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Abstract. The Arakelov-Zhang pairing 〈ψ, φ〉 is a measure of the “dynamical distance”
between two rational maps ψ and φ defined over a number field K. It is defined in terms of

local integrals on Berkovich space at each completion of K. We obtain a simple expression
for the important case of the pairing with a power map, written in terms of integrals over

Julia sets. Under certain disjointness conditions on Julia sets, our expression simplifies to a

single canonical height term; in general, this term is a lower bound. As applications of our
method, we give bounds on the difference between the canonical height hφ and the standard

Weil height h, and we prove a rigidity statement about polynomials that satisfy a strong form

of good reduction.

1. Introduction

Let K be a number field with fixed algebraic closure K. For z ∈ P1(K), we use h(z) to denote
the standard logarithmic Weil height of z and hφ(z) to denote the Call-Silverman canonical
height of z with respect to φ ∈ K(x). We recall background on these heights in Section 2.

Let ψ, φ : P1 → P1 be rational maps defined over K (equivalently, rational functions in
K(x)) each of degree ≥ 2. In [21] (see also [23]), Petsche, Szpiro, and Tucker introduced the
Arakelov-Zhang pairing 〈ψ, φ〉, a symmetric, non-negative, real-valued pairing on the space of
rational maps. In Section 2, we present their definition of the pairing as a sum of integrals
over Berkovich space at each place of K. Using [21, Theorem 11] and standard results on
equidistribution of preimages, we also give a more intuitive equivalent definition as the limiting
average of hψ evaluated at the preimages under φ of any non-exceptional point β ∈ P1(K) (here
“exceptional” means that β has finite backward orbit under ψ):

〈ψ, φ〉 = lim
n−→∞

1

(deg φ)n

∑
φn(x)=β

hψ(x). (1.1)

The pairing can be understood as a “dynamical distance” between ψ and φ. For example,
by [21, Theorem 3], 〈ψ, φ〉 vanishes precisely when the canonical height functions hψ and hφ
agree; this in turn holds if and only if the sets of preperiodic points of ψ and φ coincide. Thus
the specific pairing 〈x2, φ〉 may be interpreted as a measure of the dynamical complexity of φ,
as the height function hx2 equals the standard height h. As above, we have

〈x2, φ〉 = lim
n−→∞

1

(deg φ)n

∑
φn(x)=β

h(x). (1.2)

for non-exceptional β. We note that 〈xd, φ〉 = 〈x2, φ〉 for any d ∈ Z \ {−1, 0, 1}.
In this paper, we study the relationship between the Arakelov-Zhang pairing and Julia sets,

both in the classical and the non-archimedean setting. We produce a formula for the pairing
〈x2, φ〉, which can be computed exactly under certain disjointness conditions on Julia sets.

Let MK be the set of places of K. For ν ∈ MK , let rν = [Kν : Qν ]/[K : Q], and let µφ,ν be
the canonical φ-invariant probability measure on the Berkovich projective line P1 over Cν (see
Section 2 for definitions). Our main theorem is as follows.

Theorem 1.3. Let φ ∈ K(x). Then

〈x2, φ〉 = hφ(0)−
∑
ν∈MK

rν

∫
|α|ν<1

log |α|νdµφ,ν .
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Theorem 1.3 can be viewed as a companion result to Proposition 16 in [21], except with the
role of ∞ and 0 reversed. The integral is over the Berkovich open unit disk, but as µφ,ν is
supported on the Julia set of φ in P1, we may interpret it as an integral over the Julia set. The
integral evaluates to 0 if φ has good reduction at the place ν, so the sum over all ν ∈ MK is
actually a finite sum.

We give two proofs of Theorem 1.3. The first proof requires extensive local analytic machinery
as in [21]. The second proof is more elementary; it relies on our formula for the Arakelov-Zhang
pairing as the average height of preimages of a non-exceptional point, and uses the fact that these
preimages equidistribute in Berkovich space with respect to the canonical measure. By appealing
to the equidistribution theorem, we are able to make an argument that avoids heavy use of the
Berkovich space machinery. However, the second proof is only valid for monic polynomials whose
ν-adic Julia set does not contain 0 at any place ν.

We give some consequences of Theorem 1.3 which are easier to state. Corollary 1.4 is a
fundamental inequality between the pairing 〈x2, φ〉 and the canonical height hφ(0), which are
equal under a disjointness condition on Julia sets. See Section 3 for details on when this condition
is satisfied.

Corollary 1.4. For any φ ∈ K(x),

〈x2, φ〉 ≥ hφ(0),

with equality if and only if the Julia set of φ : P1 → P1 is disjoint from the Berkovich open unit
disk in P1 at every completion of K.

Equality can occur in Corollary 1.4. For example, Proposition 4.3 implies that if φ(x) = x2+c
with c ∈ Z and |c| ≥ 4, then 〈x2, φ〉 = hφ(0).

Corollary 1.5 is the purely archimedean version of our main theorem, which becomes simpler
(and requires no reference to Berkovich space) in the case that φ is a monic polynomial with
integer coefficients. Here µφ is the invariant measure on P1(C), the integral is over the complex
unit disk, and the canonical height hφ may be interpreted over Q (or any number field).

Corollary 1.5. Let φ ∈ Z[x] be monic. Then

〈x2, φ〉 = hφ(0)−
∫
|z|<1

log |z|dµφ.

Remark 1.6. A similar statement to Corollary 1.5 holds if φ has algebraic integer coefficients,
but the integral must be replaced with a sum of integrals corresponding to every possible embed-
ding into C, and the statement is essentially that of Theorem 1.3 (though again with no reference
to Berkovich space). See Section 3. The restriction to algebraic integers is interesting from the
dynamical point of view because of its connection to families of post-critically finite mappings.
For example, in the family of complex quadratic polynomials φc(z) = z2 + c, the mappings φc
for which the critical point 0 is preperiodic arise from certain algebraic integer parameters c (the
roots of the famous Gleason and Misiurewicz polynomials, see, e.g., [8]).

Our method also allows us to prove a rigidity statement about polynomials with certain
reduction conditions by combining our work with a result of Kawaguchi-Silverman on maps with
equal canonical height functions [17].

Theorem 1.7. Let φ(x) = xd + ad−1x
d−1 + · · ·+ a0 ∈ OK [x], and assume that 0 is preperiodic

under φ. Further suppose that the Julia set of φ at every archimedean place ν does not intersect
the ν-adic Berkovich open unit disk. Then φ(x) = xd.

Petsche, Szipro, and Tucker also show that the pairing 〈x2, φ〉 can be used to give an upper
bound on the difference between the canonical height of φ and the standard height. More
precisely, they show the following theorem.

Theorem 1.8. [21, Theorem 15] Let φ be a rational function of degree at least 2 defined over a
number field K. Then for any z ∈ P1(K),

hφ(z)− h(z) ≤ 〈x2, φ〉+ hφ(∞) + log 2.
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The explicit nature of Theorem 1.3 allows us to compute the pairing with some rational
functions where the canonical measure is known explicitly (such as Chebyshev polynomials).
For these examples, we then apply Theorem 1.8 to bound the difference between the Weil height
and the canonical height.

The paper is organized as follows. In Section 2, we recall some relevant background and
define the Arakelov-Zhang pairing in terms of local integrals. We also prove Theorem 1.3 and
its corollaries. In Section 3, we recall some facts about Julia sets and prove Theorem 1.7. In
Section 4, we compute some explicit examples.

Acknowledgements. We would like to thank Holly Krieger and Tom Tucker for numerous
helpful conversations related to the topics in this paper. We also thank the referee for helpful
comments and corrections, and for suggesting an improved argument for Lemma 3.1.

2. Background

We sketch the background needed to properly define the Arakelov-Zhang pairing, starting
with a brief overview of height functions. See [18] for background and basic properties of height
functions, and see [10] for background on the canonical height function.

Let K be a number field. The logarithmic height of x ∈ K is defined by

h(x) =
∑
ν∈MK

rν log max{|x|ν , 1},

where rν = [Kν : Qν ]/[K : Q] as in the introduction. This definition immediately extends in a
compatible way to any finite extension K ′ of K by the local-global degree formula, and so h is
a function h : K → R. We extend h to a function h : P1(K) → R by setting h(∞) = 0. See [6]
or [16] for an alternate but equivalent way of defining the height function.

Fix a rational function φ ∈ K(x) with d = deg φ ≥ 2. We use φn to mean the n-fold
composition of φ with itself. The Call-Silverman canonical height relative to φ is defined by

hφ(x) = lim
n−→∞

h(φn(x))

dn

for all x ∈ P1(K). In [10] it is shown that this limit exists, and its basic properties are established.
Importantly, for all x ∈ P1(K),

hφ(φ(x)) = dhφ(x), and

|h(x)− hφ(x)| < Cφ

for an absolute constant Cφ (in fact, the canonical height is uniquely characterized by these two
properties). The other property of the canonical height that we will use is that hφ(x) = 0 if
and only if x is preperiodic for φ, i.e., if φn(x) = φm(x) for some n > m ≥ 0. In the setting
of number fields, this fact is a simple consequence of Northcott’s theorem [22, Theorem 3.22].
It also holds if K is a function field and φ is not isotrivial, due to work of Benedetto [4] in the
polynomial case and Baker [1] for rational functions.

We say that a map φ ∈ K(x) has good reduction at a non-archimedean place ν if the degree of
φ is unchanged after reducing the coefficients to the residue field kν . To be precise, we must first
write φ as a map P1 → P1 in homogeneous coordinates and choose a normalized form. See [20]
or [22, Theorem 2.18] for details. For a polynomial

φ(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0,

good reduction has the simple interpretation that ν(ad) = 0 and ν(ai) ≥ 0 for 0 ≤ i ≤ d − 1.
There are evidently only finitely many non-archimedean places ν ∈ MK for which φ has bad
reduction (i.e., does not have good reduction).

We recall some notation and terminology from [21]. Let K be either the complex numbers C
or the field Cv which is the completion of the algebraic closure of Kv, and let | · | be the standard
absolute value on K. Let P1 denote the Berkovich projective line over K; for K = C, P1 is simply
P1(C). See [2] for background on Berkovich space in the context of dynamics.

Let φ : P1 → P1 be a morphism of degree d defined over K. A polarization ε of φ is an
isomorphism ε : O(d)

∼→ φ∗O(1), where by O(d) we mean OP1(d). More concretely, a choice of a
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polarization is equivalent to a choice of a homogeneous lift of φ to a polynomial endomorphism
Φ : A2 → A2 (see [21, Section 2.1]).

Recall that a metric on a line bundle L is a non-negative, real-valued function on L such that
the restriction to each fiber Lx is a norm on Lx as a K-vector space. The standard metric || · ||st
on O(1) is characterized by the identity

||s(x)||st =
|s(x0, x1)|

max{|x0|, |x1|}

on the fiber of O(1) above x = [x0 : x1], for each section s ∈ Γ(P1,O(1)) written as s(x) =
s(x0, x1) ∈ K[x0, x1]. The canonical metric || · ||φ,ε is the limit as k → ∞ of the sequence of
metrics characterized by

|| · ||φ,ε,0 = || · ||st
|| · ||⊗dφ,ε,k+1 = ε∗φ∗|| · ||φ,ε,k

for all k. Zhang showed that this limit exists as a bounded, continuous metric on O(1) [23].
See [21] for details on how the metric || · ||φ,ε depends on the polarization ε.

The standard measure µst on the Berkovich projective line P1 over K is the Haar measure
on the unit circle for K = C, and the Dirac point mass at the Gauss point ζ0,1 for K non-
archimedean. The canonical invariant probability measure µφ is defined as the weak limit as
k →∞ of the sequence of measures given by

µφ,0 = µst

µφ,k+1 =
1

d
φ∗µφ,k

for all k. The measure satisfies φ∗µφ = µφ and φ∗µφ = d · µφ. If β is any non-exceptional point,
then 1

dn

∑
φn(α)=β δα converges weakly to µφ.

Over C, the canonical invariant measure was constructed by Brolin for polynomial map-
pings [7] and extended to rational functions by both Ljubich [19] and Freire-Lopes-Mañé [15]. In
the non-archimedean setting, the measure was introduced independently by Baker-Rumely [3],
Chambert-Loir [11], and Favre-Rivera-Letelier [13]. The measure µφ can also be described as the
unique φ-invariant measure of maximal entropy log d (in particular, this equals the topological
entropy of φ).

Remark 2.1. In the proofs of our main results, the map φ will be defined over a number field
K. The metrics on O(1) and measures on P1 that we have defined exist at every place ν of
K, i.e., with K = Cν , and with φ considered as a map defined over K under the embedding
corresponding to ν. When necessary, we will indicate the dependence on ν with an additional
subscript, for example, ||s(x)||st,ν or µφ,ν .

The Julia set of φ can be defined in many equivalent ways. The most classical definition is
that the Fatou set of φ is the locus on which the family of iterates {φn}∞n=1 is equicontinuous,
and the Julia set is the complement of the Fatou set. The support of the invariant measure
µφ is precisely the Julia set of φ – this was proved in [15] for C and by Rivera-Letelier in the
non-archimedean case (see [2, Theorem 10.56] for a writeup of the proof).

For the moment, let ψ, φ : P1 → P1 be defined over K. Fix a polarization ε of φ. Let
s, t ∈ Γ(P1,O(1)) be sections with div(s) 6= div(t). The local Arakelov-Zhang pairing is defined
by

〈ψ, φ〉s,t = log ||s(div(t))||φ,ε −
∫

log ||s(x)||φ,εdµψ(x). (2.2)

Now let ψ, φ be defined over the number field K. For ν ∈MK , the local pairing of ψ and φ for
K = Cν is denoted 〈ψ, φ〉s,t,ν . The global Arakelov-Zhang pairing is then defined by

〈ψ, φ〉 =
∑
ν∈MK

rν〈ψ, φ〉s,t,ν + hψ(div(s)) + hφ(div(t)). (2.3)

As is clear from the notation, the local pairing does not depend on the choice of polarization ε,
and the global pairing does not depend on the choice of sections s and t (see [21]).
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Remark 2.4. The Arakelov-Zhang pairing may be understood as a dynamical distance, but it
is not a metric on the space of rational maps. However, as observed by Fili, it coincides with the
square of a metric of mutual energy defined on a space of adelic measures [14]. These measures
have associated canonical height functions, which in the dynamical setting agree with the Call-
Silverman canonical height. This connection has been fruitful in studying “unlikely intersection”
problems of some relation to the questions studied in this paper, e.g., the recent work in [12] on
uniform Manin-Mumford.

As mentioned in the introduction, the formula given for 〈ψ, φ〉 in Equation 1.1 follows from the
main results of [21] combined with a result on equidistribution of preimages of a non-exceptional
point. We prove this as Proposition 2.6. First we recall a theorem of Petsche-Szpiro-Tucker.

Theorem 2.5. [21, Theorem 1] Let ψ and φ be rational functions defined over a number field K.
Let {xn} ∈ P1(K) be a sequence of distinct points such that hφ(xn)→ 0. Then hψ(xn)→ 〈ψ, φ〉.

Recall that an exceptional point β ∈ P1(K) of a rational map φ : P1 → P1 is a point such
the set of all x ∈ P1(K) such that φn(x) = β for some n ≥ 1 (the backward orbit of β) is a
finite set. It is not hard to show that, if β is exceptional for φ, then up to conjugacy by Möbius
transformations, either φ is a polynomial and β =∞ or φ(x) = xd for d ∈ Z and β ∈ {0,∞}.

Proposition 2.6. Let ψ, φ : P1 → P1 be rational maps defined over a number field K. Suppose
β ∈ P1(K) is not exceptional for φ, and let d be the degree of φ. Then

〈ψ, φ〉 = lim
n−→∞

1

dn

∑
φn(x)=β

hψ(x),

where the summation is counted with multiplicity.

Proof. If, for all n, there are precisely dn points x with φn(x) = β, then the claim follows
directly from Theorem 2.5. In order to prove the Proposition in general, we need to show that
the points in the multiset {φn(x) = β} cannot occur with too large a multiplicity as n → ∞.
Fix an embedding K ↪→ C. In particular, we may view φ as a rational function with complex
coefficients under this embedding. Since β is a non-exceptional point, the nth preimages of β
equidistribute along the complex Julia set of φ under the canonical measure µφ.

It follows from [19, Theorem 4] that µφ has no point masses (the existence of point masses
would violate the “balanced measure” condition). Thus the number of times any α ∈ P1(C)
occurs in the multiset of dn preimages of β is o(dn) as n→∞.

Fix ε > 0. Then there is N such that there are only finitely many α with hφ(α) < hφ(β)d−N

and |hψ(α) − 〈ψ, φ〉| > ε, since otherwise we could find a sequence of distinct points {x`} such
that hφ(x`)→ 0 but hψ(x`) does not tend to 〈ψ, φ〉, which would violate Theorem 2.5. Fix such
an N , and call these finitely many points α1, α2, . . . , αk. For all n > N sufficiently large, these
αi will occur at most dnε/max{|hψ(αi)− 〈ψ, φ〉|} times as nth preimages of β. For such n, we
see that ∣∣∣∣∣∣〈ψ, φ〉 − 1

dn

∑
φn(α)=β

hψ(α)

∣∣∣∣∣∣ < 2ε.

The claim follows. �

We now proceed to proofs of the main theorems in the introduction.The first proof uses the
definition of the Arakelov-Zhang pairing given in Equation 2.3. The proof is somewhat similar
to the proof of Proposition 16 in [21]. We give a second, more elementary proof to illustrate
the utility of Proposition 2.6. To avoid complications, we assume that φ is a monic polynomial
whose Julia set at any place does not contain 0.

First proof of Theorem 1.3. Let φ : P1 → P1 be defined over K. Fix homogeneous coordinates
x0, x1 on P1, and set x = [x0 : x1]. Consider the map P1 → P1 given by x2 (i.e., [x0 : x1] 7→ [x20 :
x21]), and choose the polarization ε that yields its homogeneous lift Φ(x0, x1) = (x20, x

2
1).

The squaring map has good reduction at all non-archimedean places of K, so by [21, Propo-
sition 6] we have

||s(x)||x2,ε,ν = ||s(x)||st,ν
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for each non-archimedean place ν. This equality also holds at each archimedean place – simply
observe that the identity in Equation 13 of [21, Proposition 6] is clearly true for ν archimedean,
and the rest of the argument goes through verbatim.

To compute the local pairing, we choose sections s, t ∈ Γ(P1(Cν),O(1)). Let s(x0, x1) = x0
and t(x0, x1) = x0 + x1. We compute div(s) = [0 : 1] and div(t) = [1 : −1]. Identify P1 with
K ∪ {[1 : 0]} in the usual way, with a ∈ K corresponding to [a : 1]. Then for any place ν ∈MK ,

||s(a)||x2,ε,ν = ||s(a)||st,ε,ν =
|a|ν

max{|a|ν , 1}
= min{|a|ν , 1}.

Therefore, ∫
log ||s(x)||x2,ε,νdµφ,ν(x) =

∫
|α|ν<1

log |α|νdµφ,ν(α).

We compute ||s(div(t))||x2,ε = ||s(div(t))||st,ε = 1. So for any place ν,

〈x2, φ〉s,t,ν = −
∫
|α|ν<1

log |α|νdµφ,ν(α)

by the definition of the local pairing in Equation 2.2.
Now observe that hφ(div(s)) = hφ(0) and hx2(div(t)) = 0, as [1 : −1] is preperiodic under the

map x2. Using Equation 2.3, we compute

〈x2, φ〉 =
∑
ν∈MK

rν〈x2, φ〉s,t,ν + hx2(div(t)) + hφ(div(s))

= hφ(0)−
∑
ν∈MK

rν

∫
|α|ν<1

log |α|νdµφ,ν(α),

as claimed. �

Second proof of Theorem 1.3. Assume that φ ∈ K[x] is a monic polynomial whose ν-adic Julia
set does not contain 0 at any place ν. Let S ⊆ MK be a finite set of places of K containing
both the archimedean places and the places where φ has bad reduction. Let OK,S be the ring
of S-integers of K, i.e.,

OK,S = {z ∈ K : ν(z) ≥ 0 for ν /∈ S}.
Choose β ∈ OK,S such that

• β is not exceptional for φ, and

• for all ν ∈ S, β is not contained in the closure of {φn(0)} in the topology defined by ν.

We do some preliminary computations that will allow us to compute the average height of
the preimages of β. Let L denote the splitting field of φn(x)− β, and let ν ∈ MK . Recall that

rν = [Kν :Qν ]
[K:Q] . Using that φ is monic, we compute∑
ω∈ML,ω|ν

[Lω : Qν ]

[L : Q]

∑
φn(α)=β

log max{|α|ω, 1}

=
∑

ω∈ML,ω|ν

[Lω : Qν ]

[L : Q]

 ∑
φn(α)=β

log |α|ω −
∑

φn(α)=β,|α|ω<1

log |α|ω


=

∑
ω∈ML,ω|ν

[Lω : Qν ]

[L : Q]

log |φn(0)− β|ω −
∑

φn(α)=β,|α|ω<1

log |α|ω


= rν log |φn(0)− β|ν −

∑
ω∈ML,ω|ν

[Lω : Qν ]

[L : Q]

∑
φn(α)=β,|α|ω<1

log |α|ω,

where we use that for any α ∈ K, the extension formula implies that∏
ω∈ML,ω|ν

|α|rωω = |α|rνν .
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Fix a completion of the algebraic closure of Kν , Cν , with an absolute value that extends | · |ν .
There is a distinguished place ω on L extending ν such that ω agrees with the valuation on Cν .
Since G = Gal(L/K) acts transitively on the set of valuations above ν, every valuation ω′ on L
above ν is of the form | · |ω′ = |σ(·)|ω for some σ ∈ G. Let Dω denote the decomposition group
of ω, i.e., the stabilizer of ω in G. Then the set of valuations of L above ν is isomorphic as a
G-set to G/Dω. Note that

|G/Dω| =
|G|

[Lω : Kν ]
=

[L : K]

[Lω : Kν ]
.

Thus we may write∑
ω∈ML,ω|ν

[Lω : Qν ]

[L : Q]

∑
φn(α)=β,|α|ω<1

log |α|ω =
[Lω : Qν ]

[L : Q]

∑
g∈G/Dω

∑
φn(α)=β,|α|gω<1

log |α|gω,

where we identify G/Dω with a given choice of a left transversal. For each α with |α|ω < 1 and
each g ∈ G/Dω, the term log |α|ω appears exactly once in the inner sum. Therefore∑

ω∈ML,ω|ν

[Lω : Qν ]

[L : Q]

∑
φn(α)=β,|α|ω<1

log |α|ω =
[Kν : Qν ]

[K : Q]

∑
φn(α)=β,|α|ω<1

log |α|ω.

For ω ∈ ML lying above ν 6∈ S, we see that if φn(α) = β, then |α|ω ≤ 1. Thus if φn(α) = β,
then

h(α) =
∑
ν∈S

∑
ω∈ML,ω|ν

rω log max{|α|ω, 1}.

Now we can compute the average height of the preimages of β under φn as follows:

1

dn

∑
φn(α)=β

h(α) =
1

dn

∑
ν∈S

∑
ω∈ML,ω|ν

[Lω : Qν ]

[L : Q]

∑
φn(α)=β

log max{|α|ω, 1}

=
∑
ν∈S

rν log |φn(0)− β|ν
dn

− rν
1

dn

∑
φn(α)=β,|α|ν<1

log |α|ν

 .

We claim that

h(φn(0)− β) =
∑
ν∈S

(rν log |φn(0)− β|ν) +O(1).

Indeed, for ν 6∈ S, rν log max{|φn(0) − β|ν , 1} = 0 as φn(0) and β both have non-negative
valuation. For the finitely many ν ∈ S, the choice of β guarantees that |φn(0)− β|ν is bounded
below independently of n, so rν log |φn(0)−β|ν − rν log max{|φn(0)−β|ν , 1} = O(1). Therefore,

1

dn

∑
φn(α)=β

h(α) =
h(φn(0)− β)

dn
−
∑
ν∈S

rν 1

dn

∑
φn(α)=β,|α|ν<1

log |α|ν

+O(1/dn).

Now we take the limit of the average height of preimages as n → ∞. The left-hand side
approaches 〈x2, φ〉 by Proposition 2.6. On the right-hand side, the first term approaches hφ(0)
by basic properties of heights. As S is finite, we may interchange the limit with the sum over
ν ∈ S in the second term. Thus we arrive at

〈x2, φ〉 = hφ(0)−
∑
ν∈S

rν lim
n−→∞

1

dn

∑
φn(α)=β,|α|ν<1

log |α|ν .

By assumption, the Julia set of φ at every completion ν of K does not include 0. Therefore the
function α 7→ log |α|ν is a bounded continuous function on the support of the canonical invariant
measure µφ,ν . By the weak convergence of the average of point masses 1

dn

∑
φn(α)=β δα to the

canonical measure, we have that

lim
n−→∞

1

dn

∑
φn(α)=β,|α|ν<1

log |α|ν =

∫
|α|ν<1

log |α|νdµφ,ν
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and we obtain the formula

〈x2, φ〉 = hφ(0)−
∑
ν∈S

rν

∫
|α|ν<1

log |α|νdµφ,ν .

For ν 6∈ S, note that ∫
|α|ν<1

log |α|νdµφ,ν = 0,

as µν,φ is supported at the Gauss point ζ0,1. Therefore the integrals in the statement of Theo-
rem 1.3 vanish for ν /∈ S, so we are done. �

Remark 2.7. We include the second proof to show that, using Proposition 2.6, in some cases
it is possible to prove Theorem 1.3 without invoking much of the fairly technical local analytic
machinery. The main difficulty in extending the argument from polynomials to rational functions
is that it is no longer necessarily true that there is a finite set S ⊆ MK such that the heights
of preimages can be computed by only looking at local contributions from places in S. In
particular, there are contributions from places other than the archimedean places and places of
bad reduction.

Proof of Corollary 1.4. The Julia set is the support of the canonical measure. Thus if the Julia
set is disjoint from the Berkovich open unit disk for a valuation ν, then∫

|α|ν<1

log |α|νdµφ,ν = 0,

so 〈x2, φ〉 = hφ(0).
Suppose the Julia set of φ at some valuation ν intersects the Berkovich open unit disk. Then

the Julia set intersects the open ball of radius r for some r < 1. The measure of this ball is then
positive, and we have that log |α| < −ε < 0 for some ε on this ball. Thus∫

|α|ν<1

log |α|νdµφ,ν < 0,

implying the result. �

Proof of Corollary 1.5. Let ν ∈MK be a non-archimedean place. If φ has good reduction at ν,
then the Julia set in Berkovich space is the Gauss point, hence is disjoint from the Berkovich
open unit disk. A monic polynomial with integer coefficients has good reduction at every such
ν, and we are done. �

3. Applications to Julia sets

First, we give two conditions that guarantee that∫
|α|ν<1

log |α|νdµφ,ν = 0.

The first condition is good reduction. If φ is a rational function with good reduction at ν, then
the Julia set of φ at ν is the Gauss point ζ0,1 [2, Chapter 10.5]. Since ζ0,1 is not contained in
the Berkovich open unit disk, the integral vanishes if we have good reduction. Note that, as
rational functions have good reduction away from finitely many places, this implies that only
finitely many of the terms in the sum in Theorem 1.3 are nonzero.

Our second condition is the hypothesis of Lemma 3.1 for φ a polynomial.

Lemma 3.1. Let φ(x) = xn+an−1x
n−1 + · · ·+a0 be a polynomial with coefficients in a number

field K, and let ν be a non-archimedean valuation which satisfies the condition

ν(a0) ≤ 0 and ν(a0) < ν(ai) for every i.

Then the Julia set of φ in the ν-adic Berkovich space P1 does not intersect the open unit disk.
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Proof. If ν(a0) = 0, then φ has good reduction and we are done. Therefore we may assume that
ν(a0) < 0 by our condition on the coefficients of φ.

Let D = {ζ ∈ A1
ν : |ζ|ν < 1} be the Berkovich open unit disk, where |ζ|ν is interpreted in the

Berkovich sense (the seminorm [·]ζ evaluated at the polynomial x). In order to show that J(φ)
does not intersect D, it suffices to show that D is in the basin of attraction of the attracting
fixed point at ∞.

Suppose |ζ|ν < 1. By our assumption on the coefficients and the ultrametric inequality, we
have |φ(ζ)|ν = |a0|ν > 1. If any ξ ∈ A1

ν satisfies |ξ|ν ≥ |a0|ν > 1, then again by the ultrametric
we have |φ(ξ)|ν = |ξ|nν . Iterating φ, we find that |φm(ξ)|ν = |ξ|nmν , and this expression tends to
∞ as m increases. Taking ξ = φ(ζ), we see that φ(ζ) is in the basin of attraction of ∞; thus ζ
is as well. �

Let φ ∈ K[x] be a monic polynomial such that, for every non-archimedean place ν, either φ
has good reduction at ν or φ satisfies the hypothesis of Lemma 3.1. For example, this criterion
applies to every φ in the quadratic family x2 + c. Lemma 3.1 implies that

〈x2, φ〉 = hφ(0)−
∑

ν archimedean

rν

∫
|α|ν<1

log |α|νdµφ,ν . (3.2)

Equation 3.2 is a slight generalization of Theorem 1.5. Note that the hypothesis holds in the
case that φ has coefficients in the ring of integers OK , as mentioned in Remark 1.6.

We now prove Theorem 1.7 using a result of Kawaguchi and Silverman on polynomials with
equal canonical height functions [17].

Proof of Theorem 1.7. By Theorem 1.3,

〈x2, φ〉 = hφ(0)−
∑
ν∈MK

rν

∫
|α|ν<1

log |α|νdµφ,ν .

We have 0 preperiodic for φ and so hφ(0) = 0. The hypotheses imply that the support of µφ,ν
is disjoint from the Berkovich open unit disk for each ν ∈ MK (for ν non-archimedean, this is
because the coefficients are integral). Therefore 〈x2, φ〉 = 0. By [21, Theorem 3], the canonical
heights hx2 and hφ are equal.

By [17, Corollary 25], if ψ, φ are polynomials of degree ≥ 2 with hψ = hφ, then there exist
a linear polynomial f and a root of unity η such that ψf (x) = xn and φf (x) = ηxd (where ψf

means f−1 ◦ψ ◦f). In our case where ψ(x) = x2, the only possibility is that f(x) = x and n = 2,
which imply η = 1. Thus φ(x) = xd. �

Remark 3.3. It might seem that we could strengthen Theorem 1.7 by weakening the hypothesis
to allow φ to either have good reduction at ν or satisfy the hypothesis of Lemma 3.1. However,
the argument of Lemma 3.1 shows that if ν(a0) < 0 then 0 is in the basin of attraction of ∞,
and in particular is not preperiodic. So if Lemma 3.1 is satisfied and 0 is preperiodic, then φ
has good reduction.

4. Explicit computations

Because of the explicit nature of Theorem 1.3, we are able to compute the Arakelov-Zhang
pairing in several situations, extending the computations in [21].

First, we compute the Arakelov-Zhang pairing between x2 and the Chebyshev polynomials
Tn(x), an important family of polynomials in dynamics. The polynomial Tn is characterized by
the equation Tn(x+x−1) = xn+x−n (see, e.g., [22] for basic facts about Chebyshev polynomials).

Proposition 4.1. Let Tn(x) be a Chebyshev polynomial for n ≥ 2. Then

〈x2, Tn〉 = − 1

2π

∫ 1

−1

log |x|√
1− x2/4

dx =
3
√

3

4π
L(2, χ) ≈ 0.3231,

where L(s, χ) is the Dirichlet L-function associated to the nontrivial character with modulus 3.
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Proof. The Chebyshev polynomials are monic polynomials with integer coefficients, so Corollary
1.5 applies. We note that the complex Julia set of the Tn(x) for n ≥ 2 is the interval [−2, 2],
and 0 is preperiodic. It is known (see, e.g., [9, Example 2.6]) and can be easily verified that the
canonical measure on the complex Julia set of Tn is given by

dµTn =
1

2π

1√
1− x2/4

dx,

where dx is the standard Lebesgue measure. Then Corollary 1.5 gives

〈x2, Tn〉 = 0−
∫
|x|≤1

log |x|dµTn = − 1

2π

∫ 1

−1

log |x|√
1− x2/4

dx.

We claim that

− 1

2π

∫ 1

−1

log |x|√
1− x2/4

dx =
1

π

∫ π/3

−π/3
log |2 + 2 sin t|dt =

3
√

3

4π
L(2, χ).

The later equality is shown by Smyth in an appendix to [5]. The substitution x = 2 sin(t/2)
gives

− 1

2π

∫ 1

−1

log |x|√
1− x2/4

dx = − 1

2π

∫ π/3

−π/3
log |2 sin(t/2)|dt = − 1

2π

∫ π/3

0

log(4 sin2(t/2))dt.

Using the Pythagorean identity, this is equal to

− 1

2π

∫ π/3

0

log(4 sin2(t/2)) = − 1

2π

∫ π/3

0

(log(2− 2 cos(t/2)) + log(2 + 2 cos(t/2)))dt

= − 1

π

∫ π/6

0

(log(2− 2 cos(t)) + log(2 + 2 cos(t)))dt

= − 1

π

∫ π/2

π/3

(log(2− 2 sin(t)) + log(2 + 2 sin(t)))dt.

Substituting t→ −t on the interval from −π/3 to 0, we see that

1

π

∫ π/3

−π/3
log |2 + 2 sin t|dt =

∫ π/3

0

(log(2 + 2 sin(t)) + log(2− 2 sin(t)))dt.

Then the result follows as∫ π/2

0

(log(2 + 2 sin(t)) + log(2− 2 sin(t)))dt =

∫ π/2

0

log(2 cos(t))dt = 0,

where the last equality is well-known. �

We are also able to extend the some of the explicit computations done in [21]. For example,
Petsche-Szpiro-Tucker prove Proposition 4.2.

Proposition 4.2. [21, Proposition 19] Let φ(x) = x2 + c for c ∈ K. Then

(1/2)h(c)− log 3 ≤ 〈x2, φ〉 ≤ (1/2)h(c) + log 2.

We show the following.

Proposition 4.3. Let φ(x) = x2 + c for c ∈ K. Then

〈x2, φ〉 ≥ hφ(0).

Suppose that for all archimedean place ν of K we have that |c|ν ≥ 2 +
√

2. Then

〈x2, φ〉 = hφ(0).

Proof. The first statement follows immediately from Corollary 1.4. Note that polynomials of
the form x2 + c satisfy the hypothesis of Lemma 3.1 for ν non-archimedean. In general, we show
that if |c|ν ≥ 2 +

√
2, then the Julia set of φ at an archimedean place ν is disjoint from the open

unit disk. Indeed, if |c|ν ≥ 2 +
√

2, then every point in the open unit disk lies in the basin of
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attraction of infinity at ν. If |x|ν >
1+
√

1+4|c|ν
2 , then |φ(x)|ν > |x|ν and hence |φn(x)|ν grows

geometrically. If |c|ν ≥ 2 +
√

2 and |a|ν < 1, then

|a2 + c|ν > |c|ν − 1 ≥
1 +

√
1 + 4|c|ν
2

.

Thus if |c|ν ≥ 2 +
√

2 for all archimedean places ν, then the Julia set of φ at every place of K is
disjoint from the open unit disk, so the proposition follows from Corollary 1.4. �

We can combine Propositions 4.2 and 4.3 to derive a bound on the difference between hφ(0)
and (1/2)h(c). Since

hφ(0) = lim
n−→∞

h(φn(0))

2n
,

one may expect that (1/2)h(φ(0)) is a reasonable approximation for hφ(0). We show that this
is a good approximation uniformly in φ.

Proposition 4.4. Let φ(x) = x2 + c. Then we have that hφ(0) ≤ (1/2)h(φ(0)) + log 2.

Proof. By Proposition 4.3,

〈x2, φ〉 ≥ hφ(0).

By Proposition 4.2, this implies that hφ(0) ≤ (1/2)h(φ(0)) + log 2. �

Petsche-Szpiro-Tucker also consider the pairing between the squaring map x2 and the map
α − (α − x)2, which is a conjugate of the squaring map by translation by α. Let σ(x) = x2,
so that, for a Möbius transformation f , we have σf (x) = f−1(f(x)2). For a > 0, b ≥ 0, let

I(a, b) = −
∫ 1

0
log min{a, |b+ e2πiθ|}dθ.

Proposition 4.5. [21, Proposition 18] Suppose f(x) = α− x is defined over a number field K.
Then

〈x2, σf 〉 = h(α) +
∑
ν|∞

rνI(1, |α|ν).

We simplify the proof of this this and extend it to the case of any linear f , which allows us
to bound the difference between the standard height and canonical height in these cases.

Proposition 4.6. Let f(x) = ax+ b ∈ K[x] with a 6= 0. Then

〈x2, σf 〉 = h(b) +
∑
ν|∞

rν log |a|ν +
∑
ν|∞

rνI(|a|ν , |b|ν).

In [21, Lemma 17], Petsche-Szpiro-Tucker analyze I(1, b) and show that it attains a global
maximum at 1. They compute that

I(1, 1) =
3
√

3

4π
L(2, χ),

where as in Proposition 4.1, L(s, χ) is the Dirichlet L-function associated to the nontrivial
character with modulus 3. Using similar techniques and some casework, one can show that for
fixed a, I(a, b) attains a global maximum at b = 1, and that I(a, 1) = 0 for a ≥ 2. For fixed b,
I(a, b) is a non-increasing function. Note that

∑
ν|∞ rν = 1. Thus if |a|ν ≥ 1 for all archimedean

places ν,

〈x2, σf 〉 ≤ h(b) +
∑
ν|∞

rν log |a|ν +
3
√

3

4π
L(2, χ).

Proof of Proposition 4.6. Recall that the canonical measure of σ(x) = x2 at an archimedean
place ν (viewed as an embedding of K into C) is the uniform measure on the unit circle. Since the
canonical measure of σf is the pushforward of the canonical measure of σ under f , the canonical
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measure of σf is the uniform measure on the circle of radius a−1 centered at f−1(0) = −b/a.
Therefore

−
∫
|α|ν<1

log |α|νdµσf ,ν = −
∫ 1

0

log min{1, || − b/a|ν + |a−1|νe2πiθ|}dθ

= −
∫ 1

0

log
(
|a−1|ν ·min{|a|ν , ||b|ν + e2πiθ|}

)
dθ

= log |a|ν + I(|a|ν , |b|ν),

since e2πiθ + t parameterizes the unit circle centered at t at constant speed at θ goes from 0 to
1. Note that hσf (x) = h(f(x)), so hσf (0) = h(f(0)) = h(b). Therefore Theorem 1.3 implies the
result. �

We now apply these explicit computations and Theorem 1.8 to bound the height difference
between the canonical height and the standard height.

Proposition 4.7. Let Tn(x) denote the nth Chebyshev polynomial. Let f(x) = ax + b be a
Möbius transform defined over a number field K with |a|ν ≥ 1 for all archimedean places ν. Let

σf (x) = f−1(f(x)2). Let c = 3
√
3

4π L(2, χ) + log 2. Then for any n ≥ 2 and any x ∈ P1(K),

hTn(x)− h(x) ≤ c.

hσf (x)− h(x) ≤ c+ h(b) +
∑
ν|∞

rν log |a|ν .
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[13] Charles Favre and Juan Rivera-Letelier, Équidistribution quantitative des points de petite hauteur sur la

droite projective, Math. Ann. 335 (2006), no. 2, 311–361.
[14] Paul Fili, A metric of mutual energy and unlikely intersections for dynamical systems, Preprint,

arXiv:1708.08403v1.
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