Definition 6.6.
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Let D be the delta-matroid on [2, 2̄] with feasible sets {1, 2} and {1, 2̄}. The matroid on [2, 2̄] with
bases {1, 2}, {1, 2̄}, and {2, 2̄} is a sheltering matroid for D, but it is not an enveloping matroid.
The matroid with bases {1, 2}, {1, 2̄}, and {1, 1̄} is an enveloping matroid in the sense of [BGW03,
Exercise 3.12.6], but it is not a sheltering matroid.

Our main examples of delta-matroids with enveloping matroids are Bn representable delta-
matroids (Proposition 6.9), which in particular includes delta-matroids arising from graphs and
graphs embedded on surfaces by Examples 6.4 and 6.5, and delta-matroids arising from matroids
(Proposition 6.11).

Existence of enveloping matroids behaves well with respect to operations on delta-matroids as
follows. Let M be an enveloping matroid of a delta-matroid D on [n, n].

• For w ∈ SB
n , the SB

n -action on [n, n̄] makes w ·M an enveloping matroid of w ·D.
• For i ∈ [n], the matroid minor M/i \ ī (resp. M \ i/̄i) is an enveloping matroid for D/i (resp.
D \ i).

• If M′ is an enveloping matroid of another delta-matroid D′ on ground set disjoint from that
of D, then M⊕M′ is an enveloping matroid for D×D′.

• The dual delta-matroid D⊥ is the delta-matroid with feasible sets {B : B a feasible set of D}.
Then the dual matroid M⊥ is an enveloping matroid for D⊥.

For future use in §8, we record an observation that loops and coloops of D and M are compatible.

Lemma 6.8. Let D be a delta-matroid with an enveloping matroid M, and let i ∈ [n]. Then i is a
loop (resp. coloop) in D if and only if i is a loop and i a coloop (resp. i is a coloop and i a loop) in
M. In particular, if D is loop-free and coloop-free, then so is M.

Proof. Let us prove the statement for when i is a loop, i.e., the polytope P̂ (D) ⊂ Rn is contained
in the hyperplane xi = −1. If a basis B of M contains i or does not contain i, then env(uB) lies in
xi ≥ 0. Hence i is a loop and i a coloop of M. The other direction is similar. □

Proposition 6.9. Let L ⊂ k
2n+1 be a Bn representation of a delta-matroid D, and let L′ denote

the image of L under the projection to k2n forgetting the x0-coordinate. Then the matroid that L′

represents is an enveloping matroid of D. In particular, every Bn representable delta-matroid has
an enveloping matroid.

Proof. Let M be the matroid that L represents. As a point in OGr(n; 2n + 1) ⊂ Gr(n; 2n + 1) ⊂
P(

2n+1
n )−1, the moment polytope of G2n+1

m · [L] is P (M), whereas the moment polytope of T · [L]
is P̂ (D) by Proposition 6.2. Then Proposition 6.1(2) implies that the image of P (M) under the
composition env ◦π0 is P̂ (D), where π0 : R2n+1 → R2n is the projection forgetting the 0th coordinate.
Note that L′ is a representation of M \ 0, and env(P (M \ 0)) is contained in env ◦π0(P (M)) = P̂ (D).
Each feasible set of D is a basis of M which does not contain 0, and hence is a basis of M \ 0, which
proves that env(P (M \ 0)) = P̂ (D). □

Remark 6.10. Because the Weyl groups of type B and C root systems coincide, one may con-
sider delta-matroids as type C Coxeter matroids, and consequently consider Cn representability
in terms of Lagrangian subspaces in a 2n-dimensional space with a symplectic form. See [BGW98]
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or [BGW03, §3.4]. The proof of Proposition 6.9 shows that Cn representable delta-matroids also
have enveloping matroids.

Proposition 6.11. Let M be a matroid on [n]. Then the delta-matroids P (M) and IP (M) have en-
veloping matroids.

Proof. For P (M), we show that M ⊕ M
⊥

is an enveloping matroid, where M
⊥

is the isomorphic
image of M⊥ under (·) : [n] → [n̄]. Minkowski sums commute with linear projections, so

env(P (M⊕M
⊥
)) = env(P (M) + P (M

⊥
))

= P (M) + (−P (M⊥))

= P (M) + (P (M)− e[n]) = P̂ (M).

For IP (M) we take the free product M □ M
⊥

of [CS05], whose bases are the sets S ∪ T of size
rankM + rankM⊥ = n with S, T ⊆ [n] such that S is independent in M and T is spanning in M⊥.
Write SP (N) for the spanning set polytope of a matroid N, so SP (N⊥) = −IP (N) + e[n]. We show
that

P (M□M
⊥
) = (IP (M) + SP (M

⊥
)) ∩H,

where H is the hyperplane {v ∈ R2n :
∑

i∈[n,n̄] vi = n}. For a polytope Q, any vertex of Q ∩ H is

of the form F ∩ H , where F is a vertex or edge of Q. The polytope IP (M) + SP (M
⊥
) is a lattice

polytope whose edge directions all have the form ui or ui −uj for i, j ∈ [n, n̄] because each edge of
a Minkowski sum is parallel to an edge of one of the two summands. As

∑
i∈[n,n̄] vi takes values 0

or 1 on all of these direction vectors, if H intersects an edge of IP (M)+ SP (M
⊥
) transversely, then

the intersection is a lattice point. Therefore (IP (M)+SP (M
⊥
))∩H is a lattice polytope as well. By

definition of the free product, P (M □M
⊥
) and this intersection have the same set of lattice points,

so they are equal. Now as above

env(P (M□M
⊥
)) ⊆ env(IP (M) + SP (M

⊥
))

= IP (M) + (−SP (M⊥))

= IP (M) + (IP (M)− e[n]) = ÎP (M).

The containment is an equality because every vertex of ÎP (M) has the form eS − e
E\S for S an

independent set of M, and this vertex has the preimage (uS ,uE\S) in P (M□M
⊥
). □

Example 6.12. In [Bou97, Section 4], Bouchet gives the example, which he attributes to Duchamp,
of the delta-matroid with the set of feasible sets

F = {{1̄, 2̄, 3̄, 4̄},{1̄, 2̄, 3̄, 4}, {1̄, 2, 3, 4̄}, {1, 2̄, 3, 4̄}, {1, 2, 3̄, 4̄},

{1̄, 2, 3, 4}, {1, 2̄, 3, 4}, {1, 2, 3̄, 4}, {1, 2, 3, 4}}.

There is no matroid on [4, 4̄] whose set of bases which are admissible is F . In particular, this delta-
matroid does not have an enveloping matroid.
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7. VECTOR BUNDLES AND K-CLASSES

We now define two types of equivariant vector bundles associated to realizations of delta-matroids,
which we call isotropic tautological bundles and enveloping tautological bundles respectively.
The isotropic tautological bundles are analogous to the bundles used in [BEST23], and the envelop-
ing tautological bundles are analogous to the bundles used in [EHL23]. The construction of an
isotropic tautological bundle depends on the choice of a Bn representation of a delta-matroid, and
the construction of an enveloping tautological bundle depends on the choice of a realization of an
enveloping matroid. The K-classes of the bundles will only depend on the delta-matroid, which
leads to the construction of isotropic tautological classes and enveloping tautological classes for
all delta-matroids, not necessarily with a Bn representation or a representable enveloping matroid.

In both cases, we will construct a T -equivariant map from XBn
to a Grassmannian and define

the bundles as pullbacks of certain universal bundles. Let us therefore prepare with a discussion of
maps from XBn to Grassmannians. The discussion can be easily adapted to replace XBn with any
smooth projective toric variety, but such generality won’t be needed here.

7.1. Maps into Grassmannians. Let L ⊂ k
N be a linear space of dimension r, corresponding to a

point [L] ofGr(r;N) and representing a matroid M of rank r on [N ]. Let ι : T → GN
m be an inclusion

of T into the torus acting on Gr(r;N), and let ι# : Char(GN
m) → Char(T ) be the pullback map on

character lattices. Then ι#P (M) is a lattice polytope in Char(T )⊗ R. Suppose that ΣBn refines the
normal fan of ι#(P (M)). For each w ∈ SB

n and any v in the interior of Cw, let Bw be any basis of M
such that the corresponding vertex of P (M) maps under ι♯ into the v-minimal vertex facev ι

#P (M).

Proposition 7.1. With the set-up as above, there is a unique T -equivariant morphism φL : XBn
→

Gr(r;N) such that the identity of T ⊂ XBn is sent to [L]. The pullback φ∗
L(Suniv) of the tautological

subbundle on Gr(r;N) is a T -equivariant vector bundle on XBn such that, for each w ∈ SB
n , the

T -equivariant K-class localizes to

[φ∗
L(Suniv)]w =

∑
i∈Bw

ι#Ti.

Proof. The moment polytope (taken with respect to the Plücker embedding of the Grassmannian) of
the GN

m -orbit closure GN
m · [L] ⊂ Gr(r;N) is P (M), so, by Proposition 6.1(2), the moment polytope

of the T -orbit closure T · [L] is ι#P (M). Note that T · [L] is a (possibly non-normal) toric variety
whose embedded torus is T/ StabT ([L]). The normalization of T · [L] is a toric variety whose fan is
the normal fan of ι#P (M) (considered in Cochar(T )⊗R, possibly with lineality space), and whose
lattice may be finer than the lattice in ΣBn

. We therefore have a unique morphismXBn
→ T · [L] ↪→

Gr(r;N) such that the identity of T is sent to [L].
To compute the localization of [φ∗

L(Suniv)] to a fixed point of XBncorresponding to w ∈ SB
n , we

consider the image of this fixed point, xw ∈ Gr(r;N). Because pullbacks commute with pullbacks,
it suffices to compute the pullback of [Suniv] to xw in T -equivariant K-theory. Note that xw is a T -
fixed point, which implies that GN

m · xw is acted on trivially by T , so KT (GN
m · xw) = K(GN

m · xw)⊗
Z[T±1

1 , . . . , T±1
n ]. Therefore the pullback in T -equivariantK-theory of [Suniv] to any point of GN

m · xw
is the same element of Z[T±1

1 , . . . , T±1
n ]. The GN

m -fixed points of GN
m · xw are exactly the vertices of



SIGNED PERMUTOHEDRA, DELTA-MATROIDS, AND BEYOND 37

P (M) in the preimage of facev ι#P (M). The pullback in GN
m -equivariant K-theory of [Suniv] to a

GN
m -fixed point of Gr(r;N) corresponding to Bw ⊂ [N ] is

∑
i∈Bw

Ti. Applying ι# implies the
result. □

For using Proposition 7.1, we set up some notation for a delta-matroid D and w ∈ SB
n :

• Let Bw(D) be the w-minimal feasible set of D, i.e., the feasible set corresponding to the
vertex facev P (D) of P (D) on which any linear functional v in C◦

w achieves its minimum.
• Likewise, let Bmax

w (D) be the w-maximal feasible set corresponding to the vertex of P (D)

on which any linear functional in the interior of Cw achieves its maximum.

Note that Bmax
w (D) = Bw(D

⊥). We omit (D) and simply write Bw if no confusion is expected.

7.2. Construction of isotropic tautological bundles. Let O⊕2n+1
OGr(n;2n+1) be the rank 2n + 1 trivial

bundle on OGr(n; 2n + 1), which is equipped with the standard quadratic form, and which is a
T -equivariant vector bundle with the action

(7.1) (t1, . . . , tn) · (x1, . . . , xn, x1, . . . , xn, x0) = (t1x1, . . . , tnxn, t
−1
1 x1̄, . . . , t

−1
n xn̄, x0).

Let Iuniv be the universal isotropic subbundle of O⊕2n+1
OGr(n;2n+1), whose fiber over a point of OGr(n;

2n + 1) corresponding to the maximal isotropic subspace L ⊂ k
2n+1 is L. Under the inclusion

OGr(n; 2n+1) ⊂ Gr(n; 2n+1), the bundle Iuniv is the T -equivariant subbundle of O⊕2n+1
OGr(n;2n+1) ob-

tained as the restriction of the universal subbundle onGr(n; 2n+1). Then the following proposition
follows from Proposition 7.1 and the fact thatOGr(n; 2n+1) is a T -fixed subvariety ofGr(n; 2n+1).

Proposition 7.2. For eachBn representationL ⊂ k
2n+1 of a delta-matroid D, we have a T -equivariant

map
XBn

→ T · [L] ↪→ OGr(n; 2n+ 1)

such that the identity of T is sent to [L]. For eachw ∈ SB
n , the pullback of Iuniv localizes to

∑
i∈Bw

Ti

at the T -fixed point of XBn
corresponding to w.

Note our continued use of the convention that Ti = T−1
i for i ∈ [n].

Definition 7.3. Let L be a Bn representation of a delta-matroid D. Then the isotropic tautological
bundle IL onXBn

is the pullback of Iuniv under the mapXBn
→ OGr(n; 2n+1) in Proposition 7.2.

Let O⊕2n+1
XBn

be the rank 2n+ 1 trivial bundle with a T -equivariant structure given by the action
of T on k

2n+1 in (7.1). Note that IL is the unique T -equivariant subbundle of O⊕2n+1
XBn

whose
fiber at the identity of T ⊂ XBn

is the isotropic subspace L. In particular, its dual I∨
L is globally

generated, and IL is an anti-nef vector bundle. The equivariant K-class of IL depends only on the
delta-matroid D. Moreover, we show that this K-class is well-defined for any delta-matroid, not
necessarily representable.

Proposition 7.4. For any delta-matroid D on [n, n̄], there is a class [ID] ∈ KT (XBn
) defined by

[ID]w =
∑
i∈Bw

Ti.

We define the isotropic tautological class [ID] of D by the above formula. Proposition 7.2 implies
that [ID] = [IL] if L is a Bn representation of D.
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Proof. We need to check that the above formula satisfies the compatibility condition in Theorem 3.1.
Let w ∈ SB

n , and set w′ = wτi,i+1. Then the cones corresponding to w and w′ share a hyperplane
whose normal vector is ew(i) − ew(i+1). As the normal fan of P̂ (D) coarsens ΣBn

, the w-minimal

and w′-minimal vertices of P̂ (D) either coincide or differ by an edge parallel to ew(i)−ew(i+1). This
implies that [ID]w − [ID]w′ is either 0 or ±(Tw(i) − Tw(i+1)), which is divisible by 1− Tw(i)T

−1
w(i+1).

Now set w′ = wτn. Then the cones corresponding to w and w′ share a hyperplane whose normal
vector is ew(n). Again, that the normal fan of P̂ (D) coarsens ΣBn

implies that either [ID]w = [ID]w′

or [ID]w − [ID]w′ = ±(1− Tw(n)) is divisible by 1− Tw(n). □

Remark 7.5. We could also consider the quotient bundles O⊕2n+1
XBn

/IL. However, one can verify
that [IL] + [IL]∨ = [O⊕2n+1], and so c([IL]∨) = c(O⊕2n+1

XBn
/IL). Therefore, studying the quotient

bundle does not give any new elements of A•(XBn
).

7.3. Construction of enveloping tautological bundles. From each realization L ⊂ k
2n of an en-

veloping matroid M of a delta-matroid D, we construct the enveloping tautological bundles SE
L and

QE
L . Let πi : XBn

→ P1 denote the compositionXBn
→ (P1)n → P1, where the latter map is the pro-

jection onto the ith factor. Let us treat P1 as the toric variety of the fan in R consisting of the positive
ray, negative ray, and the origin. P1 has two torus-fixed divisors ∞ and o that correspond respec-
tively to the negative ray and the positive ray. These torus-fixed divisors correspond respectively
to the intervals [0, 1] and [−1, 0] under the standard correspondence between polytopes and base-
point-free divisors on toric varieties [CLS11, Chapter 6]. Let O(1∞) and O(1o) be the respective
toric line bundles isomorphic to OP1(1), and define

M =
⊕
i∈[n]

π∗
i O(1∞)⊕ π∗

i O(1o).

We now show the existence of vector bundles SE
L and QE

L onXBn
that fit into a short exact sequence

of T -equivariant vector bundles

0 → SE
L → M → QE

L → 0,

which is characterized by the property that the fiber over of the identity point of T is 0 → L →
k
2n → k

2n/L → 0. We prepare with a combinatorial lemma. Recall that □ denotes the cube [0, 1]n,
and the standard basis of R2n is denoted u1, . . . ,un,u1̄, . . . ,un̄.

Lemma 7.6. Let M be an enveloping matroid of a delta-matroid D. Then

env(IP (M)) = P (D) +□− e[n].

Proof. First we note that env(IP (M)) is contained in P (D) + □ − e[n]. Every vertex of env(IP (M))

can be written as 1
2 env(uB) +

1
2 env(−uS) for some basis B of M and S ⊂ B. Then 1

2 env(uB) ∈
P (D)− ( 12 , . . . ,

1
2 ) and 1

2 env(−uS) ∈ □− ( 12 , . . . ,
1
2 ).
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Now it suffices to show that every vertex of P (D) + □ − e[n] is contained in env(IP (M)). Let v
be a vector in the interior of Cw. Then

facev(P (D) +□− e[n]) = facev(P (D)− 1
2e[n]) + facev(□− 1

2e[n])

= 1
2eBw

+ 1
2ew([n̄])

= 1
2eBw

− 1
2ew([n]).

Because the normal fan of P (D) + □ − e[n] is a coarsening of ΣBn
, every vertex is of the form

1
2eBw

− 1
2ew([n]) for some w ∈ SB

n . We see that this is equal to env(uBw
− uBw∩w([n])). Because

Bw ∩ w([n]) ⊂ Bw, this is contained in IP (M). □

We first construct the dual of the vector bundle QE
L . Let L⊥ be the dual space (k2n/L)∨, con-

sidered as a subspace of k2n under the isomorphism (k2n)∨ ≃ k
2n. It represents the dual matroid

of the matroid represented by L. Let the torus T act on k
4n = k

2n × k
2n by the usual action

(t1x1, . . . , tnxn, t
−1
1 x1, . . . , t

−1
n xn) on the first k2n factor and trivially on the second k

2n factor. We
let T act on Gr(n; 4n) accordingly.

Proposition 7.7. For a representation L of an enveloping matroid M of a delta-matroid D, let EL ⊂
k
4n be the image of L⊥ under the diagonal embedding k2n ↪→ k

4n. Then there is a composition of
T -equivariant maps

φL : XBn
→ T · [EL] ↪→ Gr(n; 4n).

We define the enveloping tautological quotient bundle QE
L to be the dual of the pullback of the

universal subbundle on Gr(n; 4n) via the map φL.

Proof. Let T̃ be the 2n-dimensional torus G2n
m with the action on Gr(n; 4n) induced by

(t1, . . . , t2n) · (x1, . . . , x4n) = (t1x1, . . . , t2nx2n, x2n+1, . . . , x4n).

By [EHL23, Proposition 3.16], the moment polytope of T̃ · [EL] is IP (M⊥). By Proposition 6.1(2),
the moment polytope of T · [EL] is env(IP (M⊥)) = P (D⊥) +□− e[n]. Note that the normal fan of
P (D⊥) +□− e[n] coarsens ΣBn , so we conclude by Proposition 7.1. □

By construction, we have a surjection O⊕4n
XBn

→ QE
L . There is also a surjection O⊕4n

XBn
→ M, given

by taking the direct sum over all i = 1, . . . , n of the surjections

O⊕4
XBn

≃ H0(P1,O(1∞)⊕O(1o))⊗OXBn
→ π∗

i O(1∞)⊕ π∗
i O(1o),

whose kernel is π∗
i (−1∞)⊕ π∗

i (−1o).

Proposition 7.8. The composition⊕
i∈[n]

π∗
i (−1∞)⊕ π∗

i (−1o) → O⊕4n
XBn

→ QE
L

is zero, so there is a map M → QE
L .

We define the enveloping subbundle SE
L to be the kernel of the map M → QE

L .
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Proof. It suffices to check this on the dense open torus T ⊂ XBn
. By considering each factor of

T = Gn
m separately, the computation reduces to the case n = 1. Over a point t ∈ Gm, the fiber of

π∗
i (−1∞) ⊕ π∗

i (−1o) ⊆ O⊕4
P1 is the subspace {(ta, t−1b, a, b) : (a, b) ∈ k2} ⊆ k4. The form of EL then

implies the claim. □

We now compute the T -equivariant K-classes of SE
L and QE

L .

Proposition 7.9. The equivariant K-classes of SE
L and QE

L are given by

[SE
L ]w = |Bmax

w ∩ w([n])|+
∑

i∈w([n]),i̸∈Bmax
w

Ti, and [QE
L ]w = n− |Bmax

w ∩ w([n])|+
∑

i∈Bmax
w ∩w([n])

Ti.

Proof. Let v be a vector in the interior ofCw. We have noted thatBmax
w of D is equal to thew-minimal

feasible set of D⊥. Then, as in the proof of Lemma 7.6, we have that

facev(P (D
⊥) +□− e[n]) =

1
2eBw(D⊥) − 1

2ew([n]) =
1
2eBmax

w
− 1

2ew([n]).

In order to compute the localization of the pullback of Suniv, we find a preimage of facev(P (D⊥) +

□− e[n]) in the polytope of the matroid represented by EL. A preimage in IP (M⊥) of this vertex is
uBmax

w
−uBmax

w ∩w([n]). A preimage of this in the matroid polytope of the matroid represented by EL

extends the independent set Bmax
w \Bmax

w ∩w([n]) of M⊥ to a basis without adding any elements in
[2n]. Proposition 7.1 then implies that the localization of the pullback of Suniv at the fixed point of
XBn

corresponding to w is

|Bmax
w ∩ w([n])|+

∑
i∈Bmax

w \Bmax
w ∩w([n])

Ti = |Bmax
w ∩ w([n])|+

∑
i∈Bmax

w ∩w([n])

Ti.

Because QE
L is the dual of the pullback of Suniv, this gives the result for QE

L . We note that [M]w =

n+
∑

i∈w([n]) Ti. As [SE
L ] = [M]− [QE

L ], the result for [SE
L ] follows. □

In particular, the equivariant K-classes of [SE
L ] and [QE

L ] depend only on the delta-matroid asso-
ciated to L. For arbitrary delta-matroid D, the proof of Proposition 7.4 immediately adapts to show
that we may define enveloping tautological classes [SE

D ] and [QE
D] in KT (XBn

) by the formulas in
Proposition 7.9. Note that the enveloping tautological classes [SE

D ]∨ and [QE
D]

∨ have “nice Chern
roots” in the sense discussed above Proposition 3.8.

Remark 7.10. Arguing analogously to [BEST23, Proposition 5.6], one can show that any fixed poly-
nomial in the tautological classes of delta-matroids or their Chern classes is a valuative invariant of
delta-matroids in the sense of [ESS21].

7.4. Intersection computations. We now compute several intersection numbers arising from the
Chern and Segre classes of isotropic and enveloping tautological classes. We first do the computa-
tions with enveloping tautological classes, which are easier to work with because they are closely
related to the exceptional isomorphisms ϕB and ζB introduced in Section 3. We then relate an inter-
section number of the Chern classes of the isotropic tautological classes to one involving enveloping
tautological classes.

We begin by realizing both the interlace polynomial and the U -polynomial as intersection num-
bers of the enveloping tautological classes. Because the classes [SE

D ] do not have any positivity
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properties, this does not give log-concavity properties for the interlace polynomial. But these
results will form the basis for later intersection theory computations that prove Theorem B. In
[EHL23, Theorem 8.1], the analogous computation on XStn yields the rank-generating function of
a matroid.

Theorem 7.11. We have that
∫
XBn

c([SE
D ], u) · c([QE

D], v) = vn IntD(u/v).

Proof. To compute
∫
XBn

c([SE
D ], u)·c([QE

D], v), we look at the degree n part of cT ([SE
D ], u)·cT ([QE

D], v).
Let S ∈ AdSn, and consider the cone τS whose rays are {ei : i ∈ S}. Then τS is a maximal cone in
the fan (ΣB1

)n of (P1)n. The linear function defined by eS attains its maximum on a face F of P (D),
and every function in the interior of τS attains its maximum on a face of F because every cone of
ΣBn which is contained in τS contains eS . Note any point x of F minimizes the distance to eS from
P (D).

Note that Cw ∈ τS if and only if S = w([n]). For each w ∈ SB
n with S = w([n]), we have that

cT ([SE
D ])w =

∏
i∈S,i ̸∈Bmax

w

(1 + ti), and cT ([QE
D])w =

∏
i∈S∩Bmax

w

(1 + ti).

We see that the degree n part of cT ([SE
D ], u)w · cT ([QE

D], v)w is

(−1)|S∩[n̄]|udD(S)vn−dD(S)t1 · · · tn.

Note that, for each S ∈ AdSn, the piecewise polynomial function that is (−1)|S∩[n̄]|t1 · · · tn on τS

and vanishes otherwise is cTn (
⊕

i∈[n] π
∗
i O(1)), where we give O(1) on the ith copy of P1 the O(1∞)

linearization if i ∈ S, and give it the O(1o) linearization if ī ∈ S. Proposition 5.2 gives∫
XBn

c([SE
D ], u) · c([QE

D], v) =
∑

S∈AdSn

udD(S)vn−dD(S)

∫
(P1)n

cn(⊕π∗
i O(1)) = vn IntD(u/v). □

We prepare to do more computations by studying how enveloping tautological classes restrict
to smaller type B permutohedral varieties. The description of the fan of ΣBn

implies that the
closure of each coordinate Gn−1

m ⊂ T in XBn can be identified with XBn−1 . The inclusion is Gn−1
m -

equivariant, so for each i ∈ n, we have a mapKT (XBn) → KGn−1
m

(XBn−1) given by the composition
of the forgetful map KT (XBn

) → KGn−1
m

(XBn
) and the restriction map. Recall that for a delta-

matroid D and I ⊆ [n], D(I) is the projection of D away from I .

Proposition 7.12. The images of [SE
D ], [QE

D], and [ID] under the map KT (XBn) → KGn−1
m

(XBn−1)

are 1 + [SE
D(i)], 1 + [QE

D(i)], and 1 + [ID(i)] respectively.

Proof. Under the embedding XBn−1
↪→ XBn

, each Gn−1
m -fixed point of XBn−1

is the identity of the
torus embedded into a T -fixed curve in XBn on which Gn−1

m acts trivially. We may compute the
Gn−1

m -equivariant localization at this fixed point by computing the T -equivariant localization at any
T -fixed point of this curve, and then applying the forgetful map KT (pt) → KGn−1

m
(pt). Then the

result follows from the definition of the tautological classes. □

Proposition 7.13. We have that

UD(u, v) =

∫
XBn

c(⊞O(1), u) · c([SE
D ], v) · c([QE

D]).
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Proof. The zero-locus of a general element of the complete linear system of π∗
i O(1) is {t ∈ T : ti = λ}

for some λ ∈ k
∗. As these divisor are all Gm-translates of the closure of Gn−1

m , the class [XBn−1
] ∈

A1(XBn) represents c1(π∗
i O(1)). Letting i vary, we see that c(⊞O(1)) is the sum of the Chow classes

of the closures of the coordinate subtori of T . The closure of each coordinate subtorus of T can be
identified with a smaller XBk

. By the projection formula and Proposition 7.12, we see that∫
XBn

c(⊞O(1), u) · c([SE
D ], v) · c([QE

D], 1) =
∑
I⊆[n]

u|I|
∫
XBn−|I|

c([SE
D ], v)|XBn−|I|

· c([QE
D], 1)|XBn−|I|

=
∑
I⊆[n]

u|I|
∫
XBn−|I|

c([SE
D(I)], v) · c([Q

E
D(I)], 1).

The the result follows from Theorem 7.11 and Proposition 5.2. □

Recall that γ is the first Chern class of the line bundle corresponding to the cross polytope ♢ and
s denotes the Segre class. We now do the computation which underlies the proof of Theorem B(1.2).

Theorem 7.14. We have that∫
XBn

s([QE
D]

∨, z) · c([QE
D], w) ·

1

1− yγ
· c(⊞O(1), x) = (y + w)nUD

(
2z + x

y + w
,
y − z

y + w

)
.

The key tools in the proof are the two exceptional isomorphisms and the Hirzebruch–Riemann–
Roch-type formulas that they satisfy, which are a manifestation of Serre duality. This allows us to
show the equality of certain intersection numbers, and we leverage Theorem 7.11 to compute more
intersection numbers.

Proof. We prove the theorem in three steps.
Step 1: we have that ∫

XBn

s([QE
D]

∨, z) · c([QE
D]) = UD(2z,−z).

Because [SE
D ] + [QE

D] = [M] = [⊞O(1)⊕2], we have that c([SE
D ], z) · c([QE

D], z) = c(⊞O(1)⊕2, z) =

c(⊞O(1), 2z). So

s([QE
D]

∨, z) = c([SE
D ],−z) · c(⊞O(1), 2z).

Then, using Proposition 7.12, we see that∫
XBn

s([QE
D]

∨, z) · c([QE
D], w) =

∫
XBn

c([SE
D ],−z) · c(⊞O(1), 2z) · c([QE

D], w)

=
∑
I⊆[n]

(2z)|I|
∫
XBn−|I|

c([SE
D(I)],−z) · c([Q

E
D(I)], w)

=
∑
I⊆[n]

(2z)|I|wn−|I| IntD(I)(−z/w).

Setting w = 1 and using Lemma 5.4 gives the result.
Step 2: we have that∫

XBn

s([QE
D]

∨, z) · c([QE
D], w) ·

1

1− γ
= (1 + w)nUD

(
2z

1 + w
,
1− z

1 + w

)
.
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Let [□] be the class of the line bundle corresponding to the cube □ = [0, 1]n. From Lemma 3.5
and [EHL23, Corollary 6.5(1)], we have that both ϕB([□]) = c(⊞O(1)) and ζB([□]) = c(⊞O(1)).
Applying Proposition 3.8, Proposition 3.7, and Theorem C, we get that

χ

(∑
j≥0

Symj [QE
D]

∨z
)(∑

i≥0

∧i[QE
D]

∨w
)
[□]


=

∫
XBn

1

(1− z)n
· s
(
[QE

D]
∨,

z

z − 1

)
· (w + 1)n · c

(
[QE

D]
∨,

w

1 + w

)
· 1

1− γ

=

∫
XBn

1

(1− z)n
s

(
[QE

D],
1

1− z

)
· (w + 1)n · c

(
[QE

D],
1

1 + w

)
· c(⊞O(1), 2).

Equating the two right-hand sides, canceling, and replacing w by − w
1+w and z by z

z−1 , we obtain∫
XBn

s([QE
D]

∨, z) · c([QE
D], w) ·

1

1− γ
=

∫
XBn

s([QE
D], 1− z) · c([QE

D], w + 1) · c(⊞O(1), 2).

Substituting in the result of Step 1 after homogenizing, we have that∫
XBn

s([QE
D]

∨, z − 1) · c([QE
D], 1 + w) = (1 + w)nUD

(
2(z − 1)

1 + w
,
1− z

1 + w

)
.

Therefore, using Lemma 5.4, we have that∫
XBn

s([QE
D]

∨, z) · c([QE
D], w) ·

1

1− γ
=
∑
I⊆[n]

2|I|(1 + w)n−|I|UD(I)

(
2(z − 1)

1 + w
,
1− z

1 + w

)

= (1 + w)n
∑
I⊆E

(
2

1 + w

)|I|

UD(I)

(
2(z − 1)

1 + w
,
1− z

1 + w

)

= (1 + w)nUD

(
2z

1 + w
,
1− z

1 + w

)
Step 3: we now prove the result. We compute:∫

XBn

s([QE
D]

∨, z) · c([QE
D], w) ·

1

1− yγ
· c(⊞O(1), x)

=
∑
I⊆[n]

x|I|
∫
XBn

s([QE
D(I)]

∨, z) · c([QE
D(I)], w) ·

1

1− yγ

=
∑
I⊆[n]

(y + w)n−|I|x|I|UD(I)

(
2z

y + w
,
y − z

y + w

)

= (y + w)nUD

(
2z + x

y + w
,
y − z

y + w

)
. □

Theorem 7.15. Let D be a delta-matroid. We have that∫
XBn

c([ID]∨, q) ·
1

1− yγ
·

n∏
i=1

(1 + xihi) = (y + q)nUD

(
x1
y + q

, . . . ,
xn
y + q

,
y − q

y + q

)
.

Recall that hi = c1(π
∗
i O(1)), and note that

∏n
i=1(1 + xhi) = c(⊞O(1), x). We prove the above

theorem by relating it to Theorem 7.14. We first recall the equivariant descriptions of cT ([ID]∨).
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Recall that if i ∈ [n], then t̄i := −ti. On a fixed point of XBn
corresponding to w ∈ SB

n , we have
that

cT ([ID]∨, q)w =
∏

i∈Bw

(1− tiq) =
∏

i∈Bw

(1 + tiq).

Proof. We claim that

s([QE
D⊥ ]

∨, q) · c([QE
D⊥ ], q) · c(⊞O(1),−2q) = c([ID]∨, q).

Then Theorem 7.14 implies that∫
XBn

c([ID]∨, q)·
1

1− yγ
=

∫
XBn

s([QE
D⊥ ]

∨, q)·c([QE
D⊥ ], q)·c(⊞O(1),−2q) = (y+q)n IntD⊥

(
y − q

y + q

)
.

Then, assuming the claim, the result follows using that IntD(v) = IntD⊥(v), Proposition 7.12, and
the definition of the multivariate U -polynomial.

Observe that

cT ([QE
D⊥ ], q)w =

∏
i∈Bw∩w([n])

(1 + tiq), and sT ([QE
D⊥ ]

∨, q)w = cT ([QE
D⊥ ],−q)−1

w =
∏

i∈Bw∩w([n])

1

1 + tiq
.

On P1, the piecewise polynomial function which is t on the cone {x < 0} and −t on the cone {x > 0}
is a linearization of O(−2). Therefore, with this linearization, we have that

cT (⊞O(1),−2q)w =
∏

i∈w([n])

(1 + tiq).

Then the claim follows from multiplying the above expressions together. □

8. LOG-CONCAVITY

In this section, we prove Theorem B. First we recall some definitions. Let f ∈ R[x1, . . . , xn] be
a homogeneous polynomial of degree d. If f =

∑
amx

m, then the normalization of f , denoted
N(f), is the polynomial

∑
am

xm

m! , where m! = m1! · · ·mn! if m = (m1, . . . ,mn). We call f the
denormalization of N(f). We say that f is strictly Lorentzian if the coefficient of every monomial
of degree d is positive, and every quadratic form obtained by taking d − 2 partial derivatives of f
is nondegenerate with signature (+,−, . . . ,−). We say that f is Lorentzian if it is a coefficientwise
limit of strictly Lorentzian polynomials. It follows from [BH20, Example 2.26] and [BH20, Theorem
2.10] that a denormalized Lorentzian polynomial has a log-concave unbroken array of coefficients.
We now state a strengthening of (1.1) in Theorem B.

Theorem 8.1. Let D be a delta-matroid which has an enveloping matroid. Then the polynomial

(8.1) (y + q)nUD

(
x1
y + q

, . . . ,
xn
y + q

,
y − q

y + q

)
is denormalized Lorentzian.

By [BLP23, Lemma 4.8], this is indeed a strengthening of the statement that (1.1) is denormalized
Lorentzian. Even when D has an enveloping matroid, we do not know if there is a denormalized
Lorentzian evaluation of the multivariable U -polynomial that specializes to (1.2). We have the
following corollaries of Theorem B and Theorem 8.1.
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Corollary 8.2. Let D be a delta-matroid which has an enveloping matroid. Then the coefficients
of (y + 1)nUD(0,

y−1
y+1 ) = (y + 1)n IntD(

y−1
y+1 ) and UD(2u,−u) form a nonnegative log-concave se-

quence with no internal zeros, and in particular form a unimodal sequence. After multiplying the
coefficient of uk in UD(u, 0) or UD(u,−1) by k!, the resulting sequence is a nonnegative log-concave
sequence with no internal zeros.

Proof. To obtain the first two results, we set x = 0, q = 1 in (1.1) and set x = y = 0, w = 1 in
(1.2) respectively, and then apply [BLP23, Lemma 4.8]. To obtain the last two results, we normalize
(8.1) and set y = q = 1/2, xi = u and set y = 0, q = 1, xi = u respectively, and then apply [BH20,
Corollary 3.7]. □

Remark 8.3. In [Lar, Proposition 3.4, Theorem 3.8], the third author showed that the coefficients of
UD(u, 0) count the number of independent set (i.e., subsets of feasible sets) of D by their cardinality,
and the coefficients of UD(u,−1) count the number of faces of a delta-matroid analogue of the
broken circuit complex of a matroid. In particular, Corollary 8.2 gives an analogue of the log-
concavity of the independence polynomial and the characteristic polynomial of a matroid [AHK18].

Remark 8.4. For the adjacency delta-matroid D(G) of a graphG (Example 6.4), [ABS04] conjectured
that the coefficients of IntD(G)(v − 1) form a unimodal sequence, which was disproved by [DP10].
Both works conjectured that IntD(G)(v) has unimodal coefficients. We note that IntD(v) may not
have unimodal coefficients even when D is an even delta-matroid with a Dn representation, like
D(G). See Example 8.5 below. In [FS, Corollary 7.22], Ferroni and Schröter gave an example of a
matroid M such that IntP (M)(v) is not unimodal.

Example 8.5. Let U◦
r,n be the even delta-matroid on [n, n] whose feasible sets are

{S ∪ ([n] \ S) : S ⊆ [n] with |S| ≤ r and |S| ≡ r mod2}.

That is, the vertices of the polytope P (U◦
r,n) are obtained from IP (Ur,n) by taking only the vertices

corresponding to subsets with parity equal to that of r. Then U◦
r,n has a Dn representation by the

row-span of the n× 2n matrix [
Ir A B 0

0 0 −At In−r

]
where Ik is the k × k identity matrix, A is a general r × (n − r) matrix, and B is a general r ×
r skew-symmetric matrix. In particular, U◦

r,n has an enveloping matroid. Using the formula in
Proposition 5.2, we compute that the coefficients of (1, v, v2, v3, . . .) in IntU◦

m−3,2m
(v) are ∑

0≤i≤m−3
i≡m−3 mod 2

(
2m

i

)
,

∑
0≤i≤m−3

i ̸≡m−3 mod 2

(
2m

i

)
+

(
2m

m− 2

)
,

(
2m

m− 1

)
,

(
2m

m

)
, . . .


For large m, this sequence is not unimodal. For instance, at m = 10 the sequence reads

(94184, 169766, 167960, 184756, . . .).

In particular, the interlace polynomial of an even delta-matroids with a Dn representation need not
have unimodal or log-concave coefficients.
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Remark 8.6. The nonnegativity of the coefficients of UD(2u,−u), which is part of the content of
Corollary 8.2, can be proven directly using the recursive definition of the U -polynomial.

8.1. Motivation. We exhibit the general strategy for constructing log-concave sequences from vec-
tor bundles, first used in [BEST23, Section 9] and later placed into a general framework in [EHL23].
We do this in the special case of showing that the coefficients of (y + 1)n IntD(

y−1
y+1 ) are log-concave

when D has an enveloping matroid.
Setting x = 0 and q = 1 in Theorem 7.15, we have the equality∫

XBn

c([ID]∨) · 1

1− yγ
= (y + 1)n IntD

(
y − 1

y + 1

)
.

Suppose first we are in the special case that D has a Bn representation L ⊂ k
2n+1. The first step

will be rewriting this intersection to involve Segre classes rather than Chern classes. As IL is a
subbundle of O⊕2n+1

XBn
, by dualizing we obtain a short exact sequence

0 → KL → O⊕2n+1
XBn

→ I∨
L → 0

for some vector bundle KL. Then c(I∨
L) = s(KL), and so∫

XBn

c(I∨
L)

1

1− yγ
=

∫
XBn

s(KL)
1

1− yγ
=

n∑
k=0

yk
∫
XBn

sn−k(KL)γ
k =

n∑
k=0

yk
∫
P(KL)

δ2n−kγk

where δ is the first Chern class of O(1) on P(KL). The Khovanskii–Teissier inequality implies the
coefficient sequence is log-concave. To establish this log-concavity beyond the case that D is Bn

representable, we note that we may rewrite the last equation as

n∑
k=0

yk
∫
P(KL)

δ2n−kγk =

n∑
k=0

yk
∫
XBn×P2n

[P(KL)]δ
2n−kγk,

where [P(KL)] ∈ A•(XBn
×P2n) = A•(XBn

)[δ]/(δ2n+1) is the fundamental class of P(KL) ⊂ XBn
×

P2n. We have the formula [P(KL)] =
∑n

i=0 cn−i(I∨
L)δ

i. The formula for this class makes sense for
any delta-matroid, and one can formally define [P(KD)] =

∑n
i=0 cn−i([ID]∨)δi ∈ A•(XBn × P2n).

By Theorem 7.15,
∫
X×P2n [P(KD)]δ

2n−kγk still computes the coefficients of (y + 1)n IntD(
y−1
y+1 ).

In order to deduce log-concavity, we need to know that the Chow class [P(KD)] has Hodge-
theoretic properties resembling those of an irreducible subvariety. The framework of [EHL23, Sec-
tion 8.3] constructs classes which are associated to any matroid which have good Hodge-theoretic
properties.2 The strategy is to relate the class to the Bergman fan of some matroid, which has good
Hodge-theoretic properties by [AHK18]. The notion of valuativity for invariants of matroids is
used to reduce certain computations to the case of realizable matroids. When D has an enveloping
matroid M, we can use this to deduce that [P(KD)] has good Hodge-theoretic properties.

2For technical reasons we actually work with classes in A•(XBn × P2n−1) instead of A•(XBn × P2n) which more
naturally extend to all rank n matroids, but the underlying idea is the same.
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8.2. Proof of log-concavity. Before proving Theorem B, we prove a log-concavity statement for an
arbitrary matroid of rank n on [n, n̄] (Theorem 8.10) by using the framework in [EHL23, Section 8.3],
which is based on [BEST23, Section 9]. Afterwards, we relate this log-concavity statement to Theo-
rem B. Using Proposition 7.1, we construct two types of vector bundles on XBn that are associated
to a realization of a matroid of rank n on [n, n̄]. First we give a definition (cf. Definition 2.4).

Definition 8.7. Let A be an abelian group. A function

φ : {matroids of rank r on [n]} → A

is valuative if it factors through the map M 7→ 1(P (M)). That is, for any matroids M1, . . . ,Mk and
integers a1, . . . , ak such that

∑
ai1(P (Mi)) = 0, we have that

∑
aiφ(Mi) = 0.

Let T act on k
4n by (t1x1, t2x2, . . . , tnxn, t

−1
1 xn+1, . . . , t

−1
n x2n, x2n+1, . . . , x4n). Let L ⊂ k

2n be a
linear space of dimension n. Let EL be the image of L⊥ under the diagonal embedding of k2n into
k
4n and consider the point [EL] ∈ Gr(n; 4n). The fan of the normalization of T · [EL] is the normal

fan of env(IP (M)). Every edge of env(IP (M)) is parallel to ei or ei ± ej , so ΣBn
is a coarsening of

the normal fan of env(IP (M)). Therefore there is a toric morphism XΣBn
→ Gr(n; 4n). Set Suniv

and Quniv to be the universal subbundle and quotient bundle respectively on Gr(n; 4n). Let K̃E
L

and Q̃E
L be the duals of the pullbacks of Quniv and Suniv respectively.

Lemma 8.8. For each w ∈ SB
n , let Iw be any independent set of M⊥ such that any functional in the

interior of Cw achieves its minimum on the corresponding vertex of env(IP (M⊥)). Then

[Q̃E
L ]w = n− |Iw ∩ w([n])|+

∑
i∈Iw∩w([n])

Ti, and [K̃E
L ]w = n+ |Iw ∩ w([n])|+

∑
i ̸∈w([n])∩Iw

Ti.

Note that the classes [Q̃E
L ] and [K̃E

L ] only depend on the matroid M that L represents. For any
matroid M of rank n on [n, n̄], we define classes [Q̃E

M] and [K̃E
M] in KT (XBn

); the proof of Proposi-
tion 7.4 adapts to show that these are indeed well-defined. The proof of [BEST23, Proposition 5.6]
shows that any function that maps a matroid M of rank n on [n, n̄] to a fixed polynomial expression
in the Chern classes of [Q̃E

M] and [K̃E
M] is a valuative invariant of matroids of rank n on [n, n̄].

We now construct analogues of isotropic tautological bundles. Consider a matroid M of rank n
on [n, n̄] represented by L ⊂ k

2n. Then L determines a k-valued point of Gr(n; 2n). We have a
T -action on Gr(n; 2n) given by

(t1, . . . , tn) · (x1, . . . , xn, x1̄, . . . , xn̄) = (t1x1, . . . , tnxn, t
−1
1 xī, . . . , t

−1
n xn̄).

The fan of the normalization of T · [L] is the toric variety with normal fan env(P (M)), which is
a coarsening of ΣBn

. This determines a morphism XBn
→ Gr(n; 2n); define K̃L to be dual of

the pullback of the universal quotient bundle Quniv under this map. Proposition 7.1 implies the
following lemma.

Lemma 8.9. For w ∈ SB
n , let Bw be a basis corresponding to any vertex in the preimage of the

vertex of env(P (M)) that any functional in C◦
w achieves its minimum on. Then

[K̃L]w =
∑
i∈Bw

Ti.
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Note that the above description of the equivariant K-class depends only on the matroid M.
Define [K̃M] ∈ KT (XBn

) by the above formula for any M; the proof of Proposition 7.4 adapts to
show that these are indeed well-defined. The proof of [BEST23, Proposition 5.6] shows that any
function that maps a matroid M of rank n on [n, n̄] to a fixed polynomial expression in the Chern
classes of [K̃M] is a valuative invariant of matroids of rank n on [n, n̄]. We now use the framework
[EHL23, Section 8.3], which establishes log-concavity properties for classes constructed in this way
associated to loop-free and coloop-free matroids M. Indeed, the above constructions give globally
generated vector bundles associated to realizations of matroids of rank n on [n, n̄]. The Chern
classes of these vector bundle depend only on the underlying matroid and depend valuatively on
the matroid. Then [EHL23, Theorem 8.7] gives the following result.

Theorem 8.10. Let M be a loop-free and coloop-free matroid of rank n on [n, n̄]. Then the polyno-
mials∫

XBn

s([Q̃E
M]∨, z) · s([K̃E

M], w) · 1

1− yγ
· c(⊞O(1), x) and

∫
XBn

s([K̃M], q) · 1

1− yγ
·

n∏
i=1

(1 + xihi)

are denormalized Lorentzian.

Proof of Theorem B and Theorem 8.1. We first do (1.2). Consider the case when D is loop-free and
coloop-free. By Lemma 6.8, the enveloping matroid M of D is loop-free and coloop-free. Then
[Q̃E

M] = [QE
D], so s([Q̃E

M]∨, z) = s([QE
D]

∨, z). Also, s([K̃E
M], w) = c([Q̃E

M], w) = c([QE
D], w). We see that∫

XBn

s([Q̃E
M]∨, z) · s([K̃E

M], w) · 1

1− yγ
· c(⊞O(1), x)

=

∫
XBn

s([QE
D]

∨, z) · c([QE
D], w) ·

1

1− yγ
· c(⊞O(1), x) = (y + w)nUD

(
2z + x

y + w
,
y − z

y + w

)
by Theorem 7.14. So when D is loop-free and coloop-free, Theorem 8.10 gives that the above poly-
nomial is denormalized Lorentzian. In general, we can write D = D′ × P (U0,k)× P (Uℓ,ℓ) for some
k and ℓ, where D′ is loop-free and coloop-free. Using the behavior of the U -polynomial for delta-
matroids with loops, we have that

(y + w)nUD

(
2z + x

y + w
,
y − z

y + w

)
=(

(y + w)n−k−ℓUD′

(
2z + x

y + w
,
y − z

y + w

))
·(

(y + w)kUP (U0,k)

(
2z + x

y + w
,
y − z

y + w

))
·
(
(y + w)ℓUP (Uℓ,ℓ)

(
2z + x

y + w
,
y − z

y + w

))
= (y + w)n−k−ℓUD′

(
2z + x

y + w
,
y − z

y + w

)
· (z + 3y + w)k+ℓ

As product of denormalized Lorentzian polynomials are denormalized Lorentzian [BH20, Corol-
lary 3.8], we see that (1.2) is denormalized Lorentzian for all delta-matroids D that have an envelop-
ing matroid.
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The proof of Theorem 8.1 is identical: one shows that, when M is an enveloping matroid of a
loop-free and coloop-free delta-matroid D,∫

XBn

s([K̃M], q) · 1

1− yγ
·

n∏
i=1

(1 + xihi) =

∫
XBn

c([ID]∨, q) ·
1

1− yγ
·

n∏
i=1

(1 + xihi)

= (y + q)nUD

(
x1
y + q

, . . . ,
xn
y + q

,
y − q

y + q

)
by Theorem 7.15. One then deduces the general case using the behavior of the U -polynomial under
products. □

Remark 8.11. Our proof that (1.2) is denormalized Lorentzian only requires that D has a sheltering
matroid, as we only need that there is a matroid M with env(IP (M)) = P (D) + □ − e[n]. See
Remark 6.7.
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